Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 153329 dokumen yang sesuai dengan query
cover
Arvalinno
"

Kecerdasan buatan atau Artificial Intelligence (AI) banyak berkembang dalam sektor-sektor seperti: speech recognition, computer vision, Natural Language Processing, dll. Salah satu sektor penting yang banyak dikembangkan oleh peneliti adalah Speech Emotion Recognition atau pengenalan emosi berdasarkan suara manusia. Penelitian ini semakin berkembang karena timbul sebuah tantangan bagi manusia untuk memiliki interaksi mesin dan manusia yang lebih natural yaitu suatu mesin yang dapat merespon emosi manusia dengan memberikan balasan yang tepat juga. Perancangan Speech Emotion Recognition pada penelitian ini menggunakan dataset berupa fitur ekstraksi audio MFCC, Spectrogram, Mel Spectrogram, Chromagram, dan Tonnetz serta memanfaatkan metode Transfer Learning VGG-16 dalam pelatihan modelnya. Dataset yang digunakan diperoleh dari pemotongan audio dari beberapa film berbahasa Indonesia dan kemudian audio yang diperoleh diekstraksi fitur dalam kelima bentuk fitur yang disebut sebelumnya. Hasil akurasi model paling baik dalam penelitian ini adalah model transfer learning VGG-16 dengan dataset Mel Spectrogram yaitu dengan nilai akurasi 56.2%. Dalam pengujian model dalam pengenalan setiap emosi, f1-score terbaik diperoleh model transfer learning VGG-16 dengan dataset Mel Spectrogram dengan f1-score yaitu 55.5%. Skala mel yang diterapkan pada ekstraksi fitur mel spectrogram berpengaruh terhadap baiknya kemampuan model dalam mengenali emosi manusia.


Artificial Intelligence has been used in many sectors, such as speech recognition, computer vision, Natural Language Processing, etc. There was one more important sector that has been developed well by the scientists which are Speech Emotion Recognition. This research is developing because of the new challenge by human to have a better natural interaction between machines and humans where machines can respond to human’s emotions and give proper feedback. In this research, to create the speech emotion recognition system, audio feature extraction such as MFCC, Spectrogram, Mel Spectrogram, Chromagram, and Tonnetz were used as input, and using VGG-16 Transfer Learning Method for the model training. The datasets were collected from the trimming of audio from several Indonesian movies, the trimmed audio will be extracted to the 5 features mentioned before. The best model accuracy is VGG-16 with Mel Spectrogram dataset which has reached 56.2% of accuracy. In terms of recognizing the emotion, the best f1-score is reached by the model VGG-16 with Mel Spectrogram dataset which has 55.5% of f1-score. Mel scale that is applied to the feature extraction of mel spectrogram affected the model’s ability to recognize human emotion.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Martin Hizkia Parasi
"

Perkembangan teknologi pemrosesan ucapan sangat pesat akhir-akhir ini. Namun, fokus penelitian dalam Bahasa Indonesia masih terbilang sedikit, walaupun manfaat dan benefit yang dapat diperoleh sangat banyak dari pengembangan tersebut. Hal tersebut yang melatarbelakangi dilakukan penelitian ini. Pada penelitian ini digunakan model transfer learning (Inception dan ResNet) dan CNN untuk melakukan prediksi emosi terhadap suara manusia berbahasa Indonesia. Kumpulan data yang digunakan dalam penelitian ini, diperoleh dari berbagai film dalam Bahasa Indonesia. Film-film tersebut dipotong menjadi potongan yang lebih kecil dan dilakukan dua metode ekstraksi fitur dari potongan audio tersebut. Ekstraksi fitur yang digunakan adalah Mel-Spectrogram dan MelFrequency Cepstral Coefficient (MFCC). Data yang diperoleh dari kedua ekstraksi fitur tersebut dilatih pada tiga model yang digunakan (Inception, ResNet, serta CNN). Dari percobaan yang telah dilakukan, didapatkan bahwa model ResNet memiliki performa yang lebih baik dibanding Inception dan CNN, dengan rata-rata akurasi 49%. Pelatihan model menggunakan hyperparameter dengan batch size sebesar 16 dan dropout (0,2 untuk Mel-Spectrogram dan 0,4 untuk MFCC) demi mendapatkan performa terbaik.


Speech processing technology advancement has been snowballing for these several years. Nevertheless, research in the Indonesian language can be counted to be little compared to other technology research. Because of that, this research was done. In this research, the transfer learning models, focused on Inception and ResNet, were used to do the speech emotion recognition prediction based on human speech in the Indonesian language. The dataset that is used in this research was collected manually from several films and movies in Indonesian. The films were cut into several smaller parts and were extracted using the Mel-Spectrogram and Mel-frequency Cepstrum Coefficient (MFCC) feature extraction. The data, which is consist of the picture of Mel-spectrogram and MFCC, was trained on the models followed by testing. Based on the experiments done, the ResNet model has better accuracy and performance compared to the Inception and simple CNN, with 49% of accuracy. The experiments also showed that the best hyperparameter for this type of training is 16 batch size, 0.2 dropout sizes for Mel-spectrogram feature extraction, and 0.4 dropout sizes for MFCC to get the best performance out of the model used.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Philipus Kristian Renaldy
"

Emosi merupakan hal penting yang dimiliki oleh manusia. Banyak riset yang sudah dilakukan untuk menganalisis emosi seseorang secara langsung maupun tidak langsung. Salah satu topik dari machine learning yang berkembang adalah sistem yang mampu mempelajari isi suara manusia untuk menentukan emosi seseorang yang dinamakan speech emotion recognition. Banyak riset yang sudah dilakukan masih menggunakan dataset berbahasa Inggris, untuk itu diperlukan penelitian speech emotion recognition dengan menggunakan dataset berbahasa Indonesia. Pada penelitian ini dilakukan analisa speech emotion recognition menggunakan  4 model berbeda yaitu Convolutional Neural Network (CNN), Support Vector Machines (SVM), K-Nearest Neighbor (KNN), dan Logistic Regression (LR). Penelitian ini dilakukan dengan menggunakan hasil ekstraksi dari Mel-frequency Cepstral Coefficient (MFCC) yang dimasukkan ke dalam bentuk matriks 2D sebagai input menuju model percobaan. Dataset yang digunakan merupakan cuplikan dialog berbahasa Indonesia dengan karakteristik emosi tertentu yang sudah dikelompokkan terlebih dahulu. Dari percobaan yang telah dilakukan, didapatkan hasil bahwa model SVM memiliki tingkat rata-rata akurasi tertinggi jika dibandingkan dengan model lainnya, yaitu sebesar 59%. Sedangkan untuk model LR, KNN, dan CNN didapatkan tingkat akurasi rata-rata secara berurutan sebesar 54,5%; 53,5%; dan 47,7%.


Emotions are important things in human life. A lot of research had been done to analyze persons' emotions directly or indirectly. One of the topics of machine learning that is developing is a system that could understand the content of the human voice to determine a person's emotions called speech emotion recognition. Much of the research that had been done still uses English datasets. Therefore, speech emotion recognition research using Indonesian language datasets is needed. In this study, Speech Emotion Recognition analysis was performed using 4 different models, such as Convolutional Neural Network (CNN), Support Vector Machines (SVM), K-Nearest Neighbor (KNN), and Logistic Regression (LR). This study was conducted using the extraction outputs from the Mel-frequency Cepstral Coefficient (MFCC) which was converted into a 2D matrix. The output would be used as an input to the model. The dataset used was a snippet of Indonesian dialogue with several emotional characteristics that had been grouped. Based on this study, the results showed that the SVM model had the highest average level of accuracy around 59%. Meanwhile, for the LR, KNN, and CNN models, the average accuracy rate were 54.5%; 53.5%; and 47.7%.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ali Alatas
"Dalam kehidupan sehari-hari, emosi memainkan peran penting dalam membentuk cara manusia berkomunikasi dan berinteraksi, baik dengan sesama maupun dengan teknologi. Dalam bidang Human-Computer Interaction (HCI), pengenalan emosi menjadi salah satu inovasi yang memungkinkan sistem komputer memahami perasaan manusia secara lebih mendalam. Penelitian ini bertujuan untuk mengembangkan sistem Speech Emotion Recognition (SER) berbasis suara percakapan berbahasa Indonesia menggunakan kombinasi model Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU), dengan dukungan teknik augmentasi data untuk meningkatkan performa dan generalisasi model. Penelitian ini dilakukan melalui tiga tahap pengujian: pertama, eksperimen menggunakan benchmark dari TESS Dataset yang berbahasa Inggris; kedua, eksperimen terhadap jumlah augmentasi data untuk menentukan konfigurasi terbaik; dan ketiga, eksperimen membandingkan kinerja model CNN, GRU, dan CNN-GRU. CNN digunakan untuk mengekstraksi fitur suara utama, seperti MFCC, Chroma, Zero-Crossing Rate (ZCR), RMS, dan Spectral Contrast, sementara GRU menangkap pola temporal dalam data. Hasil penelitian menunjukkan bahwa kombinasi CNN-GRU dengan 6 jenis augmentasi data memberikan performa terbaik, dengan akurasi 94.49% dan loss 0.8136 pada dataset berbahasa Indonesia, serta akurasi 99.72% dan loss 0.1915 pada benchmark dari TESS Dataset yang berbahasa Inggris. Temuan ini menegaskan bahwa teknik augmentasi data efektif dalam meningkatkan stabilitas dan akurasi model, bahkan ketika dihadapkan pada variasi kualitas data. Penelitian ini berkontribusi pada pengembangan teknologi HCI yang lebih intuitif, dengan potensi penerapan dalam mendukung kesehatan mental, layanan berbasis suara, dan sistem pendidikan yang responsif terhadap emosi manusia.

In daily life, emotions play a crucial role in shaping how humans communicate and interact, both with each other and with technology. In the field of Human-Computer Interaction (HCI), emotion recognition has become one of the innovations that enable computer systems to deeply understand human feelings. This research aims to develop a Speech Emotion Recognition (SER) system based on Indonesian speech using a combination of Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) models, supported by data augmentation techniques to improve the performance and generalization of the model. The research was conducted through three stages of testing: first, an experiment using the TESS Dataset benchmark in English; second, an experiment on the number of data augmentations to determine the optimal configuration; and third, an experiment comparing the performance of CNN, GRU, and CNN-GRU models. CNN was utilized to extract key audio features, such as MFCC, Chroma, Zero-Crossing Rate, RMS, and Spectral Contrast, while GRU captured temporal patterns in the data. The results showed that the combination of CNN-GRU with 6 types of data augmentation provided the best performance, achieving an accuracy of 94.49% and a loss of 0.8136 on the Indonesian dataset, as well as an accuracy of 99.72% and a loss of 0.1915 on the benchmark TESS Dataset in English. These findings affirm that data augmentation techniques are effective in improving model stability and accuracy, even when faced with variations in data quality. This research contributes to the development of more intuitive HCI technologies, with potential applications in supporting mental health, voice-based services, and educational systems that are responsive to human emotions."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Darrel Tristan Budiroso
"Penelitian ini menangani masalah pengenalan emosi dalam percakapan berbahasa Indonesia, yang penting untuk aplikasi seperti pengenalan ucapan, interaksi manusiamesin, dan analisis sentimen. Untuk mengatasi kompleksitas data suara dan teks, penelitian ini menggabungkan Word Embedding (Word2Vec) dan spektrum suara (MFCC) menggunakan Convolutional Neural Network (CNN). Word2Vec mengubah dataset suara menjadi representasi teks vektor, sementara MFCC digunakan untuk ekstraksi fitur dari spektrum suara. Model yang dikembangkan dievaluasi dengan dataset percobaan berbahasa Indonesia, dan pendekatan Weighted Average Ensemble yang mengintegrasikan kedua metode ini mencapai akurasi 70%. Hasil ini menunjukkan bahwa integrasi teknologi Word Embedding dan analisis spektrum suara dapat meningkatkan akurasi pengenalan emosi dalam bahasa Indonesia. Penelitian ini berkontribusi signifikan terhadap teknologi pengenalan emosi dan berpotensi meningkatkan interaksi manusia dengan teknologi serta aplikasi dalam analisis sentimen dan pengolahan bahasa alami.

This research addresses the issue of emotion recognition in Indonesian language conversations, which is crucial for applications such as speech recognition, humanmachine interaction, and sentiment analysis. To tackle the complexity of voice and text data, this study combines Word Embedding (Word2Vec) and sound spectrum analysis (MFCC) using Convolutional Neural Network (CNN). Word2Vec is used to convert voice datasets into vector text representations, while MFCC is employed for feature extraction from the sound spectrum. The developed models were evaluated using an experimental dataset in Indonesian, and the Weighted Average Ensemble approach, which integrates both methods, achieved an accuracy of 70%. These results indicate that integrating Word Embedding technology and sound spectrum analysis can significantly enhance the accuracy of emotion recognition in Indonesian conversations. This research contributes significantly to the development of emotion recognition technology and has the potential to improve human interaction with technology, as well as applications in sentiment analysis and natural language processing."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jonathan
"Emosi atau perasaan manusia adalah salah satu faktor yang tidak dapat dikendalikan dalam aktivitas apapun. Tidak sedikit juga pekerjaan yang seringkali berkaitan dengan emosi manusia terutama di industri hiburan dan juga kesehatan. Oleh karena itu, 1 dekade kebelakang banyak riset yang dilakukan untuk mempelajari emosi manusia secara langsung maupun menggunakan teknologi. Pengembangan model speech emotion recognition berbahasa Indonesia masih sangat sedikit dan oleh karena itu dibutuhkan perbandingan secara spesifik pada penelitian ini diantara dua model classifier yaitu Convolutional Neural Network (CNN) dan juga Multilayer Perceptron (MLP) untuk menentukan model yang menghasilkan akurasi terbaik dalam memprediksi emosi dari suara manusia.
Dalam speech recognition secara umum, salah satu faktor penting dalam mendapatkan model dengan akurasi terbaik adalah metode ekstraksi fiturnya. Oleh karena itu, penelitian ini menggunakan 3 fitur untuk melakukan pelatihan terhadap model yaitu Mel-frequency Cepstral Coefficients (MFCC), Mel-Spectrogram dan chroma. Dari 3 fitur ini, divariasikan dan menghasilkan 7 metode ekstraksi yang berbeda untuk digunakan sebagai input pelatihan model.
Terakhir, untuk memastikan bahwa model sudah menggunakan parameter terbaik, dilakukan eksperimen dengan membandingkan model yang menggunakan batch size serta activation function yang berbeda. Ditemukan bahwa dengan menggunakan CNN dan fitur gabungan antara MFCC, mel-spectrogram dan juga chroma menghasilkan model dengan skor akurasi 50.6% sedangkan menggunakan MLP dengan fitur yang sama menghasilkan model dengan skor akurasi 58.47%.

Emotions or human feelings are one of the factors that cannot be controlled in any activity. There are also many jobs that are often related to human emotions, especially in the entertainment and health industries. The development of speech emotion recognition models in Indonesian is still very little and therefore a specific comparison is needed in this study between two classifier models, namely Convolutional Neural Network (CNN) and Multilayer Perceptron (MLP) to determine the model that produces the best accuracy in predicting the emotion of the human voice.
In speech recognition in general, one of the important factors in acquiring a model with the best accuracy is the feature extraction method. Therefore, this study uses 3 features to train the model, namely Mel-frequency Cepstral Coefficients (MFCC), Mel-Spectrogram and chroma. From these 3 features, they were varied and resulted in 7 different extraction methods to be used as model training inputs.
Finally, to ensure that the model has used the best parameters, an experiment was conducted by comparing models using different batch sizes and activation functions. It was found that using CNN and the combined features of MFCC, mel-spectrogram and also chroma resulted in a model with an accuracy score of 50.6% while using MLP with the same features resulted in a model with an accuracy score of 58.47%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanvey Xavero
"Jumlah E-Waste yang terus bertambah memerlukan pengelolaan yang lebih serius. Masalah yang sering dihadapi di ranah pengelolaan E-Waste adalah bercampurnya E-Waste yang ada dengan E-Waste lainnya. Pembuangan E-Waste secara sembarangan dapat berakibat buruk bagi lingkungan. Untuk memilah-milah E-Waste dilakukan proses klasifikasi E-Waste dengan menggunakan teknologi Image Classification. Image Classification menjadi salah satu topik dari deep learning yang banyak digunakan pada machine learning. Aplikasi ini menggunakan deep learning dengan metode Convolutional Neural Network (CNN). Jumlah dataset yang digunakan adalah berupa 4021 gambar E-Waste yang diklasifikasi menjadi 9 kategori, yaitu telepon genggam, kabel, integrated circuit, baterai, bola lampu, resistor, transistor, kapasitor dan PC/Laptop. Dari beberapa variasi yang diuji, model yang paling stabil adalah CNN dengan VGG-16 transfer learning yang memiliki akurasi 94%. Transfer learning adalah teknik yang menggunakan model yang sudah ditraining sebelumnya (pre-trained model) untuk mengklasifikasikan dataset yang baru. Dari penelitian ini dapat disimpulkan bahwa kinerja dari model yang telah dibuat dapat berjalan dengan optimal dalam mengklasifikasikan jenis-jenis E-Waste tersebut.

The amount of e-waste that continues to increase exponentially, requires a serious e-waste management process. The problem that is often faced in the realm of e-waste management is that the existing e-waste is mixed with other types of e-waste. Indiscriminate disposal of e-waste can cause serious damage to the environment. An e-waste classification process can be carried out using Image Classification technology. Image Classification is one of the deep learning application topic that is widely used in machine learning. In this study, we use dataset which consists of 4021 images of e-waste classified into 9 categories, i.e. mobile phone, wire, integrated circuit, capacitor, resistor, transistor, battery, light bulb and PC/Laptop. In this study, we used two types of Machine Learning algorithm. The first one is deep learning with the Convolutional Neural Network (CNN) method and the second one is VGG-16 transfer learning. The results are compared and analyzed based on Accuracy, Precision, Recall, and F1-Score Evaluation Metrics. Out of the variations of hyperparameter tested, the most stable model is CNN with VGG-16 transfer learning which has the average recall of 93%, the average precision of 93%, the average F1-score of 92%, and the average accuracy of 94%.. The result of our study show that the performance of the model can run optimally in classifying the types of e-waste."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amanda Nydia Augustizhafira
"Analisis sentimen merupakan bagian dari data mining text mining , yaitu proses memahami, mengekstrak, dan mengolah data tekstual secara otomatis untuk mendapatkan informasi. Pada penelitian ini, analisis sentimen diterapkan pada salah satu media sosial, yaitu Twitter. Analisis sentimen tergolong sebagai masalah klasifikasi yang dapat diselesaikan menggunakan salah satu metode machine learning, yaitu Neural Network. Pada machine learning, data dibagi menjadi data pelatihan dan data pengujian yang berasal dari domain yang sama.
Permasalahan utama pada penelitian ini adalah data pelatihan dan data pengujian berasal dari dua domain yang berbeda, sehingga perlu diterapkan pembelajaran lain selain machine learning. Masalah tersebut dapat diselesaikan dengan menggunakan transfer learning. Transfer learning merupakan suatu pembelajaran model yang dibangun oleh suatu data pelatihan dari suatu domain dan diuji oleh suatu data pengujian dari domain yang berbeda dari domain data pelatihan. Simulasi dalam penelitian ini menghasilkan suatu akurasi transfer learning dengan metode Neural Network yang nantinya akan diuji dengan fitur n-gram bi-gram dan tri-gram serta satu metode seleksi fitur, yaitu Extra-Trees Classifier.
Dalam penelitian ini, nilai akurasi transfer learning tertinggi didapat saat hidden layer berjumlah satu. Sebagian besar nilai akurasi tertinggi didapat saat penggunaan 250 neuron pada hidden layer. Fungsi aktivasi ReLU dan tanh menghasilkan nilai akurasi yang lebih tinggi dibandingkan fungsi aktivasi logistic sigmoid. Penggunakan metode seleksi fitur dapat meningkatkan kinerja transfer learning sehingga nilai akurasinya lebih tinggi dibandingkan simulasi tanpa penggunaan metode seleksi fitur.

Sentiment analysis is a part of data mining text mining , which is the process of understanding, extracting, and processing textual data automatically to obtain information. In this research, sentiment analysis is applied to one social media called Twitter. Sentiment analysis is categorized as a classification problem that can be solved using one of machine learning methods, namely Neural Network. In machine learning, data is divided into training data and test data from the same domain.
The main problem in this research is training data and test data come from two different domains, so it is necessary to apply other learning beside machine learning. The problem can be solved by using transfer learning. Transfer learning is a model learning constructed by a training data from a domain and tested by a test data from a different domain from the training data domain. The simulation in this research resulted in an accuracy of learning transfer with Neural Network method which will be tested using n grams bi grams and tri grams and one feature selection method called Extra Trees Classifier.
In this research, the highest value of transfer learning accuracy is obtained when one hidden layer is used. Most of the highest accuracy values are obtained from the use of 250 neurons on the hidden layer. The activation function of ReLU and tanh yield a higher accuracy value than the logical activation function sigmoid . The use of feature selection method can improve the transfer learning performance so that the accuracy value is higher than simulation without the use of feature selection method.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Boy Di Cario
"Bisindo adalah bahasa isyarat yang banyak digunakan oleh komunitas tuli di Indonesia untuk berinteraksi secara nonverbal. Struktur bahasa pada Bisindo sangat berbeda dengan Bahasa Indonesia yang biasa digunakan oleh orang dengar. Hal ini menyebabkan adanya gap antara komunitas tuli dengan orang dengar dalam berkomunikasi. Penelitian ini mengembangkan model pengenal dan penerjemah bahasa isyarat (SLRT) untuk Bisindo dengan menerapkan arsitektur Single Stream Network dan Two Stream Network yang sukses digunakan pada German Sign Language (DGS). Model ini dilatih pada dataset Bisindo-2024 yang berisikan 96 kalimat yang mengandung kata kerja berarah. Penelitian ini menghasilkan model SLRT yang meraih skor 62.30 pada BLEU-4 dan 71.00 pada ROUGE. Hasil penelitian ini menunjukkan bahwa performa Two Stream Network mengungguli Single Stream Network sejauh 10.86 pada BLEU-4 dan 7.01 pada ROUGE. Selain itu, penelitian ini juga membuktikan bahwa pendekatan transfer learning berhasil meningkatkan performa model secara signifikan. Melalui penelitian ini juga dibuktikan bahwa model yang dilatih secara end-to-end memiliki performa yang lebih baik dibanding model pipeline. Penelitian ini adalah yang pertama menerapkan model SLRT pada Bisindo, sehingga memberikan kontribusi baru dalam bidang ini.

Bisindo is a sign language widely used by the deaf community in Indonesia to interact nonverbally. The language structure of Bisindo is very different from the Indonesian language commonly used by hearing people. This causes a gap in communication between the deaf community and hearing people. This research develops a sign language recognition and translation model (SLRT) for Bisindo by applying the Single Stream Network and Two Stream Network architectures successfully used in German Sign Language (DGS). This model is trained on the Bisindo-2024 dataset containing 96 sentences with verb agreement. This research produced an SLRT model that achieved scores of 62.30 on BLEU-4 and 71.00 on ROUGE. The results of this research show that the performance of the Two Stream Network outperformed the Single Stream Network by 10.86 on BLEU-4 and 7.01 on ROUGE. Additionally, this research also proves that the transfer learning approach significantly improved the model's performance. This research also demonstrates that an end-to-end trained model performs better than a pipeline model. This research is the first to apply the SLRT model to Bisindo, thus providing a new contribution to this field."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kartika Syskya Wydya
"Analisis sentimen merupakan proses memahami, mengekstrak dan mengolah data tekstual secara otomatis untuk mendapatkan informasi. Pada penelitian ini, analisis sentimen diterapkan pada media sosial, yaitu Twitter. Pada dasarnya analisis sentimen merupakan masalah klasifikasi. Support Vector Machine SVM adalah salah satu metode machine learning untuk menyelesaikan masalah klasifikasi. Pada pendekatan SVM model dibangun dengan data dari domain yang sama. Namun, ketika terjadi perubahan domain, maka model machine learning harus dibangun kembali dari awal dengan menggunakan data pelatihan yang baru. Data pelatihan yang baru membutuhkan proses pelabelan yang dilakukan secara manual.
Dalam kasus ini, akan lebih efektif dan efisien jika dilakukan transfer learning agar dapat menggunakan data pelatihan dari domain yang sudah tersedia untuk menangani masalah klasifikasi pada domain yang berbeda. Data pelatihan dari sebuah domain digunakan untuk melakukan klasifikasi pada domain yang berbeda. Dalam penelitian masalah analisis sentimen untuk tweets berbahasa Indonesia ini, nilai akurasi transfer learning masih lebih rendah dari pada metode SVM tanpa transfer learning. Penggunaan fitur bi-gram dapat meningkatkan kinerja transfer learning.

Sentiment analysis is the process of understanding, extracting and processing textual data automatically to obtain information. In this experiment, sentiment analysis applied to social media, Twitter. Basically, sentiment analysis is a classification problem. Support Vector Machine SVM is one of machine learning method to solve two class classification problem. In the SVM approach the model is built with data from the same domain. However, when domain changes occur, the machine learning model must be rebuilt from scratch using new training data. New training data requires manual labeling process.
In this case, it would be more effective and efficient to transfer learning to use the training data from an already available domain to deal with classification problems on different domains. Training data from a domain will be used to classify on different domains. In the research problem of sentiment analysis for tweets in Bahasa, the value of transfer learning accuracy is still lower than the SVM method without transfer learning. Use of bi gram feature can improve the performance of transfer learning.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47815
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>