Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 147127 dokumen yang sesuai dengan query
cover
Peter Surjo
"Keberadaan limbah antibiotik pada perairan berbahaya bagi lingkungan dan makhluk hidup, salah satu antibiotik yang umum ditemui dan dalam kadar yang cukup besar adalah siprofloksasin (CIP). Selain itu, belakangan ini hidrogen (H2) sebagai bahan bakar bersih gencar diteliti untuk penerapannya dalam kehidupan sehari-hari, namun produksi H2 saat ini masih sangat bergantung dengan bahan bakar fosil. Untuk memenuhi kedua kebutuhan tersebut secara simultan digunakan teknologi fotokatalisis dan elektrokoagulasi yang dikombinasi. Fotokatalis yang digunakan pada penelitian ini adalah titanium nanotubes array (TiNTA) menggunakan dopan CuO dengan metode SILAR (Successive Ionic Layer Adsorption and Reaction). Pembentukan nanokomposit CuO-TiNTA dikonfirmasi dengan karakterisasi FESEM/EDX (Field Emission Scanning Electron Microscopy/Energy-Dispersive X-Ray), XRD (X-Ray Diffraction), dan UV-Vis DRS (Ultraviolet-Visible Diffuse Reflectance Spectroscopy). Pengujian fotokatalisis dilakukan dengan menggunakan lampu merkuri 250 W dua buah sebagai sumber foton fotokatalis, sementara pengujian elektrokoagulasi menggunakan anoda aluminium (Al) dan katoda stainless steel (SS-316) dengan tegangan 20 V, serta pada kombinasi menggunakan gabungan dari keduanya. Degradasi dan produksi H2 dari fotokatalis diperoleh sangat kecil dengan fotokatalis optimal TiNTA 5-CuO mencapai degradasi CIP sebesar 8,7% dan memproduksi 10,12 μmol/m2 H2. Eliminasi CIP dan produksi H2 secara elektrokoagulasi diperoleh sebesar 66,33% dan 1.137 mmol/m2, sementara pada kombinasi fotokatalisis-elektrokoagulasi terjadi peningkatan sebesar 36% dan 114% dari elektrokoagulasi, menghasilkan eliminasi CIP 85% dan 2.431 mmol/m2 H2 dan lebih besar daripada gabungan proses tunggal.

Presence of antibiotic in water is harmful towards environment, one of the commonly used antibiotics and usually present in large concentration is ciprofloxacin (CIP). Meanwhile, recently hydrogen (H2) has been extensively researched for application in daily lives, but commercial H2 production still depends on usage of fossil fuel. To fullfil both requirements simultaneously, photocatalysisis, electrocoagulation, and combination of both is used. Photocatalyst used in this study is titanium nanotubes array (TiNTA) doped with CuO using SILAR (Successive Ionic Layer Adsorption and Reaction) method. Presence of CuO-TiNTA nanocomposite is analysed by FESEM/EDX (Field Emission Scanning Electron Microscopy/Energy-Dispersive X-Ray), XRD (X-Ray Diffraction), and UV-Vis DRS (Ultraviolet-Visible Diffuse Reflectance Spectroscopy) characterisations. Photocatalysis experiment uses two 250 W mercury lamps as source of photon, meanwhile electrocoagulation experiment uses aluminium (Al) anode and stainless steel (SS-316) cathode with 20 V voltage, and combination uses both methods. Photocatalytic CIP degradation and H2 evolution give a small result with TiNTA 5-CuO as optimal photocatalyst with 8.7% CIP degradation and 10.12 μmol/m2 H2. CIP elimination and H2 production from electrocoagulation resulted in 66.33% CIP elimination and 1,137 mmol/m2 H2, while in photocatalysis-electrocoagultion significant increase of 36% elimination and 114% H2 production is observed compared to electrocoagulation, resulting 85% CIP elimination and 2,431 mmol/m2 H2 produced, higher result compared to sum of single processes."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laily Fitri Pelawi
"Dalam penelitian ini dilakukan kombinasi proses elektrokoagulasi dan fotokatalisis dan melihat efek dopan CuO dalam TiO2 nanotubes untuk mendokolorisasi limbah pewarna dan sekaligus menghasilkan H2. Dekolorisasi dan produksi hidrogen secara simultan dilakukan dalam reaktor yang terbuat dari akrilik yang dilengkapi dengan power supply dan lampu UV. H2 dihasilkan dari reduksi ion H+ dalam larutan pada katoda stainless steel dan watersplitting oleh fotokatalisis secara bersamaan. Dekolorisasi tartrazin diperoleh dari kombinasi adsorpsi dengan elektrokoagulasi dan degradasi dengan fotokatalisis. TiO2 nanotubes disintesis dengan metode anodisasi, kemudian dimodifikasi dengan memberi dopan CuO dengan metode SILAR (Successive Ionic Layer Adsorption and Reaction). Hasil SEM dengan adanya dopan CuO 0,04 M; 0,05 M; dan 0,06 M mengkonfirmasi bahwa struktur nanotubes masih terbentuk dengan baik dengan diameter rata-rata berturut-turut 149 nm, 158 nm, dan 166 nm dan ketebalan tabung rata-rata berturut-turut 44 nm, 50 nm, dan 52 nm. Kehadiran Cu terdeteksi oleh analisis dengan EDX, yang berjumlah 0,4% wt, 1,09% wt dan 1,68% wt berturut-turut untuk dopan CuO 0,04 M; 0,05 M; dan 0,06 M pada TiO2 nanotubes. Hasil XRD menunjukkan bahwa TiO2 nanotubes berada dalam fase anatase dengan ukuran kristal 27,8 nm; 27 nm; dan 26,9 nm. Energi band gap dihitung menggunakan persamaan Kubelka-Munk dari hasil karakterisasi UV-Vis DRS. Hasil perhitungan menunjukkan bahwa, energi band gap dari CuO-TiO2 nanotubes berkurang dari band gap TiO2 nanotubes murni. Konversi dekolorisasi tartrazin berturut-turut pada sistem elektrokoagulasi, fotokatalisis dan elektrokoagulasi-fotokatalisis dalam waktu 4 jam reaksi adalah 87,6%; 32,3% dan 99,3%. Baku mutu pada sistem tunggal elektrokoagulasi 50 V dapat dicapai sekitar 1,3 jam reaksi dan jika dikombinasikan dengan sistem fotokatalisis CuO-TiO2 nanotubes hanya dibutuhkan waktu kurang dari 1 jam. Akumulasi produk H2 yang dihasilkan berturut-turut pada sistem elektrokoagulasi, fotokatalisis, dan kombinasinya yaitu sebesar 0,997 mmol, 0,008 mmol, dan 1,841 mmol. Hal ini menunjukkan dengan mengkombinasikan sistem fotokatalisis pada elektrokoagulasi dapat meningkatkan kemampuan dalam mendekolorisasi sebanyak 21,7% sehingga dapat mempercepat waktu dalam mencapai baku mutu dan produksi H2 sebanyak 83%. Kinetika dekolorisasi tartrazin pada sistem fotokatalisis dan elektrokoagulasi 50 V mengikuti persamaan laju reaksi orde dua, dengan konstanta laju reaksi berturut-turut 0,006 L/mg.jam dan 0,080 L/mg.jam sedangkan sistem kombinasi mengikuti persamaan laju reaksi adsorpsi Langmuir dengan konstanta laju reaksi sebesar 1,202 jam-1. Dari data kinetika dapat disimpulkan sistem kombinasi elektrokoagulasi-fotokatalisis dengan CuO-TiO2 nanotubes merupakan sistem yang paling efektif dari sistem tunggal elektrokoagulasi dan fotokatalisis.

In this study a combination of electrocoagulation and photocatalysis processes was carried out and observed at the effect of CuO dopant in TiO2 nanotubes to decolorize the dye waste and simultaneously produce H2. The simultaneous decolorization and production of hydrogen is carried out in an acrylic reactor equipped with a power supply and UV lamps. H2 is produced from the combination of the reduction of H+ ions in solution at a stainless steel cathode and watersplitting by photocatalysis. Tartrazine decolorization is obtained from the combination of adsorption by electrocoagulation and degradation by photocatalysis. TiO2 nanotubes were synthesized by anodizing method, then modified by giving CuO dopant by SILAR (Successive Ionic Layer Adsorption and Reaction) method. SEM results in the presence of 0.04 M CuO dopants; 0.05 M; and 0.06 M confirmed that the nanotubes structure was still well formed with an average diameter of 149 nm, 158 nm, and 166 nm and an average tube thickness of 44 nm, 50 nm and 52 nm, respectively. The presence of Cu was detected by analysis with EDX, which amounted to 0.4% wt, 1.09% wt and 1.68% wt respectively for 0.04 M CuO dopants; 0.05 M; and 0.06 M on TiO2 nanotubes. The XRD results showed that TiO2 nanotubes were in the anatase phase with a crystal size of 27.8 nm; 27 nm; and 26.9 nm. Band gap energy is calculated using the Kubelka-Munk equation from the results of UV-Vis DRS characterization. The calculation results show that, the band gap energy of CuO-TiO2 nanotubes is reduced from pure TiO2 nanotubes band gap. Conversion of tartrazine decolorization respectively for the electrocoagulation, photocatalysis and electrocoagulation-photocatalysis systems within 4 hours of reaction was 87.6%; 32.3% and 99.3%. The quality standard in a single 50 V electrocoagulation system can be achieved in about 1.3 hours of reaction and when combined with a photocatalysis system CuO-TiO2 nanotubes only takes less than 1 hour. The accumulation of H2 products produced in the electrocoagulation, photocatalysis, and combination system is 0.997 mmol, 0.008 mmol and 1.841 mmol. This shows that by combining the photocatalysis system in electrocoagulation can increase the ability to decolorize by 21.7% so it will accelerate the time in achieving quality standards and H2 production by 83%. The reaction kinetics in the 50 V photocatalysis and electrocoagulation system follows the second order reaction rate equation, with reaction rate constants of 0.006 L/mg.hour and 0.080 L/mg.hour while the combination system follows the Langmuir adsorption reaction rate equation with reaction rate constants 1,202 hour-1. From the kinetics data it can be concluded that the combination of electrocoagulation-photocatalysis systems with CuO-TiO2 nanotubes is the most effective system than a single system of electrocoagulation and photocatalysis."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahayu Lestari Sugihartini
"Siprofloksasin (CIP) sebagai antibiotik yang banyak digunakan di rumah sakit ditemukan di berbagai perairan dengan konsentrasi yang beragam. Saat didegradasi, CIP berpotensi sebagai hole scavenger yang mampu meningkatkan kinerja fotokatalis dalam menghasilkan gas hidrogen sebagai sumber energi alternatif. Metode elektrokoagulasi dan fotokatalisis yang telah dikembangkan untuk pengolahan limbah siprofloksasin belum memiliki efektivitas yang optimal. Kombinasi kedua metode tersebut berpotensi menghasilkan efektivitas yang lebih baik dalam mendegradasi siprofloksasin dan menghasilkan gas hidrogen secara simultan. Pada penelitian ini dilakukan sintesis komposit CdS/TiO2 nanotube arrays (CdS/TiNTAs) dengan metode anodisasi dan metode SILAR (Successive Ionic Layer Adsorption Reaction) dengan memvariasikan komposisi CdS pada komposit (0,05M; 0,1M; 0,2M). Kinerja fotokatalis terbaik dihasilkan oleh 0,1M CdS/TiNTAs dengan kemampuan degradasi siprofloksasin mencapai 20,43% dan produksi hidrogen sebesar 23,5µmol/m2. Karakterisasi UV-Vis DRS menunjukkan bahwa pembentukan komposit CdS/TiNTAs menurunkan energi celah pita dari 3,16 eV menjadi 2,92 eV. Pengujian XRD membuktikan komposit CdS/TiNTAs yang disintesis berada dalam fasa anatase. FESEM-EDS menunjukkan fotokatalis memiliki morfologi nanoturbular dan mengkonfirmasi adanya unsur Cd dan S pada fotokatalis. Proses kombinasi elektrokoagulasi dan fotokatalisis dilakukan dengan menggunakan fotokatalis CdS/TiO2, anoda Aluminium, dan katoda stainless steel 316 pada tegangan 20 V selama 240 menit dengan efisiensi mencapai 87% dan produksi hidrogen mencapai 2,6 mol/m2.

Ciprofloxacin (CIP) as the most widely used antibiotics in hospitals is found in various waters with varying concentrations. When degraded, CIP has the potential to act hole scavengers that can improve photocatalyst performance in producing hydrogen gas as an alternative energy source. The electrocoagulation and photocatalysis methods that have been developed for the treatment of ciprofloxacin waste have not yet had optimal effectiveness. The combination of the two methods has the potential to produce better effectiveness in degrading ciprofloxacin and producing hydrogen gas simultaneously. In this study, the synthesis of composite CdS / TiO2 nanotube arrays (CdS / TiNTAs) is done by anodization and SILAR (Successive Ionic Layer Adsorption Reaction) method was carried out by varying the composition of CdS on composites (0.05M; 0.1M; 0.2M). The best photocatalyst performance is achieved by 0.1M CdS/TiNTAs with CIP degradation efficiency of 20.43% and hydrogen production of 23.5μmol/m2. The UV-Vis characterization of the DRS shows that CdS/TiNTAs decreased the band gap energy from 3.16 eV to 2.92 eV. XRD proved that the synthesized CdS/TiNTAs were in anatase phase. FESEM-EDS shows photocatalysts have a nanoturbular morphology and confirms the presence of Cd and S elements. The combined process of electrocoagulation and photocatalysis was carried out using CdS/TiO2 photocatalysts, Aluminum anodes, and stainless steel-316 cathode at 20 V for 240 minutes with an efficiency of 87% and hydrogen accumulation of 2.6 mol/m2."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nisrina Nurfaiza Anasih
"Limbah medis masih menjadi ancaman bagi manusia dan lingkungan, salah satunya adalah zat antibiotik tetrasiklin. Saat ini, penelitian terkait produksi hidrogen mulai meningkat di seluruh dunia. Namun, hidrogen yang ada di dunia diperoleh dari bahan baku gas alam yang menghasilkan emisi karbon yang tinggi. Untuk mengatasi masalah tersebut, digunakan kombinasi teknologi fotokatalisis dan elektrokoagulasi. Fotokatalis yang digunakan pada penelitian ini adalah g-C3N4/WO3 dengan variasi pengujian berupa metode sintesis fotokatalis, rasio komposisi massa fotokatalis, dan jenis proses untuk memperoleh persentase degradasi tetrasiklin dan akumulasi hidrogen. Pengujian performa fotokatalis dilakukan dalam sebuah reaktor terintegrasi untuk elektrokoagulasi-fotokatalisis dengan sumber foton berupa lampu merkuri 250 W dan anoda aluminium (Al) dan katoda stainless steel (SS-316) dengan tegangan 5 V digunakan pada proses elektrokoagulasi. Metode sintesis yang optimal adalah kalsinasi langsung (DC), yang menghasilkan persentase degradasi sebesar 49,57% dan produksi hidrogen sebesar 2,54  mmol/g, dibandingkan dengan sonikasi langsung (UA) dan sonikasi prekursor (UB). Rasio massa fotokatalis optimal ditemukan pada g-C3N4/WO3 dengan perbandingan 3:1, yang mampu mendegradasi tetrasiklin sebesar 57% dan menghasilkan hidrogen sebesar 2,64  mmol/g, dibandingkan dengan rasio 1:1 dan 1:3. Hasil karakterisasi SEM/EDX menunjukkan bahwa morfologi g-C3N4 berupa lembaran dan WO3 berbentuk agregat. Fasa kristal g-C3N4 adalah heksagonal, sedangkan fasa kristal WO3 didominasi oleh monoklinik dengan ukuran kristal fotokatalis berkisar antara 0,3 - 36 nm. Karakterisasi UV-Vis DRS menunjukkan nilai energi band gap setiap katalis dalam rentang 2,64 - 2,86 eV, yang memungkinkan absorbansi sinar tampak. Fotokatalis g-C3N4/WO3 dengan rasio 3:1 yang disintesis terbukti memiliki laju rekombinasi yang lebih rendah dibandingkan dengan g-C3N4, dengan dugaan mekanisme transfer muatan berupa Z-scheme heterojunction berdasarkan karakterisasi photoluminescence. Selain itu, proses kombinasi elektrokoagulasi-fotokatalisis memberikan persentase degradasi tetrasiklin sebesar 62,02% dan akumulasi hidrogen sebanyak 49.982,20  mmol/g.

Medical waste continues to pose a threat to humans and the environment, with one of the concerns being the antibiotic tetracycline. Currently, research on hydrogen production is increasing worldwide. However, existing hydrogen is predominantly derived from natural gas, which results in high carbon emissions. To address this issue, a combination of photocatalysis and electrocoagulation technologies is utilized. The photocatalyst used in this study is g-C3N4/WO3, with variations in the synthesis methods of the photocatalyst, the mass composition ratio of the photocatalyst, and the types of processes employed to achieve the degradation percentage of tetracycline and hydrogen accumulation. The photocatalyst performance tests were conducted in an integrated reactor for electrocoagulation-photocatalysis, with a 250 W mercury lamp as the photon source, an aluminum (Al) anode, and a stainless steel (SS-316) cathode used at a voltage of 5 V during the electrocoagulation process. The optimal synthesis method was direct calcination (DC), yielding a degradation percentage of 49.57% and hydrogen production of 2.54 mmol/g, compared to direct sonication (UA) and precursor sonication (UB). The optimal photocatalyst mass ratio was found to be g g-C3N4/WO3 at 3:1, which degraded tetracycline by 57% and produced 2.64 mmol/g of hydrogen, compared to the ratios of 1:1 and 1:3. SEM/EDX characterization showed that the morphology of g-C3N4 was nanosheets, while WO3 formed aggregates. The crystal phase of g-C3N4 was hexagonal, whereas the crystal phase of WO3 was predominantly monoclinic, with photocatalyst crystal sizes ranging from 0.3 to 36 nm. UV-Vis DRS characterization indicated that the band gap energy of each synthesized catalyst ranged from 2.64 to 2.86 eV, enabling visible light absorption. The synthesized g-C3N4/WO3 photocatalyst with a 3:1 ratio demonstrated a lower recombination rate compared to g-C3N4, with a proposed charge transfer mechanism involving a Z-scheme heterojunction based on photoluminescence characterization. Additionally, the electrocoagulation-photocatalysis combination process resulted in a tetracycline degradation percentage of 62.02% and hydrogen accumulation of 49,982.20 mmol/g."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dianah Salsha Dilla
"Sistem kombinasi elektrokoagulasi yang ditambahkan fotokatalisis dalam mendegradasi limbah metilen biru dan antibiotik siprofloksasin sekaligus memproduksi hidrogen secara simultan dilakukan untuk melihat efek dopan Fe dalam nanopartikel TiO2. Proses degradasi maupun produksi hidrogen secara simultan berlangsung di dalam reaktor akrilik yang dilengkapi dengan power supply serta lampu Philips 250 Watt. Degradasi metilen biru dan siprofloksasin dihasilkan dari kombinasi adsorpsi koagulan melalui elektroagulasi serta degradasi langsung oleh permukaan fotokatalis. Nanokomposit disintesis melalui metode sonofotodeposisi dengan larutan Fe(NO3)3. Hasil XRD menunjukkan bahwa dopan Fe3+ berhasil masuk kedalam kisi kristal nanopartikel TiO2. Hasil karakterisasi dengan UV-Vis DRS menunjukkan bahwa energi celah pada nanokomposit Fe-TiO2 berkurang dari TiO2 murni serta dapat meningkatkan absorbansi pada spektrum cahaya tampak. Hasil FTIR menunjukkan bahwa penambahan dopan Fe dapat memberikan nilai peak yang lebih tinggi pada ikatan O-H karena peningkatan hidroksilasi pada permukaan katalis. Sistem elektrokoagulasi, fotokatalisis, dan kombinasi keduanya setelah 4 jam reaksi memiliki konversi degradasi untuk metilen biru sebesar 84,67%; 98,5%; dan 98%, sedangkan untuk degradasi siprofloksasin memiliki konversi sebesar 68,20%; 94%; dan 92,5%. Penurunan konsentrasi untuk metilen biru mencapai standar baku mutu dalam waktu sekitar 2,5 jam pada sistem tunggal elektrokoagulasi 20 V, sedangkan untuk siprofloksasin sama sekali tidak mencapai baku mutu. Namun jika dikombinasikan dengan fotokatalis Fe-TiO2, standar baku mutu metilen biru hanya memerlukan sekitar 30 menit reaksi, sedangkan untuk siprofloksasin mencapai 3,5 jam reaksi. Produksi hidrogen yang dihasilkan pada sistem elektrokoagulasi, fotokatalisis, dan kombinasi keduanya berturut-turut sebesar 0,61 mmol; 0,0001 mmol; dan 0,98 mmol. Dengan mengkombinasikan fotokatalisis dengan elektrokoagulasi mampu mendegradasi metilen biru sebanyak 16% dan 27,6% untuk siprofloksasin serta memproduksi hidrogen sebesar 60,67% lebih banyak dibandingkan sistem elektrokoagulasi tunggal.

The combined electrocoagulation system which added photocatalysis in degrading methylene blue waste and the antibiotic ciprofloxacin while simultaneously producing hydrogen was carried out to see the effect of Fe dopant in TiO2 nanoparticles. The process of degradation and production of hydrogen simultaneously takes place in an acrylic reactor equipped with a power supply and 250 Watt Philips lamp. The degradation of methylene blue and ciprofloxacin resulted from a combination of coagulant adsorption via electroagulation and direct degradation by the photocatalyst surface. Nanocomposites were synthesized by sonophotodeposition method with Fe(NO3)3 solution. The XRD results showed that the Fe3+ dopant successfully entered the crystal lattice of TiO2 nanoparticles. The results of characterization with UV-Vis DRS showed that the gap energy in Fe-TiO2 nanocomposites was reduced from pure TiO2 and could increase the absorbance in the visible light spectrum. The FTIR results show that the addition of Fe dopant can give higher peak values in the O-H bond due to the increase in hydroxylation on the catalyst surface. The electrocoagulation system, photocatalysis, and the combination of the two after 4 hours of reaction had a degradation conversion for methylene blue of 84.67%; 98.5%; and 98%, while for ciprofloxacin degradation has a conversion of 68.20%; 94%; and 92.5%. The decrease in concentration for methylene blue reached the quality standard in about 2.5 hours on a single 20 V electrocoagulation system, while for ciprofloxacin it did not reach the quality standard at all. However, when combined with Fe-TiO2 photocatalyst, the standard quality standard for methylene blue only requires about 30 minutes of reaction, while for ciprofloxacin it reaches 3.5 hours of reaction. The production of hydrogen produced in the electrocoagulation system, photocatalysis, and the combination of the two were 0.61 mmol, respectively; 0.0001 mmol; and 0.98 mmol. By combining photocatalysis with electrocoagulation, it was able to degrade 16% and 27.6% of methylene blue for ciprofloxacin and produce 60.67% more hydrogen than a single electrocoagulation system.
Keywords: Fe-TiO2 nanocomposite, electrocoagulation-photocatalysis, hydrogen, ciprofloxacin, methylene blue.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rossalina Kurniawan
"Degradasi zat warna tartrazine dan produksi hidrogen secara simultan dengan kombinasi fotokatalisis dan elektrokoagulasi telah diteliti. Proses fotokatalisis dilakukan dengan menggunakan katalis TiO2 nanotube yang telah disintesis dengan metode anodisasi. Pada proses elektrokoagulasi digunakan elektroda Al-SS 316 dengan variasi tegangan 5V; 10V; 15V. Struktur katalis TiO2 bermorfologi nanotube dikarakterisasi dengan SEM-Mapping, FTIR, XRD, dan UV-Vis DRS. Kondisi optimum yang didapatkan dari proses elektrokoagulasi yaitu pada tegangan 15V dengan waktu uji selama 4 jam.
Dari hasil fotokatalisis dengan TiO2 nanotube didapatkan konversi degradasi zat warna tartrazine sebesar 48,86 dan konsentrasi H2 3,46. Penggunaan plat aluminium sebagai anoda dan plat stainless steel 316 sebagai katoda pada proses elektrokoagulasi juga telah berhasil mendegradasi zat warna tartrazine sebesar 82,45 dan konsentrasi H2 12,14.
Hasil kombinasi proses fotokatalisis dan elektrokoagulasi didapatkan konversi degradasi zat warna tartrazine sebesar 90,68 dengan konsentrasi zat warna menjadi 1,93 ppm dan konsentrasi H2 nya sebesar 12,14. Konsentrasi akhir limbah zat warna tartrazine dari proses kombinasi fotokatalisis-elektrokoagulasi sudah aman jika dibuang ke lingkungan karena sudah memenuhi baku mutu. Selain itu, gas H2 yang dihasilkan berpotensi sebagai sumber energi terbarukan.

Degradation of tartrazine dye and the production of hydrogen simultaneously with a combination of photocatalysis and electrocoagulation has been investigated. The photocatalytic process was performed by using a catalyst of TiO2 nanotubes that had been synthesized by anodizing method In electrocoagulation process used Al SS 316 electrode with variation of 5V voltage 10V 15V. The structure of TiO2 catalysts with nanotube morphology is characterized by SEM Mapping, FTIR, XRD, and UV Vis DRS. The optimum condition obtained from the electrocoagulation process is at a voltage of 15V with a test time of 4 hours.
From the results of photocatalysis with TiO2 nanotube obtained degradation of tartrazine dye equal to 48,86 and concentration of H2 3,46. The use of aluminum plate as anode and 316 stainless steel plate as cathode in electrocoagulation process has also succeeded degrading tartrazine dye by 82,45 and concentration of H2 12,14.
The result of the combination of photocatalysis and electrocoagulation process obtained degradation conversion of tartrazine dye by 90.68 with dye concentration to 1.93 ppm and H2 concentration of 12.14. The final concentration of tartrazine dye waste from combination of photocatalysis electrocoagulation process is safe if disposed to the environment because it meets the quality standard. In addition, the production of H2 has potential as a renewable energy source.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiur Elysabeth
"Hidrogen merupakan bahan bakar alternatif yang bersih dan ramah lingkungan. Beberapa penelitian telah mengembangkan produksi hidrogen dari dekomposisi amoniak. Hal ini cukup menjanjikan, karena metode ini tidak menghasilkan CO2 dan mampu mengatasi permasalahan limbah. Amoniak merupakan sumber potensial untuk peningkatan permintaan hidrogen. Fotoelektrokatalisis merupakan teknologi alternatif untuk menghasilkan hidrogen dari dekomposisi amoniak dengan energi rendah dan ramah lingkungan. Namun, bagian terpenting pada metode ini yaitu fotoanoda yang berbasis titania nanotube perlu dimodifikasi untuk mendapatkan fotoanoda yang lebih efesien dan efektif dalam mendegradasi amoniak dan produksi hidrogen secara simultan. Tujuan utama dari penelitian ini adalah mendapatkan fotoanoda berbasis titania nanotube yang memiliki performa yang tinggi dalam mendegradasi amoniak dan memproduksi hidrogen secara fotoelektrokatalisis. Modifikasi dilakukan dengan menambahkan dopan nitrogen secara insitu saat anodisasi dan sensitasi CuO yang menggunakan dua metode yaitu insitu saat anodisasi dan successive ionic layer adsorption reaction (SILAR), kemudian menentukan loading nitrogen dan CuO yang optimal dan mengkombinasi keduanya pada titania nanotube untuk membuktikan efek sinergis dari keduanya. Selain itu, penelitian ini juga bertujuan mengajukan mekanisme yang terjadi pada proses degradasi amoniak dan produksi hidrogen secara simultan dengan metode fotoelektrokatalisis.
Pada penelitian ini dilakukan karakterisasi morfologi, spektrum serapan cahaya, kristalografi titania nanotube, bilangan oksidasi elemen penyusun fotoanoda, gugus fungsi yang terbentuk masing-masing menggunakan FESEM-EDX dan TEM, UV-Vis DRS, XRD, XPS, dan FTIR. Besar energi bandgap dan ukuran kristal dihitung menggunakan fungsi Kubelka Munk dan persamaan Scheerrer. Respon fotoelektrokimia diamati menggunakan Potensiostat dan diagnostic perubahan respon material yang dimodifikasi disajikan dalam bentuk Applied Bias Photon to current Eficiency (ABPE). Reaktor fotoelektrokatalisis (PEC) yang digunakan untuk proses degradasi amoniak dan produksi hidrogen secara simultan terdiri dari sel fotoelektrokimia yang dimodifikasi. Sel fotoelektrokimia dilengkapi dengan sumber sinar foton lampu Mercury 250W, dan jaringan yang menghubungkan reaktor dengan GC TCD untuk mengukur gas hidrogen yang terbentuk. Konsentrasi amoniak diukur menggunakan spektrofotometer dengan metode Nessler. Senyawa intermediet yang terbentuk diukur menggunakan spektrofotometer dengan metode SNI 6989-74-2009.
Hasil penelitian membuktikan bahwa titania nanotube yang dimodifikasi dengan dopan N diperoleh penyisihan amoniak dan produksi hidrogen maksimum sebesar 74.4% dan 561 mmol/m2 oleh 3N-TiNTAs. Pada perbandingan metode deposisi CuO diperoleh penyisihan amoniak maksimum sebesar 50,1% dan produksi hidrogen sebesar 392.85 mmol/m2 menggunakan CuO-TiNTAs SILAR. Produksi hidrogen tertinggi pada variasi loading CuO dicapai oleh 7CuO-TiNTAs sebesar 910.14 mmol/m2. Namun, uji kinerja pada modifikasi TiNTAs dengan kombinasi dopan N dan sensitiser CuO hanya dapat menyisihkan amoniak dan produksi hidrogen yang dihasilkan hanya sebesar 28.03% dan 66.61 mmol/m2.

Hydrogen is a clean and environmentally friendly alternative fuel. Several studies have developed hydrogen production from ammonia decomposition. It is promising because this method does not produce CO2 and can overcome waste problems. Ammonia is a potential source for increasing hydrogen demand. Photoelectrocatalytic is an alternative technology to produce hydrogen from ammonia decomposition with low energy and is environmentally friendly. However, the most important part of this method is the photoanode based on titania nanotubes needs to be modified to get the more efficient and effective photoanode in simultaneously degrading ammonia and producing hydrogen. The main objective of this research is to obtain a photoanode based on titania nanotubes, which have high performance in photoelectrocatalytic ammonia degradation and hydrogen production. Modifications were conducted by adding nitrogen dopants by in situ during anodization and CuO sensitization using two methods, namely in situ anodization and successive ionic layer adsorption reaction (SILAR), then determining the optimal loading of nitrogen and CuO and combining both on titania nanotubes to prove the synergistic effect of both of them. Additionally, this study also proposes a mechanism that occurs in the simultaneously degradation of ammonia and hydrogen production by the photoelectrocatalytic method.
In this study, the characterization of morphology, light absorption spectrum, crystallography of titania nanotubes, the oxidation number of photoanode constituent elements, functional groups formed using FESEM-EDX and TEM, UV-Vis DRS, XRD, XPS, and FTIR, respectively, were conducted. Bandgap energy and crystal size were calculated using the Kubelka–Munk function and Scherrer equation. The photoelectrochemical response was observed using a potentiostate and diagnostic changes in the response of the modified material were presented in the form of Applied Bias Photon to Current Efficiency (ABPE). The photoelectrocatalytic reactor (PEC) used for the simultaneously degradation of ammonia and hydrogen production consists of a modified photoelectrochemical cell. The photoelectrochemical cell is equipped with 250 W Mercury lamp as a photon beam source and a network connecting the reactor with GC TCD to measure the hydrogen gas formed. Ammonia concentration was measured using a spectrophotometer with the Nessler method. The intermediate compounds formed were measured using a spectrophotometer using the SNI 6989-74-2009 method.
The results showed that titania nanotubes modified with N-dopants obtained maximum ammonia removal and hydrogen production of 74.4% and 561 mmol/m2 by 3N-TiNTAs. In the comparison of the CuO deposition method, the maximum ammonia removal was 50.1% and hydrogen production was 392.85 mmol/m2 using CuO-TiNTAs SILAR. The highest hydrogen production in the CuO loading variation was achieved by 7CuO-TiNTAs of 910.14 mmol/m2. However, the performance test on modified TiNTAs with a combination of N dopants and CuO sensitizer could only remove ammonia and the resulting hydrogen production was only 28.03% and 66.61 mmol/m2, respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Raudina
"Degradasi 2,4,6-Triklorofenol dalam limbah cair batubara dan produksi hidrogen secara simultan telah dilakukan dengan menggunakan berbagai katalis yaitu TiO2-P25, Titania Nanotube TiNT serta nanokomposit TiNT-Graphene dengan variasi loading graphene. Nanokomposit TiNT-Graphene berhasil disintesis dengan metode hidrotermal dan sonikasi serta dikarakterisasi dengan UV-Vis DRS, XRD, SEM/EDX/Mapping, BET dan FT-IR. Hasil karakterisasi UV-Vis DRS menunjukkan adanya penurunan band gap pada nanokomposit TiNT-Graphene. Hasil XRD menunjukkan fasa anatase pada TiNT dan nanokomposit dengan fraksi 100. SEM/EDX/Mapping menunjukkan adanya kandungan material TiNT dan graphene dalam morfologi dan komposisi nanokomposit dengan persebaran yang merata.
Hasil karakterisasi BET menunjukkan bahwa nanokomposit memiliki luas permukaan yang tinggi sebesar 134,2 m2/g. Namun, tidak terbentuk ikatan Ti-O-C yang ditandai dari hasil karakterisasi FT-IR. Nanokomposit yang optimal diperoleh pada loading graphene 0,6 yang pada sistem simultan dapat mengonversi 2,4,6-Triklorofenol sebesar 89 12 lebih besar dari TiO2-P25 dan memproduksi hidrogen sebesar 986 ?mol 1,7 kali lebih banyak dari TiO2-P25 . Degradasi 2,4,6-Triklorofenol secara kinetika dapat dimodelkan dengan baik menggunakan persamaan reaksi orde satu untuk konsentrasi awal 2,4,6-Triklorofenol maksimal 10 ppm. Hasil uji juga menunjukkan penambahan 2,4,6-Triklorofenol sebesar 50 ppm dapat meningkatkan produksi hidrogen sebesar 626 ?mol 2,7 kali lebih besar.

Degradation of 2,4,6 Trichlorophenol in coal liquid waste and hydrogen production simultaneously has been tested using catalysts such as TiO2 P25, Titania Nanotube TiNT and TiNT Graphene nanocomposite with graphene loading variation. TiNT Graphene nanocomposite were synthesized using hydrothermal and sonication method and were characterized using UV Vis DRS, XRD, SEM EDX Mapping, BET and FT IR. UV Vis DRS characterization showed a band gap reduction in TiNT Graphene nanocomposite. SEM EDX Mapping characterization result indicated the presence of TiNT and graphene material in nanocomposite rsquo s morphology and composition with equal distribution.
BET characterization result showed that the nanocomposite has a high surface area of 134,2 cm2 g. However, there was no Ti O C bond in nanocomposite that showed in FT IR characterization. Optimal graphene loading of 0.6 was obtained in the simultaneous system with 89 elimination of 2,4,6 Trichlorophenol 12 greater than TiO2 P25 and 986 mol of hydrogen production 1.7 times greater than TiO2 P25 . 2,4,6 Trichlorophenol degradation could be kinetically model by using first order reaction equation for 2,4,6 Trichlorofenol concentration of maximum 10 ppm. Test results also showed that 50 ppm addition of 2,4,6 Trichlorophenol would subsequently enhanced hydrogen production by 626 mol 2.7 times greater.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67931
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Diba Toya
"Produksi hidrogen dan degradasi 2,4,6-Triklorofenol secara simultan sudah dilakukan pada berbagai fotokatalis yaitu P25-TiO2, Titania Nanotube Arrays (TNTAs), dan variasi TNTAs-CdS selama 240 menit. VariasiTNTAs-CdS menggunakanperbandingan mol dari prekursor CdS yaitu CdCl2:CH3CSNH2dengan 0,2:0,12; 0,1:0,06; dan 0,05:0,03 mol/L. Hasil karakterisasi UV-Vis DRS menunjukkanenergy band gap berkisar antara 2,71- 2,89 eV.Fotokatalis terbaik didapat pada perbandingan 0,1:0,06 (TNTAs-CdS-2) karena menghasilkan hidrogen (3,17𝜇𝜇mol/g.s) dan degradasi 2,4,6-Triklorofenol (mencapai 80%) yang paling baik dibandingkan dengan katalis lainnya. Fotokatalis tersebut menghasilkan hidrogen 1,5 kali dibandingkan TNTAs dan 7 kali dibandingkan dengan P25-TiO2. Produksi hidrogen berjalan simultan dengan pendegradasian 2,4,6-Triklorofenol, dimana kinerja keduanya bergantung pada katalis yang digunakan. Disamping itu, pengaruh konsentrasi 2,4,6-Triklorofenol (10, 20, dan 40 ppm) dipelajari dengan menggunakan fotokatalis TNTAs-CdS-2 dan menghasilkan total produksi hidrogen berturut-turut 1,008; 1,061; dan 1,197𝜇𝜇mol/g.s. Semakin besar konsentrasi 2,4,6-Triklorofenol, semakin besar pula hidrogen yang dihasilkan.

Hydrogen production and 2,4,6-Trichlorophenoldegradationhave been investigated simultanously usingP25-TiO2, TNTAs, and variation of TNTAs-CdS for 240 minutes. TNTAs-CdS variations use mol ratio of CdS precursor that isCdCl2:CH3CSNH2 with ratio 0.2:0.12, 0.1:0.06, and 0.05:0.003.Rever to UVVis analysis, the TNTAs-CdS prepared have the band gap energy in the range of 2.71-2.89 eV. Among them, the optimum composition is0.1:0.06 (TNTAs-CdS- 2) which results in the highest total hydrogen production (3,17𝜇𝜇mol/g.s) and 2,4,6-Trichlorophenol degradation(achieve 80%) compared toothers. TNTAs- CdS-2 produces total hydrogen 1.5 and 7 times compared with TNTAs and P25- TiO2, respectively.Hydrogen production and 2,4,6-Trichlorophenol degradation could be perormed simultaneously and it depands on the catalyst employed. Furthermore, the effect of2,4,6-Trichlorophenol initial concentrations (10, 20, and 40 ppm) was also studied using TNTAs-CdS-2 and produced1.008,1.061, and1.197 𝜇𝜇 mol/g.s respectively.The higherthe 2,4,6-Trichlorofenol initial concentration, the more hydrogen produced."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65372
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sherly Kasuma Warda Ningsih
"Penggunaan energi matahari untuk produksi hidrogen dari air dapat menjadi alternatif yang potensial untuk mengatasi masalah keberlanjutan pasokan energi dan pengurangan pencemaran lingkungan. Sistem tandem dyes sensitized solar cell-photoelectrocatalytic (DSSC-PEC) berpotensi dikembangkan menjadi salah satu perangkat pemanen sinar matahari untuk produksi hidrogen (Solar to hydrogen). Dalam sistem tandem tersebut bagian PEC sebagai tempat terjadinya reaksi pemecahan air, sedangkan bagian DSSC berfungsi sebagai salah satu penyedia tegangan insitu dan elektron aktif bagi sel PEC. Material TiO2 nanotube arrays (TNAs) merupakan material satu dimensi (1D) yang memiliki sifat fotokatalitik yang superior dan luas permukaan spesifik yang besar, serta channel 1D yang kondusif dalam transpor muatan. TNAs telah dipreparasi menggunakan metode two step anodization dengan meningkatkan potensial anodisasi tahap dua pada potensial sedang. Plat Ti digunakan sebagai working electrode dan stainless steel digunakan sebagai counter electrode. Elektrolit yang digunakan adalah etilen glikol yang mengandung 0,3% w/w NH4F dan 2% v/v H2O. Hasil anodisasi tahap satu dihilangkan dengan sonikasi dalam air distilasi selama 20 menit dan plat ini berperan sebagai template untuk anodisasi tahap dua. Hasil anodisasi yang diperoleh pada tahap dua dikalsinasi pada suhu 450° C selama 2 jam untuk merubah fasa amorf menjadi fasa kristalin. Band gap energy dari TNAs yang dipreparasi dengan metode two step yakni sekitar 3,07-3,31 eV. Morfologi permukaan TNAs yang dihasilkan berbentuk heksagonal (honey comb). Peningkatan potensial anodisasi pada tahap dua menghasilkan TNAs yang highly order dengan durasi pembentukan yang relatif lebih singkat dengan nilai regularity ratio (RR) optimum 0,92. Agar lebih responsif terhadap sinar tampak, TNAs dimodifikasi dengan BiOI (bismuth oxyiodide) dengan metode Successive Ionic Layer Adsorption and Reaction (SILAR) dengan bantuan ultrasonikasi dan pemanasan menggunakan pelarut air distilasi dan pelarut sorbitol. BiOI/TNAs hasil modifikasi responsif terhadap sinar tampak pada rentang 450-580 nm (redshift) dengan nilai band gap sekitar 1,90 eV-2,32. Morfologi permukaan BiOI/TNA yang dihasilkan yakni bentuk nanoplate, nanoflake, dan nanosheet dengan orientasi tegak lurus pada matriks TiO2 nanotubes. Modifikasi BiOI pada TNAs tidak mengubah fasa kristal anatase. Fotoanoda Graphene Oxide (GO)/TNAs dan reduced-Graphene Oxide (rGO)/TNAs dipreparasi menggunakan teknik drop casting dan teknik deposisi Cyclic Voltammetry (CV), berturut-turut. Modifikasi TNAs dengan material GO ini berhasil menggeser serapan pada sinar tampak (430 nm). Material GO atau rGO/TNAs ini dimodifikasi dengan BiOI untuk mendapatkan fotoanoda ternary yang memiliki respon fotoelektrokimia yang lebih tinggi. BiOI/TNAs dan ternary BiOI/GO/TNAs digunakan sebagai fotoanoda pada zona PEC. Sementara itu, pada bagian katoda PEC digunakan TNAs yang dimodifikasi dengan Pt yang dipreparasi dengan metode fotoreduksi, sebagai zona katalis untuk pembentukan hidrogen. Pengembangan bagian DSSC digunakan fotoanoda TNAs yang disensitasi dengan N719 dyes dan bagian katodanya digunakan kaca Fluorine-doped Tin Oxide (FTO) yang dilapisi dengan Pt. Efisiensi DSSC N719 dyes/TNAs optimum yang didapat sekitar 5,23%. Perangkat DSSC dan PEC ini diaplikasikan untuk produksi hidrogen menghasilkan persen solar to hydrogen (STH) sekitar 2,56%. Saat diaplikasikan untuk produksi hidrogen dan degradasi fenol secara simultan dengan persen solar to hydrogen (STH) turun menjadi 1,34%, namun mampu mendegradasi fenol hingga 73,74%. Dari hasil studi ini menunjukkan bahwa sistem DSSC-PEC dengan fotoanoda bagian PEC berupa BiOI/TNAs atau BiOI/rGO/TNAs memiliki potensi yang menjanjikan secara simultan untuk produksi hidrogen dan degradasi zat organik dalam air berkadar garam tinggi.

The solar energy utilization for hydrogen production from water can be a potential alternative to address the problem of sustainability of energy supply and reduction of environmental pollution. The tandem dyes-sensitized solar cell-photoelectrocatalytic (DSSC-PEC) system can potentially be developed into one of the solar harvesting devices for hydrogen production (Solar to hydrogen). In this tandem system, the PEC compartment acts as a site for the water-splitting reaction, while the DSSC part provides insitu voltage and active electrons for the PEC cell. TiO2 nanotube arrays (TNAs) are one-dimensional (1D) with a superior photocatalytic high surface area and one dimension channel conducive to charge transport. TNAs have been prepared using a two-step anodization method by increasing the second-step voltages at moderate voltage. The Ti foil and stainless steel were used as the working and counter electrodes, respectively. The ethylene glycol containing 0.3% w/w of NH4F and 2% v/v H2O was used as the electrolyte. The first anodization result was removed by the ultrasonication process in the distilled water for 20 min, and this foil acted as the template for the second step of anodization. The second anodization product was calcined at 450° C for 2 h to convert the amorphous phase into a crystalline phase. Increasing the second step potential for producing TNAs with a highly ordered structure can improve the PEC properties. The band gap energy of TNAs prepared with the two-step anodization method was 3.07-3.31 eV. The surface morphology of TNAs prepared by the two-step anodization method was hexagonal (honeycomb). The increasing voltage in the second anodization step reveals TNAs with high order and short-duration of TNAs production with a regularity ratio (RR) was 0.92. In order to extend absorption in the visible range, TNAs were modified with BiOI (bismuth oxy iodide) by Successive Ionic Layer Adsorption and Reaction (SILAR) with ultrasonication and heat-assisted by using deionized water and sorbitol solvent. Modified BiOI/TNAs were responsive to visible light in the 450-580 nm (redshift) range, with a band gap energy of 1.90 - 2.32 eV. The BiOI/TNAs morphology was nanoplate, nanoflake, and nanosheet perpendicular to TiO2 nanotube matrices. The modification of BiOI on TNAs did not change the anatase crystal phase. The photoanode of Graphene oxide (GO)/TNAs and reduced-Graphene Oxide (rGO)/TNAs were prepared by Drop Casting and Cyclic Voltammetry (CV) deposition, respectively. The TNAs were modified with GO material and succeeded in shifting the absorption in visible light (430 nm). The GO/TNAs and the rGO/TNAs were modified with BiOI to produce a ternary photoanode with a higher photoelectrochemical response. The BiOI/TNAs and BiOI/GO/TNAs ternaries were used as photoanodes in the PEC zone. Meanwhile, at the PEC cathode, TNAs modified with Pt prepared by the photoreduction method were used as catalyst zone for the hydrogen formation. The development of DSSC using TNAs photoanode that were sensitized with N719 dyes and for the cathode used Fluorine-doped Tin Oxide (FTO) glass modified with Pt. The optimum efficiency of DSSC was 5.23%. The DSSC and PEC devices were applied for hydrogen production to produce solar to hydrogen (STH) of around 2.56 %. When applied to hydrogen production and phenol degradation simultaneously, the percentage of solar to hydrogen (STH) decreased to 1.34% but degraded phenol up to 73.74%. The results of this study reveal that the DSSC-PEC system with PEC photoanodes in the form of BiOI/TNAs or BiOI/rGO/TNAs has a promising potential for simultaneous hydrogen production and degradation of organic substance in salty water.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>