Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 204394 dokumen yang sesuai dengan query
cover
Abdul Azis As Sajjad
"Beberapa tahun terakhir terjadi penyakit pada tanaman karet yang disebabkan oleh jamur Pestalotiopsis sp yang menyebabkan gugur daun karet secara massif. Pestalotiopsis sp tumbuh dan berkembang pada wilayah dengan curah hujan dan kelembaban udara yang cukup tinggi dan lembab. Kebun Pusat Penelitian Karet Sembawa merupakan kebun yang digunakan dalam melakukan penelitian dan mengembangkan tanaman karet. Penelitian ini bertujuan untuk mengkaji secara spasial dan temporal fenomena gugur daun tanaman karet akibat Pestalotiopsis sp serta curah hujan dan kelembaban pada wilayah kebun Pusat Penelitian Karet Sembawa. Sentinel 2A merupakan citra satelit yang memiliki resolusi spasial dan temporal yang cukup baik dan sering digunakan dalam melakukan monitoring tanaman khususnya hutan dan perkebunan. NDVI digunakan dalam yang mendeteksi tingkat gugur daun pada tanaman karet melalui citra Sentinel 2A. Curah hujan dan kelembaban didapatkan melalui citra CHIRPS dan SMAP. Terdapat hubungan yang cukup signifikan antara nilai NDVI dengan tingkat gugur daun tanaman karet. Pada Agustus 2020 terjadi gugur daun karet secara alami dengan rendahnya tingkat curah hujan dan kelembaban pada wilayah kebun. Desember 2020, Maret, Mei dan November 2021 terjadi gugur daun akibat serangan Pestalotiopsis sp yang ditandai dengan tingginya nilai curah hujan dan kelembaban. Tingkat gugur daun karet akibat Pestalotiopsis sp memiliki hubungan yang signifikan dengan curah hujan secara spasial dan temporal. Kelembaban tidak memiliki korelasi yang cukup signifikan dengan kejadian gugur daun karet.

In recent years there has been a disease in rubber plants caused by the fungus Pestalotiopsis sp which causes massive rubber leaf falls. Pestalotiopsis sp grows and develops in areas with high and humid rainfall and humidity. The Sembawa Rubber Research Center garden is a garden for conducting research and developing rubber plants. This study aims to examine the phenomenon of leaf fall of rubber plants due to Pestalotiopsis sp spatially and temporally as well as the influence of rainfall and humidity factors in the garden area. Rubber leaf fall was calculated using the vegetation index and %treecover from Sentinel 2A images and drone images. Rainfall and humidity were obtained through CHIRPS and SMAP images. The results showed a significant relationship between the NDVI value and the leaf fall rate of rubber plants. Rubber leaf fall rate due to Pestalotiopsis sp has a significant relationship with rainfall spatially and temporally. Meanwhile, the humidity did not have a significant correlation with the incidence of rubber leaf falls. Natural leaf fall occurred in August 2020 marked by low levels of rainfall and humidity. December 2020, March, May, and November 2021, leaves fall due to the attack of Pestalotiopsis sp which is characterized by high rainfall and humidity values."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gadis Zeffilda
"Tanaman karet sebagai tanaman yang dapat berperan penting dalam penyerapan serta penyimpanan karbon. Penyerapan karbon dilakukan sebagai salah satu upaya untuk mengurangi efek gas rumah kaca di atmosfer. Kapasitas penyerapan stok karbon pada tanaman karet dapat dilihat dari nilai biomassa yang dimilikinya. Penelitian ini bertujuan untuk menganalisis persebaran stok karbon tanaman karet dan hubungannya dengan umur tanaman karet. Persebaran stok karbon di daerah wilayah penelitian dengan menggunakan pendekatan indeks vegetasi, serta analisis regresi dan deskriptif. Indeks vegetasi yang digunakan yaitu MSAVI, OSAVI, SAVI, GNDVI, dan ARVI yang diperoleh dari pengolahan citra satelit Sentinel 2- A. Nilai biomassa pada tanaman karet didapatkan dari persamaan alometrik. Hasil penelitian menunjukkan bahwa persebaran stok karbon hampir di seluruh wilayah Pusat Penelitian Karet Sembawa. Hubungan umur tanaman karet dengan nilai stok karbon cenderung rendah karena dipengaruhi oleh jenis klon, pengelolaan tanaman karet, dan penyakit tanaman karet.

Rubber is a plant that can play an important role in carbon sequestration and storage. Carbon sequestration is carried out as an effort to reduce the effect of greenhouse gases in the atmosphere. The absorption capacity of carbon stock in rubber plants can be seen from the value of its biomass. This study aims to analyze the distribution of carbon stock in rubber plants and its relationship with the age of rubber plants. The distribution of carbon stock in the study area using a vegetation index used is MSAVI, OSAVI, SAVI, GNDVI, and ARVI obtained from processing the Sentinel 2-A satellite imagery. The value of biomass in rubber plants is obtained from the allometric equation. The results showed that the carbon stock distribution in almost all areas of the Sembawa Rubber Research Centre The relationship between the age of rubber plants and the value of carbon stock tends to be low due to it is influenced by the type of clone, management of rubber plants, and rubber plant diseases."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mellinia Azni Nazilah
"Indonesia menjadi negara dengan produksi karet terbesar kedua di dunia masih dihadapkan pada beberapa kendala walaupun, salah satunya adalah produktivitas karet yang rendah. Rendahnya produktivitas karet di Indonesia salah satunya disebabkan oleh gangguan penyakit tanaman. Penelitian ini bertujuan untuk mengetahui persebaran kesehatan tanaman karet menggunakan indeks vegetasi (NDVI, MSAVI2, ARVI, dan EVI) dan menganalisis pengaruh curah hujan, ketinggian, dan umur tanaman terhadap kesehatan tanaman karet di Pusat Penelitian Karet Sembawa, Kabupaten Banyuasin, Provinsi Sumatera Selatan. Hasil penelitian menunjukkan bahwa persebaran kesehatan tanaman karet di Pusat Penelitian Karet Sembawa (Afdeling 1, 2, dan 3) menggunakan NDVI didominasi oleh kelas baik, MSAVI2, ARVI, dan EVI didominasi oleh kelas sedang. Hasil uji akurasi menunjukkan bahwa MSAVI2 memiliki nilai RMSE terkecil dari ketiga indeks vegetasi lainnya, sebesar 0,046, sehingga model prediksi yang dihasilkan MSAVI2 lebih akurat untuk mendeteksi kesehatan tanaman karet. Aspek yang mempengaruhi kesehatan tanaman karet secara signifikan, yaitu curah hujan dan umur tanaman. Ketinggian mempengaruhi kesehatan tanaman karet tidak terlalu signifikan karena didominasi oleh ketinggian 10 – 20 mdpl. Ketinggian tersebut masih cocok untuk pertumbuhan karet, namun tidak menjamin kesehatan tanaman karet akan tetap terjaga karena berbagai faktor selain faktor fisik dan iklim, seperti dari segi perawatan, teknik penyadapan, dan kegiatan penyiangannya.

Indonesia being the country with the second largest rubber production in the world is still faced with several obstacles, although one of them is low rubber productivity. One of the reasons for the low productivity of rubber in Indonesia is plant disease. This study aims to determine the distribution of rubber plant health using the vegetation index (NDVI, MSAVI2, ARVI, and EVI) and to analyze the effect of rainfall, altitude, and plant age on the health of rubber plants at the Sembawa Rubber Research Center, Banyuasin Regency, South Sumatra Province. The results showed that the distribution of rubber plant health at the Sembawa Rubber Research Center (Afdeling 1, 2, and 3) using NDVI was dominated by good class, MSAVI2, ARVI, and EVI dominated by medium class. The accuracy test results show that MSAVI2 has the smallest RMSE value of the other three vegetation indices, amounting to 0.046, so the prediction model produced by MSAVI2 is more accurate for detecting the health of rubber plants. Aspects that significantly affect the health of rubber plants, namely rainfall and plant age. Altitude affects the health of rubber plants not too significantly because it is dominated by a height of 10 – 20 meters above sea level. This height is still suitable for rubber growth, but does not guarantee that the health of rubber plants will be maintained due to various factors other than physical and climatic factors, such as in terms of maintenance, tapping techniques, and weeding activities."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Geraldo Nazar Prakarsa
"Provinsi Sumatera Selatan merupakan daerah produksi karet terbesar di Indonesia pada tahun 2021 yaitu sebanyak 870.966 ton. Pusat Penelitian Karet Sembawa merupakan lembaga penelitian yang dapat menghasilkan lateks yang mana tanaman karet (Hevea brasiliensis) merupakan komoditas utama yang diteliti. Umur tegakan merupakan salah satu variabel penting karena dapat memprediksi produktivitas lateks. Tujuan dari penelitian ini adalah untuk memetakan distribusi umur tegakan karet menggunakan data nilai spektral band dan indeks vegetasi serta hubungannya terhadap produktivitas lateks. Penginderaan jauh menggunakan citra optik multispektral Sentinel-2 dapat digunakan untuk mengestimasi umur tegakan karena memberikan informasi dengan efisiensi waktu yang lebih baik serta kemudahan mendapatkan data pada area yang susah untuk dijangkau. Nilai spektral band yang kemudian digabungkan menjadi indeks vegetasi diasumsikan dapat mempresentasikan umur tegakan karena kerapatan atau kehijauan kanopi tegakan karet memiliki variasi nilai yang berbeda antara tegakan yang berumur muda dan tegakan yang berumur tua. Indeks vegetasi yang digunakan adalah Normalized Difference Vegetation Index (NDVI), Normalized Difference Yellowness Index (NDYI), serta Soil Adjusted Vegetation Index (SAVI). Pemodelan ini dapat dibentuk melalui pendekatan model statistik yang berupa metode regresi linear berganda karena dengan menggunakan lebih banyak variabel, model yang dihasilkan akan lebih akurat dan presisi. Hasil dari pemodelan yang menggunakan pendekatan model statistik berbasis data citra Sentinel-2 memiliki tingkat akurasi lebih baik (RMSE = 4,767 tahun dan R2 = 0,308) dari beberapa penelitian terdahulu.

South Sumatra Province is the largest rubber-producing region in Indonesia in 2021, with a total production of 870,966 tons. Sembawa Rubber Research Center is a research institution that focuses on studying the main commodity, rubber trees (Hevea brasiliensis). The rubber trees in the research area have different age groups and conditions. Estimation of rubber stand age an important variable as it can predict latex productivity. The objective of this research is to map the distribution of rubber tree ages using spectral band values and vegetation indices data, and to examine their correlation with latex productivity. Remote sensing, using multispectral optical images from Sentinel-2, can be used to estimate the age of rubber trees, as it provides information more efficiently and allows for data acquisition in hard-to-reach areas. The combined spectral band values, assumed to represent rubber tree age, can vary between young and old rubber tree canopies in terms of density or greenness. The vegetation indices used in this study are the Normalized Difference Vegetation Index (NDVI), Normalized Difference Yellowness Index (NDYI), and Soil Adjusted Vegetation Index (SAVI). Statistical model approach with multiple linear regression is employed, as using more variables can result in a more accurate and precise model. The results indicate that the statistical model using Sentinel-2 image data has better accuracy (RMSE = 4.767 years and R2 = 0,308) compared to previous research."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cipta Setiana
"Tanaman karet menjadi komoditas perkebunan yang sangat penting di Kabupaten Sukabumi khusunya di perkebunan PTPN VIII Cibungur, karena hasil produk olahannya memiliki banyak manfaat dalam kehidupan masyarakat di sekitarnya. Maka perlu dilakukan adanya pemantauan mengenai kesehatan tanaman karet guna menjaga kualitas dan hasil produksi karet. Penelitian ini dilakukan untuk mengetahui persebaran kesehatan tanaman karet dan menganalisis hubungan kesehatan tanaman karet dengan menerapkan teknik pengindraan jauh. Teknik penginderaan jauh dalam penelitian ini menggunakan multispectral UAV. Analisis penelitian dilakukan dengan identifikasi kondisi tanaman menggunakan indeks vegetasi tanaman yaitu metode Normalized Difference Vegetation Index (NDVI). Data yang digunakan adalah data citra ortofoto NIR dan Red yang diperoleh dari perekaman langsung dengan mengggunakan multispketral UAV. Didapatkan bahwa secara keseluruhan kesehatan tanaman karet di kawasan perkebunan karet PTPN VIII Cibungur didominasi oleh tingkat kesehatan baik dengan persentase sebersar 56%, tanaman yang memiliki tingkat kesehatan buruk hanya 3% dari total luas perkebunan karet. Hasil sebaran tanaman karet menunjukan bahwa tanaman dengan kondisi sangat baik berada dibagian barat dan timur lokasi penelitian. Kesehatan tanaman karet dipengaruhi oleh beberapa faktor, seperti kondisi curah hujan, jenis tanah dan lereng.

Rubber plants are very important plantation commodities in Sukabumi Regency, especially in the PTPN VIII Cibungur plantation, because the processed products have many benefits in the lives of the surrounding community. So it is necessary to monitor the health of rubber plants in order to maintain the quality and yield of rubber production. This research was conducted to determine the distribution of rubber plant health and to analyze the relationship between rubber plant health by applying remote sensing techniques. The remote sensing technique in this study uses a multispectral UAV. Research analysis was carried out by identifying plant conditions using a plant vegetation index, namely the Normalized Difference Vegetation Index (NDVI) method. The data used are NIR and Red orthophoto image data obtained from direct recording using a multispectral UAV. It was found that the overall health of rubber plants in the rubber plantation area of PTPN VIII Cibungur was dominated by good health with a percentage of 56%, plants with poor health were only 3% of the total area of rubber plantations. The results of the distribution of rubber plants showed that plants with very good conditions were located in the western and eastern parts of the study site. The health of rubber plants is influenced by several factors, such as rainfall conditions, soil types and slopes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitorus, Yusuf Beltsazar
"Tanaman karet merupakan salah satu komoditas utama ekspor Indonesia. Namun, dalam beberapa tahun terakhir, produksi karet di Indonesia mengalami penurunan. Hal tersebut disebabkan karena adanya penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp.. Berkembangnya teknologi artificial intelligence dengan pendekatan deep learning mampu melakukan pendeteksian pada penyakit ini dengan menggunakan data citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang diterapkan pada data berbentuk visual atau citra. Pada penelitian ini, peneliti menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur Residual Network 50 (ResNet-50). Pada penelitian ini juga digunakan Transfer Learning yang merupakan sebuah model yang dapat diajarkan dan disempurnakan untuk suatu kegiatan dan kemudian bisa diterapkan pada kegiatan lain. Dataset yang digunakan pada penelitian ini adalah data daun karet yang berjumlah 1629 data yang dibagi dalam 5 kelas yaitu level 0 atau sehat merupakan daun yang sehat, level 1 merupakan daun yang telah terbentuk bercak coklat yang merupakan gejala dari penyakit namun belum memiliki tanda-tanda perubahan warna, level 2 merupakan daun yang telah terbentuk banyak bercak cokelat disertai dengan adanya perubahan warna pada daun, level 3 merupakan daun yang mengalami kerusakan jaringan, perubahan warna menjadi cokelat atau kuning namun masih memiliki sedikit bagian daun yang berwarna hijau, level 4 merupakan daun yang mengalami kerusakan jaringan cukup parah, dipenuhi bercak cokelat dan telah berwarna cokelat menyeluruh. Dari hasil simulasi yang dilakukan, diperoleh hasil terbaik dengan rata-rata accuracy 96,01%, recall 95,888%, dan precision 96,184% dengan running time rata-rata running time 69,759 detik.

Rubber plants are one of Indonesia's main export commodities. However, in recent years, rubber production in Indonesia has experienced a decline. This is due to the presence of the leaf fall disease caused by the Pestalotiopsis sp. fungus. The advancement of artificial intelligence technology using deep learning approaches enables the detection of this disease using image data. The Convolutional Neural Network (CNN) is a deep learning algorithm applied to visual or image data. In this study, researchers utilized the Convolutional Neural Network (CNN) method with the Residual Network 50 (ResNet50) architecture. Transfer Learning was also employed in this research, which involves training and refining a model for one task and then applying it to another task. The dataset used in this study consists of 1629 rubber leaf samples divided into 5 classes: level 0, representing the healthy leaves; level 1, indicating leaves with brown spots, a symptom of the disease, but without major visible color changes; level 2, comprising of leaves with numerous brown spots accompanied by slight color changes; level 3, representing leaves with tissue damage, a color change from green to brown or yellow, but still retaining some green parts; and level 4, depicting leaves with severe tissue damage, extensively covered in brown spots and having turned completely brown. The simulation results showed the best outcome with an average accuracy of 96.01%, recall of 95.888%, and precision of 96.184%, with an average running time of 69.759 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhry Arief Fabian
"Tanaman karet berperan sebagai komoditas penting di Indonesia karena menghasilkan karet alami yang memiliki banyak manfaat dan mampu bersaing di pasar internasional. Namun, sejak tahun 2017, produksi karet mengalami hambatan karena timbul serangan penyakit gugur daun baru yang berbeda dari penyakit terdahulu. Penyakit tersebut dapat menyebabkan gugur daun hingga 90% dan penurunan produksi lateks hingga 45%. Setelah ditelusuri, penyakit gugur daun baru ini disebabkan oleh patogen Pestalotiopsis sp. dan diberi nama penyakit gugur daun Pestalotiopsis. Sebagai penyakit baru, perlu dilakukan penelitian lebih lanjut untuk memonitor laju pertumbuhan penyakit ini. Salah satu penelitian ini adalah melakukan klasifikasi indeks atau level keparahan penyakit gugur daun Pestalotiopsis. Keparahan penyakit ini dapat dikelompokkan berdasarkan perubahan warna daun dan lesi khas yang timbul pada permukaan daun tanaman karet. Pada penelitian sebelumnya, pengukuran intensitas keparahan dilakukan dengan observasi secara langsung bercak gejala yang muncul pada daun atau pohon dalam jangka waktu tertentu. Pengamatan secara konvensional ini memerlukan tenaga yang banyak dan waktu yang cukup lama. Diperlukan suatu metode yang mampu melakukan klasifikasi level keparahan ini secara tepat dan cepat terhadap sampel daun yang berjumlah banyak. Saat ini, implementasi Artificial Intelligence (AI) melalui algoritma machine learning dapat menjadi solusi untuk menyelesaikan suatu permasalahan seperti klasifikasi multikelas secara otomatis dan efisien. Penelitian ini memanfaatkan salah satu teknik machine learning, yaitu artificial neural network berupa deep learning dengan arsitektur convolutional neural network (CNN). Dengan mempertimbangkan penelitian sebelumnya, maka penelitian ini mengajukan sebuah pengembangan dari CNN, yaitu arsitektur DenseNet121 sebagai metode untuk melakukan klasifikasi level keparahan penyakit gugur daun Pestalotiopsis menggunakan data citra daun karet. Klasifikasi level keparahan dibagi menjadi lima kelas, yaitu Level 0 (daun sehat atau tidak terinfeksi penyakit gugur daun Pestalotiopsis) dan Level 1-4 (menunjukkan tingkat keparahan penyakit gugur daun Pestalotiopsis). Pada Penelitian ini, digunakan 257 data citra daun karet yang dikumpulkan mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia ketika berkunjung ke Pusat Penelitian Karet Sembawa, Palembang pada tahun 2022. Data citra tersebut melalui preprocessing berupa crop dan resize agar dapat menjadi input yang diterima arsitektur.  Data dipisahkan menjadi data latih dan data uji dengan rasio 80:20. Model dilatih dengan pendekatan 5-fold cross validation sehingga pengujian dilakukan terhadap lima model berbeda. Berdasarkan simulasi, diperoleh rata-rata lima model berupa ccuracy sebesar 56,16% , precision sebesar 54,2% , recall sebesar 55,6%, skor F1 sebesar 51% , dan running time 3,110 detik.

Rubber plant is an essential commodity in Indonesia since natural rubbers from this plant are very beneficial and have high international market potential. Unfortunately, since 2017, a new leaf fall disease has caused massive decline of the rubber production. This disease leads to at most 90% leaf fall percentage and production decline as high as 45%. Subsequently, researchers found that this new leaf fall disease is caused by Pestalotiopsis sp., thus, the name of this disease is Pestalotiopsis leaf fall disease. Studies must be conducted to further investigate the growth and pattern of this new leaf fall disesase. One of these studies is to classify the intensity of the Pestalotiopsis leaf fall disease.The intensity can be measure by observing distinct symptoms and lesion frequency that would appear on the rubber plant’s leave surface. In earlier works, intensity are measured by conventionally taking notes of the symptomps that appear on the leaves or trees and these methods was done on timely basis. These traditional approaches takes a lot of time and requires a handful of people. Hence, there must be new methods to classify this disease’s intensity with less time and resource when the amount of leaf samples increase. Recent studies implement Artificial Intelligence (AI) by using machine learning to solve classification problems efficiently. This study takes a technique of machine learning, that is, deep learning convolutional neural network (CNN) architectures. By comparing previous researches, we propose the architecture DenseNet121 to implement CNN in multiclass classification problem by using leaf image data. The classification consists of five classes, which are the intensity of the Pestalotiopsis leaf fall disease from level 0 to level 4. Level 0 corresponds to healthy leaves or leaves with other diseases whereas Level 1-4 refer to leaves with the intensity of lesion and discoloration caused by Pestalotiopsis leaf fall disease. This study uses 257 image data that was taken by students of the Math and Science Faculty from Universitas Indonesia when they visited Rubber Research Center, Sembawa in 2022. The data is split into train and test data with 80:20 ratio. Models are trained with 5-fold cross validation approach so the that each model will be trained and tested towards 5 folds of data. Then, five different models are tested by evaluating their predictions to the test data. The result of this simulation shows the average performance from five models, they are an accuracy of 56,16%, a precision of 54,2%, a recall of 55,6%, an F1-score of 51% , and an average running time of 3,110 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Banurea, Dedy Swandry
"Polusi udara terjadi ketika campuran gas beserta partikel lainnya mencapai konsentrasi berbahaya baik yang terjadi di dalam maupun luar ruangan. Polusi udara juga menjadi penyebab kematian di beberapa negara dengan tingkat polusi yang parah. Salah satu polutan yang berbahaya adalah Partikulat halus (PM2.5/ Particulate Matter2.5), dimana dengan diameter kurang dari 2,5 μm, kira-kira 3% dari diameter rambut manusia, partikulat halus ini menjadi perhatian utama dalam pengamatan kualitas udara, dikarenakan PM2.5 dianggap sebagai agen pembunuh utama yang menyebabkan penyakit kardiovaskular, pernapasan dan kanker. Jakarta dinyatakan sebagai kota dengan tingkat polusi udara yang sangat signifikan, isu pencemaran udara menjadi topik pembicaraan banyak pihak, terutama kondisi kualitas udara di ibu kota. Dalam pengukuran kualitas udara di Provinsi DKI Jakarta jaringan pengamatan observasinya masih sangat terbatas. Sehingga dibutuhkan pemodelan dalam andil untuk melakukan pengukuran kualitas udara dalam hal ini adalah PM2.5. Pemodelan menggunakan algoritma pemebelajaran mesin atau machine learning random forest digunakan dalam penelitian ini dengan memanfaatkan metode regresi spasial. Adapun variabel yang digunakan berupa unsur meteorologi, partikulat dan gas yang diperoleh dengan memanfaatkan penginderaan jauh. Didapatkan variabel yang paling berpengaruh pada pemodelan spatial temporal PM2.5 ini adalah NO2 dan CO serta dengan fungsi berkebalikan pada variabel curah hujan dan Ozon. Dalam pemodelan yang telah dilakukan ini didapatkan nilai 0,90 dalam korelasi hasil prediksi dengan nilai observasi, dengan nilai ini maka prediksi yang dilakukan oleh Machine Learning Random Forest terbilang baik, serta nilai RMSE sebesar 7,83 µg/m3 juga memberikan gambaran yang baik bagi model yang dibentuk, serta nilai R2 sebesar 0,825 mengisyaratkan akurasi variabel yang digunakan mencapai 82,5 persen. Adapun pasial yang terbentuk dalam pemodelan spasial ini mengikuti pola musim hujan dan musim kemarau, dimana nilai tertinggi dari pola spasial parameter PM2.5 berada pada bulan JJA (Juni, Juli dan Agustus), serta mulai menurun di bulan SON (September, Oktober, dan November), dan pada akhirnya berada di nilai terendah pada bulan DJF (Desember, Januari dan Februari).

Air pollution occurs when a mixture of gases and other particles reach dangerous concentrations both indoors and outdoors. Air pollution is also a cause of death in some countries with severe pollution levels. One of the harmful pollutants is fine particulate matter (PM2.5), which is less than 2.5 μm in diameter, approximately 3% of the diameter of a human hair. This fine particulate matter is a major concern in air quality observations, as PM2.5 is considered a major killer agent that causes cardiovascular, respiratory diseases and cancer. Jakarta is declared as a city with a very significant level of air pollution, the issue of air pollution has become a topic of conversation for many parties, especially the condition of air quality in the capital city. In measuring air quality in DKI Jakarta Province, the observation network is still very limited. So that modeling is needed in order to measure air quality, in this case PM2.5. Modeling using machine learning algorithms or machine learning random forest is used in this study by utilizing the spatial regression method. The variables used are meteorological elements, particulates and gases obtained by utilizing remote sensing. It was found that the most influential variables in the spatial temporal modeling of PM2.5 were NO2 and CO and with the opposite function in the rainfall and Ozone variables. In the modeling that has been done, a value of 0.90 is obtained in the correlation of the predicted results with the observed values, with this value, the prediction carried out by Machine Learning Random Forest is fairly good, and the RMSE value of 7.83 µg/m3 also provides a good description of the model formed, and the R2 value of 0.825 implies that the accuracy of the variables used reaches 82.5 percent. The spatial pattern formed in this spatial modeling follows the pattern of the rainy season and dry season, where the highest value of the spatial pattern of the PM2.5 parameter is in the JJA month (June, July and August), and begins to decrease in the SON month (September, October and November), and finally at the lowest value in the DJF month (December, January and February)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sebayang, Juli Edi
"ABSTRAK
Pengolahan bahan olah karat rakyat menjadi produk ekspor SIR 20 (Crumb Rubber), menghasilkan limbah cair yang dapat mengakibatkan terganggunya kehidupan organisme perairan dan peruntukan badan air penerima.
Peraturan Pemerintah (PP) Nomor 20 Tabun 1990 tentang pengendalian pencemaran air, mengupayakan agar sungai dengan berbagai fungsi perlu mendapat perhatian secara bijaksana, sehingga keseimbangan lingkungan dan upaya pengamanan sungai terhadap kerusakan yang disebabkan oleh tindakan manusia dapat dihindarkan.
Dalam rangka melaksanakan Peraturan Pemerintah tersebut PT. Lingga Djaja membuat sistem pengolahan air limbah bahan olah karet rakyat dengan metode sirkulasi bertahap, diharapkan mampu memperbaiki mutu air limbah sesuai dengan baku mutu limbah yang diizinkan pemerintah.
Penelitian ini, bertujuan untuk mengetahui kemampuan metode sirkulasi bertahap dalam menurunkan kadar pencemar dan mempelajari pengaruhnya terhadap badan air penerima limbah.
Lokasi penelitian terletak di tepi Sungai Enim, termasuk wilayah Kecamatan Tanjung Agung, lebih kurang 5 Km dari ibu kota Kabupaten Muara Enin, Provinsi Sumatera Selatan.
Untuk memperoleh data yang representatif, dilakukan pengambilan contoh air pada 5 lokasi pengukuran di daerah instalasi pengolahan limbah dan 3 lokasi pengukuran pada Sungai Enim, masing-masing sebanyak 2 kali sehari selama 3 hari berturut-turut.
Selanjutnya dilakukan analisis contoh air di laboratorium untuk parameter BOD 5, COD, NH3-N, TSS, kekeruhan, DO, M03-N, TDS dan P04-P, sedangkan suhu dan pH diukur langsung di lapang (in situ).
Hasil penelitian menunjukkan bahwa metode sirkulasi bertahap berdasarkan nilai NSF-WTI hanya mampu menaikkan mutu air limbah sebesar 27,34% dengan nilai BOD 5 (+43,9 mg/I) dan NH3-N (+39,1) masih berada di atas baku mutu limbah cair untuk industri karat yang diizinkan. Sedangkan hasil uji t terhadap rata-rata kadar parameter yang diukur sebelum dan setelah pengolahan menunjukkan adanya perbedaan nilai BOD 5, NH3-N, COD, TSS, sedangkan pH tidak berbeda sebelum dan setelah air limbah mendapat perlakuan sirkulasi bertahap.
Kualitas air Sungai Enim sampai dengan jarak 25 meter dari Effluent tergolong buruk (nilai NSF-WQI 41,66). Pada jarak 100 meter dari Effluent, setelah mendapat pengenceran air sungai sebesar 3510 kali, air sungai tergolong baik (nilai NSF-WQI 67,47), mendekati mutu air baku produksi yang digunakan (nilai NSF-WQI 75,03).
Hasil uji t terhadap rata-rata parameter yang digunakan, terdapat perbedaan BOD 5, COD, dan NH3-N pada jarak 25 meter dari lokasi pembuangan limbah dibandingkan dengan konsentrasi sebelum terjadinya pencemaran, sedangkan pH dan TSS tidak menunjukkan adanya perbedaan. Pada jarak 100 meter dari lokasi pembuangan limbah, parameter BOD 5, COD dan T55 menunjukkan adanya perbedaan dibandingkan dengan konsentrasi sebelum terjadinya pencemaran, sedangkan pH dan NH3-N tidak menunjukkan adanya perbedaan.;

ABSTRACT
The small holder's rubber raw material processing to become crumb rubber (SIR 20) produces liquid waste in which if not properly treated, prior to discharge, may cause disturbance on aquatic living organisms in the receiving water bodies.
The Government Regulation (No. 20, 1990) concerning water pollution control has stated that attention on the multi usage of rivers should be wisely made in order to protect the environment from destruction caused by human activities and keep the nature in balance.
In the implementation of the government policy concerning the environment, PT. Lingga Djaja has treated its effluent using several steps circulation method. It is expected that the treated wastewater of this mill can comply the government's permissible limit for rubber industry.
The research aims to assess the capabilities of' the existing wastewater treatment plant of PT. Lingga Djaja to reduce its pollutants' concentration and the impact to the rivers. The mill located at the river Enim in Tanjung Agung sub-district, 5 km from Muara Enim, South Sumatera Province.
To obtain a representative data, samples were taken from 5 samples within the mill's wastewater treatment units and 3 samples at the river Enim, the samples were taken two times a day in three respective day. From each sample 10 physico-chemical parameters were measured. The BOD 5, COD, NH3-N, TSS, turbidity, dissolved oxigent, N03-N, TDS and P04-P were measured in the laboratory, while pH and water temperature were measured directly in the field (in situ).
The study revealsthat the several steps circulation method can only improve the quality of waste water of about 27,34% wit BOD 5 and HH3-N concentration were still above the government's permissible limit for rubber industry. However, the statistical t test shows that the BOD 5, COD, NH3-N and TSS concentrations, both before and after treatments, were significantly different, but not for pH.
The river water quality until 25 meter from the mill discharge point shows a bad quality (NSF-WQU value is 41,66). But, after 100 meter from discharge point, where 3510 times of dilution caused by the river Enin exists, the quality of water improved (NSF-WQI value is 67,47). This value approaches the upstream river water quality (NSF-WQI value is 75,03).
Statistical t-test on average value of BOD 5, COD, NH3-N 25 meter from the mill discharge point, shows significant difference to concentration before discharge point except for pH and TSS. After 100 meter from the discharge point, the BOD 5, COD, TSS shows a significant difference to the concentration before discharge point except the pH and NH3-N.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 1994
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Ihsan Farhani
"Indonesia menempati posisi kedua sebagai negara penghasil karet alami di dunia. Karet alami memiliki nama lain yaitu lateks. Belakangan ini produksi lateks di Indonesia menurun. Salah satu faktor penyebab menurunnya produksi lateks Indonesia adalah penyakit gugur daun. Jamur Pestalotiopsis sp. adalah salah satu jamur yang dapat menyebabkan penyakit gugur daun. Penyakit gugur daun yang disebabkan oleh jamur ini pertama kali terjadi di Indonesia pada tahun 2016 di Sumatera Utara. Penyakit tersebut menyebabkan tanaman karet menggugurkan daun sebelum waktunya sehingga menyebabkan produksi lateks berkurang. Cadangan makanan pohon karet lebih banyak dialokasikan untuk menumbuhkan kembali daun yang telah gugur dibanding untuk memproduksi lateks. Luas lahan pohon karet di Indonesia yang terinfeksi penyakit gugur daun Pestalotiopsis sp. sudah mencapai 30.328,84 hektar pada tahun 2021 menyebabkan penurunan produksi lateks hingga 30%. Pendeteksian penyakit gugur daun dapat dilakukan secara morfologi yaitu dengan pegamatan pada daun. Gejala penyakit gugur daun yang disebabkan oleh Pestalotiopsis sp. adalah munculnya bintik cokelat pada tulang daun yang lama kelamaan berkembang menjadi bintik cokelat gelap. Bintik tersebut kemudian membesar, menyebabkan daerah di sekitar daun mengalami nekrosis kemudian gugur. Kekurangan dari pendeteksian secara morfologi adalah memerlukan waktu dan tenaga yang cukup besar, serta keahlian khusus di bidang tanaman karet. Dalam penelitian ini, akan dilakukan pendeteksian penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. dengan bantuan machine learning untuk mengurangi tenaga dan waktu yang diperlukan dalam mendeteksi penyakit gugur daun. Model machine learning akan menerima input data citra daun tanaman karet. Model yang digunakan dalam pendeteksian adalah k-means clustering untuk mensegmentasi data citra daun karet, convolutional autoencoder untuk melakukan fitur ekstraksi pada data citra hasil segmentasi dan suppport vector machine sebagai classifier. Dari hasil eksperimen dengan 5 kali percobaan didapat accuracy testing sebesar 62,91%, accuracy training sebesar 78,50%. Accuracy testing dan accuracy training memiliki perbedaan yang cukup signifikan menandakan model mengalami overfitting. Overfitting terjadi ketika dataset yang tersedia hanya sedikit, pada penelitian ini yaitu 257 data citra namun, model yang dilatih kompleks. Sehingga diperlukan penambahan data citra untuk menghindari overfitting dan meningkatkan accuracy dari model.

Indonesia occupy the second position as a natural rubber producing country in the world. Natural rubber has another name, namely latex. Recently, latex production in Indonesia has declined. One of the factors causing the decline in Indonesian latex production is leaf fall disease. The fungus Pestalotiopsis sp. is one of the fungi that can cause leaf fall disease. Leaf fall disease caused by this fungus first occurred in Indonesia in 2016 in North Sumatra. The disease causes rubber plants to drop their leaves prematurely, causing reduced latex production. Rubber tree food reserves are allocated more to regrow fallen leaves than to produce latex. The area of rubber trees in Indonesia infected with the Pestalotiopsis sp. leaf fall disease. has reached 30,328.84 hectares in 2021 causing a decline in latex production by up to 30%. Disease detection can be done morphologically by observing the leaves. Symptoms of leaf fall disease caused by Pestalotiopsis sp. is the appearance of brown spots on the veins of the leaves which over time develop into dark brown spots. These spots then enlarge, causing the area around the leaves to experience necrosis and then fall. The drawback of morphological detection is that it requires a lot of time and effort, as well as special expertise in the field of rubber plantations. In this research, we will detect leaf fall disease caused by the fungus Pestalotiopsis sp. with the help of machine learning to reduce the effort and time needed to detect leaf fall disease. The machine learning model will be using image of rubber plant leaves as input data. The model used in the detection is k-means clustering to segment rubber leaf image data, convolutional autoencoder to perform feature extraction on segmented image data and support vector machine as a classifier. From the experimental results with 5 trials obtained testing accuracy of 62.91%, training accuracy of 78.50%. Accuracy testing and accuracy training have significant differences indicating that the model is overfitting. Overfitting occurs when the available dataset is only a few, namely 257 image data but the model being trained is complex. So it is necessary to add image data to avoid overfitting and increase the accuracy of the model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>