Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 65419 dokumen yang sesuai dengan query
cover
Haya Ayu Fauziyyah
"Paduan super berbasis besi-nikel biasanya mengandung lebih dari delapan elemen paduan dan umum digunakan dalam aplikasi aerospace seperti pada komponen cakram turbin menjadikan perubahan komposisi dapat menyebabkan perubahan sifat mekanis yang signifikan. Paduan super ini mengandung 15–60% besi dan 25–45% nikel dan digunakan dalam bilah dan cakram mesin yang memerlukan sifat ekspansi termal rendah. Paduan super berbasis besi ini menarik untuk dipelajari karena karakteristik temperatur tinggi dan koefisien ekspansi termal yang rendah tetapi di sisi lain menawarkan harga yang lebih ekonomis. Dalam aplikasi temperatur tinggi kekuatan tarik akan berubah sesuai dengan temperaturnya sehingga rentan terjadi kegagalan. Sementara dalam aplikasi seperti turbin yang dalam penggunaannya sering ditemukan kegagalan karena bekerja pada putaran yang tinggi dan lingkungan abrasif dibutuhkan nilai kekerasan yang sesuai. Sehingga dibutuhkan sebuah solusi yang kompetitif dan efisien dalam proses desain dan rekayasa paduan super berbasis besi-nikel. Metode pembelajaran mesin deep learning regresi dapat menjadi solusi dalam memberikan prediksi kekuatan tarik, kekerasan dan titik lebur yang presisi untuk aplikasi tertentu sehingga tidak dibutuhkan eksperimen yang memakan waktu. Dalam penelitian ini dilakukan variasi parameter berupa arsitektur model, learning rate, test size, random state, batch size, dan epoch dalam rangka mencari parameter optimum bagi model C2P besi-nikel. Nilai akurasi optimum yang dihasilkan dengan matriks R2 sebesar 98,2% dan matriks RRMSE 4,12%. Nilai ini didapat menggunakan parameter yaitu 4 hidden layers dengan noda (128,128,128,128), learning rate sebesar 10-3, test size sebesar 0,2, random state sebesar 25, batch size sebesar 64, dan epoch sebesar 250.

Iron-nickel-based superalloys typically contain more than eight alloying elements and are commonly used in aerospace applications such as in turbine disc components where compositional changes can lead to significant changes in mechanical properties. This superalloy contains 15–60% iron and 25–45% nickel and is used in engine blades and discs where low thermal expansion properties are required. This iron-based super alloy is interesting to study because of its high temperature characteristics and low coefficient of thermal expansion, but on the other hand offers a more economical price. In high temperature applications the tensile strength will change according to the temperature so that it is susceptible to failure. Meanwhile, in applications such as turbines where failure is often found due to working at high rotations and an abrasive environment, an appropriate hardness value is required. So that a competitive and efficient solution is needed in the design and engineering process of iron-nickel-based super alloys. The deep learning regression machine learning method can be a solution in providing precise predictions of tensile strength, hardness and melting point for certain applications, eliminating the need for time-consuming experiments. In this study, various parameters were carried out in the form of model architecture, learning rate, test size, random state, batch size, and epoch in order to find the optimum parameters for the iron-nickel C2P model. The optimum accuracy value generated by the R2 matrix is 98.2% and the RRMSE matrix is 4.12%. This value is obtained using parameters, namely 4 hidden layers with dense (128,128,128,128), learning rate of 10-3, test size of 0.2, random state of 25, batch size of 64, and epoch of 250."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dzaky Iman Ajiputro
"Paduan super merupakan material yang memiliki performa baik dalam mempertahankan sifat mekanisnya pada temperatur tinggi. Paduan super berbasis nikel setidaknya memiliki kandungan nikel sebesar 38–76% dan paduan super berbasis besi-nikel memiliki kandungan 15–60% besi serta 25–45% nikel yang umum digunakan pada industri aviasi. Dalam kondisi operasinya, komponen tersebut terpapar temperatur yang sangat tinggi sehingga memengaruhi kekuatan tarik dan titik leburnya. Selain itu, perputaran kecepatan tinggi dan lingkungan yang abrasif menjadi alasan dibutuhkan nilai kekerasan yang tinggi. Oleh karena itu, modifikasi material tersebut diperlukan agar dapat menunjang kebutuhan sifat minimal pada aplikasi mesin turbin gas. Machine learning (ML) dan deep learning (DL) menjadi pilihan yang solutif dalam proses desain rekayasa sifat kekuatan tarik, kekerasan, dan titik lebur material tersebut karena tidak membutuhkan waktu yang panjang. Pada penelitian ini, dua model ML dan satu model DL digunakan untuk menentukan model yang dapat menghasilkan prediksi sifat material yang terbaik. Beberapa parameter divariasikan untuk mencari nilai akurasi prediksi yang paling optimal. Model ANN menjadi pilihan tepat untuk memprediksi sifat-sifat material paduan super. Model tersebut diaplikasikan untuk memodifikasi komposisi INCONEL-718 dan berhasil meningkatkan nilai kekuatan tarik menjadi 1592 MPa, kekerasan menjadi 152 HRB, dan titik lebur menjadi 1665ºC.

Superalloys are materials that preserve their mechanical properties well at high temperatures. Nickel-based superalloys have at least 38-76% nickel, whereas iron-nickel-based superalloys contain 15-60% iron and 25-45% nickel and are widely utilized in the aviation industry. These components are subjected to extremely high temperatures during operation, which affects their tensile strength and melting point. Furthermore, high rotating speeds and an abrasive environment demand high hardness values. As a result, material modification is required to meet the minimum requirements for gas turbine engine applications. Machine learning (ML) and deep learning (DL) are acceptable alternatives in the engineering design process for predicting the tensile strength, hardness, and melting point properties of these materials because they do not require a long time. Two ML models and one DL model are utilized in this research to discover which model can generate the best predictions of material properties. Several parameters are adjusted to achieve the best prediction accuracy. The ANN model is the best option for predicting superalloy material properties. This model is implemented to INCONEL-718 and successfully increasing the tensile strength to 1592 MPa, hardness to 152 HRB, and melting point to 1665ºC."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ibnu Rais Syukran
"Paduan super merupakan jenis paduan yang dapat mempertahankan kekuatan mekanis dan kestabilan permukaannya pada temperatur yang sangat tinggi sehingga cocok diaplikasikan pada bidang kedirgantaraan, khususnya turbin gas. Jenis paduan super yang paling banyak digunakan adalah paduan super berbasis nikel karena memiliki struktur kristal FCC yang stabil di segala temperatur. Agar dapat digunakan dalam jangka waktu yang lama, kegagalan pada paduan super berbasis nikel dapat dicegah dengan mengetahui kekuatan tarik dari paduannya. Selain itu untuk mencegah terjadinya keausan pada komponen mesin, kekerasan pada paduan super berbasis nikel juga harus diketahui. Adapun titik leleh dari paduan super berbasis nikel juga harus dapat diketahui untuk mencegah terjadinya pelunakan paduan super pada temperatur yang sangat tinggi. Biaya produksi paduan super berbasis nikel tergolong mahal, karena dibuat berdasarkan pendekatan trial and error yang memakan waktu. Pada penelitian ini, dilakukan pembuatan sebuah program yang dapat memprediksi sifat mekanis paduan super berbasis nikel menggunakan pembelajaran mesin dengan metode deep learning. Melalui pembelajaran mesin, biaya produksi paduan super berbasis nikel dapat ditekan serta mempersingkat siklus perkembangan material. Penelitian ini menghasilkan suatu program deep learning dengan jenis model regresi yang dapat memprediksi kekuatan tarik, kekerasan, dan titik leleh paduan super berbasis nikel dengan keakurasian model menurut metrik R2 sebesar 98,77% berdasarkan variasi hyperparameter yang ditetapkan sebanyak tiga hidden layer dengan dense 256, 128, 64, test size sebesar 25%, random state dengan nilai 75, batch size sebesar 32, epoch sebanyak 300, dan learning rate sebesar 0,001.

A superalloy is a type of alloy that can maintain its mechanical strength and surface stability at very high temperatures so that it is suitable for application in the aerospace field, especially in gas turbines. The most widely used type of superalloy is Ni-based superalloy because it has a stable FCC crystal structure at all temperatures. The failure of Ni-based superalloys can be prevented by knowing the tensile strength of the alloy for a longer-term used. In addition, to prevent wear on the engine components, the hardness of Ni-based superalloys must also be known. The melting point of Ni-based superalloys must also be known to prevent softening of the superalloy at very high temperatures. The production cost of Ni-based superalloys is quite expensive because they are made based on a time-consuming trial and error approach. In this research, a program is developed that can predict the mechanical properties of Ni-based superalloys using machine learning with deep learning methods. Through machine learning, the production cost of Ni-based superalloys can be reduced, and the material development cycle can be shortened. The result of this research is a deep learning program with a regression model which can predict the tensile strength, hardness, and melting point of Ni-based superalloys with a model accuracy of 98.77% according to the R2 metric based on the hyperparameter variations set as three hidden layers wi"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yossi Andreano
"Leadframe merupakan salah satu komponen penting dalam pembuatan sirkuit terpadu. Aplikasi ini membutuhkan spesifikasi kompleks seperti kekuatan tarik dan konduktivitas listrik yang tinggi serta koefisien ekspansi termal yang rendah untuk memastikan performa yang baik. Hal tersebut menjadikan kandidat material yang layak digunakan untuk aplikasi ini menjadi sangat terbatas. Salah satu material yang umum digunakan dalam pembuatan leadframe adalah paduan tembaga. Namun, pengembangan material tersebut untuk memenuhi spesifikasi yang dibutuhkan bukanlah hal yang mudah. Penemuan kandidat paduan tembaga ini membutuhkan banyak uji coba hingga ditemukan kombinasi unsur paduan dan jenis pemrosesan yang optimal. Oleh karena itu, dibutuhkan sebuah pendekatan baru yang dapat mempercepat proses penemuan paduan tembaga baru dengan kombinasi sifat mekanis, elektrik, dan termal yang optimal. Salah satu solusi yang ditawarkan untuk mengatasi permasalahan ini adalah menggunakan metode ML. Pada penelitian ini enam buah model yang terdiri atas lima model ML klasik dan satu model DL dibangun untuk melakukan prediksi struktur material (model P2S) dan prediksi properti material (model S2P). Berdasarkan nilai koefisien determinasi (R2 ) ditemukan dua model P2S dan S2P terbaik adalah BPNN dan XGB. Kemudian, masing-masing model tersebut diintegrasikan untuk membentuk MLDS. Hasil MLDS menunjukkan bahwa program yang dibangun menggunakan model XGB memiliki fluktuasi (standar deviasi) yang lebih rendah dan dapat digunakan untuk memberikan rekomendasi paduan tembaga baru untuk aplikasi leadframe yang sejalan dengan literatur.

The leadframe is one of the crucial components in the manufacturing of Integrated Circuits (ICs). This application requires complex specifications such as high tensile strength and electrical conductivity, as well as low thermal expansion coefficients to ensure optimal performance. These requirements significantly limit the potential materials suitable for this application. One of the materials commonly used in the production of leadframes is copper alloys. However, developing this material to meet the necessary specifications is not easy. Discovering a suitable copper alloy candidate involves a lot of trial and error to find the optimal combination of alloying elements and processing methods. Therefore, a new approach is needed to accelerate the discovery process of new copper alloys with an optimal combination of mechanical, electrical, and thermal properties. One proposed solution to address this issue is the use of machine learning methods. In this study, six models consisting of five classical machine learning models and one deep learning model were developed to predict material structure (P2S model) and material properties (S2P model). Based on the coefficient of determination (R²) values, the best P2S and S2P models were found to be BPNN and XGB, respectively. These models were then integrated to form a Machine Learning Design System (MLDS). The results of the MLDS showed that the program built using the XGB model has lower fluctuation (standard deviation) and could be used to recommend new copper alloys for leadframe applications in line with the literature."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thomas Hadi Wijaya
"Penelitian ini berfokus pada pengaplikasian teknologi deep learning, secara khusus menggunakan Residual Network (ResNet101) dalam prediksi perencanaan dosis untuk pasien kanker paru-paru. Tiga variasi input data diproses untuk dilatih dan diuji menggunakan ResNet, dan kemudian dievaluasi untuk menentukan variasi input yang paling akurat. Tujuan utama penelitian ini adalah memahami mekanisme kerja deep learning dalam prediksi perencanaan dosis, mengevaluasi akurasi prediksi menggunakan ResNet, dan menganalisis kinerja model pada masing-masing variasi input data. Metodologi yang digunakan melibatkan penggunaan model input dan output untuk menghasilkan kurva distribusi-volume dosis (DVH) prediksi dan aktual. DVH merupakan kurva yang digunakan untuk mengukur seberapa besar dosis yang diterima dalam persentase volume pada organ tertentu. Evaluasi dilakukan menggunakan metode Mean Absolute Error (MAE) dari persentase volume prediksi dan referensi masing-masing pasien pada rentang dosis yang ditentukan yaitu 0-60 Gy dengan lebar bin sebesar 0,25 Gy. Hasil evaluasi menunjukkan bahwa variasi data input A memberikan nilai MAE sebesar 11,24% ± 10,58%, variasi data input B memberikan MAE sebesar 12,79% ± 11,27%, dan variasi data input C memberikan MAE sebesar 12,22% ± 12,13%. Hasil tersebut memperlihatkan bahwa variasi data input A memiliki tingkat akurasi terbaik dengan nilai error dan standar deviasi terendah. Evaluasi juga melibatkan penggunaan train-val loss untuk masing-masing model yang dilatih. Temuan ini menunjukkan bahwa penggunaan citra CT sebagai channel 1, gabungan ROI tanpa ROI target sebagai channel 2, dan ROI target sebagai channel 3 memberikan prediksi perencanaan dosis yang paling akurat untuk pasien kanker paru-paru.

This study focuses on the application of deep learning technology, specifically using Residual Network (ResNet101), to predict dosage planning for lung cancer patients. Three variations of input data were processed for training and testing using ResNet, and then evaluated to determine the most accurate input variation. The primary objectives of this research are to understand the mechanism of deep learning in dosage planning prediction, evaluate prediction accuracy using ResNet, and analyze model performance for each input data variation. The methodology involved using input and output models to generate predicted and actual dose-volume histogram (DVH) curves. DVH is a curve used to measure the dose received as a volume percentage in a specific organ. Evaluation was conducted using the Mean Absolute Error (MAE) method from the volume percentage prediction and reference for each patient within a dose range of 0-60 Gy with a bin width of 0,25 Gy. The evaluation results showed that input data variation A yielded an MAE of 11,24% ± 10,58%, input data variation B yielded an MAE of 12,79% ± 11,27%, and input data variation C yielded an MAE of 12,22% ± 12,13%. These results indicate that input data variation A had the best accuracy with the lowest error and standard deviation. Evaluation also included using train-val loss for each trained model. These findings suggest that using CT images as channel 1, a combination of ROIs excluding the target ROI as channel 2, and the target ROI as channel 3 provides the most accurate dosage planning prediction for lung cancer patients."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raihan Kenji Rizqillah
"Fatik menjadi salah satu indikator utama yang menjadi perhatian pada penggunaan paduan alumunium sebagai aplikasi struktural pesawat terbang, dimana sebanyak lebih dari 50% kecelakaan dirgantara disebabkan oleh kegagalan fatik material. Metode eksperimental trial and error untuk mendesain material memerlukan waktu panjang, biaya tinggi, serta efisiensi penelitian yang dipengaruhi oleh intuisi dan keberuntungan dari peneliti menimbulkan urgensi pendekatan lain dalam penelitian mekanika material. Penelitian mekanika material berbasis Pembelajaran Mesin (PM) dapat memanfaatkan data-data eksperimen dan penelitian terdahulu, sehingga dapat memangkas biaya dan waktu penelitian. Pada penelitian ini telah berhasil dikembangkan dua model deep learning yang mampu memetakan dengan baik hubungan antara data paduan alumunium dengan sifat fatik yang dihasilkan. Model dibuat dengan arsitektur Deep Neural Network menggunakan TensorFlow. Model S2P (Structure to Performance) dapat memprediksi performa fatik suatu paduan alumunium dari data komposisi, perlakuan panas, sifat mekanis, dan pembebanan fatik yang diterima. Model P2S (Performance to Structure) dapat memprediksi komposisi paduan alumunium yang dapat memenuhi performa fatik yang diharapkan. Kedua model menghasilkan performa baik berdasarkan pada metrik penilaian R2, yaitu senilai 0,92 untuk model S2P dan 0,96 untuk model P2S. Formula matematika sifat mekanis dan sifat fatik paduan alumunium dibuat sebagai fungsi dari variabel unsur paduan dan perlakuan panas. Pengembangan model deep learning prediksi sifat paduan alumunium berbasis fitur atomik menunjukkan bahwa total elektronegatifitas berpengaruh besar terhadap sifat mekanis dan sifat fatik.

Fatigue is one of the main concern of the utilization of aluminum alloys as aircraft structural applications, since more than 50% of aerospace accidents are caused by material fatigue failure. The experimental trial and error method for designing materials requires long time and high costs. Research efficiency is also influenced by intuition and luck of the researcher. These condition raises the urgency of other approaches in material mechanics research. Machine Learning (ML) based material mechanics research can take advantage of experimental data and previous research, which ables reduce research costs and time. In this research, two deep learning models have been successfully developed. The models are able to map the relationship between aluminum alloy data and the resulting fatigue properties. The model is built on a fully connected Deep Neural Network architecture using TensorFlow. The S2P (Structure to Performance) model can predict the fatigue performance of an aluminum alloy from the data of composition, heat treatment, mechanical properties, and fatigue loading condition. The P2S (Performance to Structure) model can predict the composition of aluminum alloys that can meet the expected fatigue performance. Both models produce good performance based on the R2 scoring metric, which is 0.92 for the S2P model and 0.96 for the P2S model. Mathematical formulas for mechanical properties and fatigue properties of alloys are made as a function of alloying and heat treatment variables. The development of atomic feature based deep learning model shows that the total electronegativity has a large impact on the mechanical properties and fatigue properties."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bella Septina Ika Hartanti
"Bencana banjir merupakan salah satu peristiwa alam yang sering terjadi di dunia, termasuk Indonesia, dan terjadi ketika aliran air yang berlebihan menggenangi daratan dalam jangka waktu tertentu. Perubahan iklim, cuaca ekstrem, urbanisasi yang tidak terkendali, dan kondisi geografis yang kompleks telah berkontribusi terhadap peningkatan frekuensi dan intensitas banjir, terutama di daerah perkotaan. Analisis banjir otomatis dan deteksi citra dapat memberikan panduan dan informasi yang berguna dalam membuat keputusan untuk mengurangi dampak destruktif seperti korban jiwa dan ekonomi, salah satunya dengan melakukan segmentasi untuk membantu proses pembuatan peta kerawanan banjir. Namun, sejumlah kecil data beresolusi tinggi dan berlabel yang tersedia membuat proses segmentasi sulit untuk dilakukan. Oleh karena itu, penulis mengusulkan pendekatan semi-supervised yaitu mean teacher dengan memanfaatkan teknik deep learning. Adapun dataset yang digunakan adalah citra SAR Sentinel-1 C-band yang telah diolah sebelumnya. Hasil penelitian menunjukkan bahwa model usulan memberikan kenaikan performa yang cukup signifikan pada metrik IoU sebesar 5% terhadap baseline yang mengimplementasikan teknik pseudo-labeling.

Floods are one of the natural disaster events that occur in the world. Floods happen when excessive water flows and submerges land for a certain period of time. Climate change, extreme weather, uncontrolled urbanization, and complex geographical conditions have contributed to the increase in the frequency and intensity of floods, especially in urban areas. Automatic flood analysis and detection of imagery can provide useful guidance and information in making decisions to reduce destructive impacts such as loss of life and economy. However, the small amount of high-resolution and labeled data available makes the segmentation process difficult for flood detection. Therefore, the author proposes a semi-supervised approach, namely mean teacher by utilizing the deep learning architecture. The dataset used is the SAR image of Sentinel-1 C-band which has been processed. The results show that the proposed model provides a significant increase in performance on the IoU metric by 5% against the baseline that implements the pseudo-labeling technique."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Rafi Aqila
"Sayap bagian atas pesawat dan tailcone merupakan komponen yang banyak menerima tension stress yang tinggi saat beroperasi. Dibutuhkan paduan material yang memiliki kekuatan tarik yang tinggi untuk mencegah terjadinya kegagalan pada komponen tersebut. Paduan titanium dipilih untuk menjadi solusi dari permasalahan tersebut karena memenuhi spesifikasi yang diinginkan serta memiliki beberapa aspek kelebihan lain yang dibutuhkan untuk industri kedirgantaraan. Namun dalam pengembangannya masih menggunakan metode konvensional dengan proses eksperimen yang memerlukan biaya yang tinggi, akurasi penelitian yang sangat ditentukan oleh data dan pengalaman empiris, serta memakan banyak waktu dan rentan terhadap kesalahan manusia. Penelitian rekayasa material menggunakan pembelajaran mesin regresi memberikan solusi yang menjanjikan untuk masalah tersebut, karena menggunakan data eksperimen maupun data dari penelitian terdahulu sehingga dapat memangkas waktu, tenaga, dan biaya dalam proses pengembangan paduan titanium. Pada penelitian ini berhasil dikembangkan model pembelajaran mesin dengan menggunakan algoritma KNN. model menghasilkan performa yang cukup baik, dibuktikan dari perbandingan nilai aktual dan prediksi serta nilai metrik model sebesar 86,22%. Selain itu, dilakukan studi berbasis fitur atomik yang menunjukkan bahwa elektron valensi berpengaruh besar terhadap sifat kekuatan tarik paduan titanium. 

The upper wing of the aircraft and tail cone are components that receive high tension stress during operation. A material alloy with high tensile strength is required to prevent failure of these components. Titanium alloys are chosen as the solution to the problem because they meet the desired specifications and have several other advantages needed for the aerospace industry. However, its development still uses conventional methods with an experimental process that requires high costs, the accuracy of research is largely determined by empirical data and experience, and takes a lot of time and is prone to human error. Materials engineering research using regression machine learning provides a promising solution to the problem, because it uses experimental data as well as data from previous research so that it can cut time, energy, and costs in the process of developing titanium alloys. In this study, a machine learning model using the KNN algorithm was successfully developed. The model produces quite good performance, as evidenced by the comparison of actual and predicted values and the model metrik value of 86.22%. In addition, a study based on atomic features was carried out which showed that valence electrons have a major effect on the tensile strength properties of titanium alloys."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frendy Muhamad Rachmansyah
"Pengukuran viskositas zat cair merupakan aspek penting dalam berbagai industri. Dalam mengukur viskositas suatu cairan umumnya menggunakan viskometer bola jatuh. Namun penggunaan viskometer bola jatuh memiliki kekurangan dalam ketelitian dalam menentukan kecepatan terminal bola ketika mencapai kedalaman tertentu. Dalam penelitian ini, penulis merancang pendekatan baru yang menggabungkan teknologi pengolahan video dengan metode deep learning, khususnya algoritma You Only Look Once (YOLO), untuk mengukur viskositas zat cair secara efisien dan akurat. Pendekatan ini memungkinkan pengukuran viskositas dilakukan dengan menggunakan kamera sederhana, yang secara otomatis menganalisis pergerakan jatuhnya kelereng dalam suatu fluida. Penulis melatih model deep learning menggunakan dataset video jatuhnya bola pada suatu cairan yang diambil secara langsung menggunakan kamera smartphone, dan menunjukkan bahwa pendekatan ini mampu menghasilkan pengukuran viskositas yang akurat dengan waktu perhitungan yang lebih cepat dibandingkan menggunakan viskometer bola jatuh. Hasil percobaan menunjukkan bahwa model YOLO mampu mendeteksi 11 objek dari total 25 gambar dengan presisi 0,99 dan konsistensi tinggi (mAP50-95 sebesar 0,86). Model ini efektif dalam mendeteksi jatuhnya kelereng, dengan waktu pemrosesan per gambar yang cepat. Meskipun beberapa frame tidak terdeteksi, model menunjukkan akurasi tinggi dalam memprediksi viskositas dengan MAE sebesar 0,13, menjadikannya andal dan efisien untuk pengukuran viskositas dalam aplikasi industri dan laboratorium.

Viscosity measurement of liquid substances is an important aspect in various industries. The traditional method of measuring viscosity is by using a falling ball viscometer. However, this method has limitations in accurately determining the terminal velocity of the ball at a certain depth. In this research, the author designed a new approach that combines video processing technology with deep learning methods, specifically the You Only Look Once (YOLO) algorithm, to measure the viscosity of liquid substances efficiently and accurately. This approach allows viscosity measurement to be done using a simple camera, which automatically analyzes the movement of a marble falling in a fluid. The author trained a deep learning model using video datasets of the falling ball in a liquid captured directly using a smartphone camera, and demonstrated that this approach can produce accurate viscosity measurements with faster calculation time compared to using a falling ball viscometer. The experimental results demonstrated that the YOLO model accurately detected 11 objects out of 25 images with a precision of 0,99 and a consistent mAP50-95 score of 0,86. Applied to 7 video frames, it processed images quickly with times of 1,9 ms for preprocessing, 45,7 ms for inference, and 0,6 ms for post-processing. Despite some frames missing detections, the model achieved a high accuracy in predicting viscosity with a Mean Absolute Error (MAE) of 0,13, making it reliable for various industrial and laboratory applications."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frendy Muhamad Rachmansyah
"Pengukuran viskositas zat cair merupakan aspek penting dalam berbagai industri. Dalam mengukur viskositas suatu cairan umumnya menggunakan viskometer bola jatuh. Namun penggunaan viskometer bola jatuh memiliki kekurangan dalam ketelitian dalam menentukan kecepatan terminal bola ketika mencapai kedalaman tertentu. Dalam penelitian ini, penulis merancang pendekatan baru yang menggabungkan teknologi pengolahan video dengan metode deep learning, khususnya algoritma You Only Look Once (YOLO), untuk mengukur viskositas zat cair secara efisien dan akurat. Pendekatan ini memungkinkan pengukuran viskositas dilakukan dengan menggunakan kamera sederhana, yang secara otomatis menganalisis pergerakan jatuhnya kelereng dalam suatu fluida. Penulis melatih model deep learning menggunakan dataset video jatuhnya bola pada suatu cairan yang diambil secara langsung menggunakan kamera smartphone, dan menunjukkan bahwa pendekatan ini mampu menghasilkan pengukuran viskositas yang akurat dengan waktu perhitungan yang lebih cepat dibandingkan menggunakan viskometer bola jatuh. Hasil percobaan menunjukkan bahwa model YOLO mampu mendeteksi 11 objek dari total 25 gambar dengan presisi 0,99 dan konsistensi tinggi (mAP50-95 sebesar 0,86). Model ini efektif dalam mendeteksi jatuhnya kelereng, dengan waktu pemrosesan per gambar yang cepat. Meskipun beberapa frame tidak terdeteksi, model menunjukkan akurasi tinggi dalam memprediksi viskositas dengan MAE sebesar 0,13, menjadikannya andal dan efisien untuk pengukuran viskositas dalam aplikasi industri dan laboratorium.

Viscosity measurement of liquid substances is an important aspect in various industries. The traditional method of measuring viscosity is by using a falling ball viscometer. However, this method has limitations in accurately determining the terminal velocity of the ball at a certain depth. In this research, the author designed a new approach that combines video processing technology with deep learning methods, specifically the You Only Look Once (YOLO) algorithm, to measure the viscosity of liquid substances efficiently and accurately. This approach allows viscosity measurement to be done using a simple camera, which automatically analyzes the movement of a marble falling in a fluid. The author trained a deep learning model using video datasets of the falling ball in a liquid captured directly using a smartphone camera, and demonstrated that this approach can produce accurate viscosity measurements with faster calculation time compared to using a falling ball viscometer. The experimental results demonstrated that the YOLO model accurately detected 11 objects out of 25 images with a precision of 0,99 and a consistent mAP50-95 score of 0,86. Applied to 7 video frames, it processed images quickly with times of 1,9 ms for preprocessing, 45,7 ms for inference, and 0,6 ms for post-processing. Despite some frames missing detections, the model achieved a high accuracy in predicting viscosity with a Mean Absolute Error (MAE) of 0,13, making it reliable for various industrial and laboratory applications."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>