Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 67599 dokumen yang sesuai dengan query
cover
Enrilla Bella Putri
"Sintesis pupuk cair nitrat melalui degradasi limbah cair amonia merupakan terobosan teknologi pengolahan limbah yang sangat menjanjikan karena dapat mengatasi permasalahan limbah yang mengandung amonia dan menghasilkan produk pupuk cair nitrat yang membantu memenuhi kebutuhan unsur hara tanaman yaitu nitrogen, dimana nitrogen sangat mudah diserap oleh tanaman dalam bentuk nitrat (NO3-). Tujuan dari penelitian ini yaitu untuk mengetahui pengaruh konsentrasi awal limbah, daya, laju injeksi udara, dan posisi pembentukan plasma terhadap degradasi limbah amonia, produksi nitrat, energi spesifik, dan ketergerusan anoda dengan metode elektrolisis plasma. Teknologi elektrolisis plasma dapat menghasilkan banyak radikal aktif OH sehingga efektif untuk mendegradasi berbagai komponen limbah dengan konsumsi energi yang lebih rendah. Alat yang digunakan dilengkapi dengan sistem pengontrolan otomatis untuk memudahkan pengontrolan dan mendapatkan hasil lebih akurat. Limbah yang digunakan yaitu limbah sintetis amonia dengan elektrolit KOH dan terdapat tambahan injeksi udara di zona plasma. Hasil tertinggi yang diperoleh dari penelitian ini dengan kondisi yaitu dilakukan pada plasma anodik, tegangan 950 V, arus 0,3 A, dan konsentrasi awal amonia 300 ppm. Hasil yang diperoleh yaitu degradasi amonia mencapai 57,23% atau 14,65 mmol dan energi spesifik sebesar 140,57 kJ/mmol, sedangkan untuk produksi nitrat mencapai 1334 ppm atau 27,97 mmol dan energi spesifik sebesar 55,03 kJ/mmol, dengan ketergerusan anoda yaitu 0,52 g.

The synthesis of liquid nitrate fertilizer through the degradation of ammonia liquid waste is a very promising breakthrough in waste treatment technology because it can overcome the problem of waste containing ammonia and produce nitrate liquid fertilizer products that help meet the needs of plant nutrients, namely nitrogen, where nitrogen is very easily absorbed by plants in the form of nitrate (NO3-). The purpose of this study was to determine the effect of initial effluent concentration, power, air injection rate, and plasma formation position on the degradation of ammonia effluent, nitrate production, specific energy, and anode erodibility by plasma electrolysis method. Plasma electrolysis technology can produce a lot of active OH radicals so it is effective for degrading various waste components with lower energy consumption. The tool used is equipped with an automatic control system to make it easier to control and get more accurate results. The waste used is ammonia synthetic waste with KOH electrolyte and there is additional air injection in the plasma zone. The highest results obtained from this study were carried out on anodic plasma, voltage of 950 V, current of 0.3 A, and initial concentration of ammonia at 300 ppm. The results obtained were ammonia degradation reached 57.23% or 14.65 mmol and specific energy was 140.57 kJ/mmol, while for nitrate production it reached 1334 ppm or 27.97 mmol and specific energy was 55.03 kJ/mmol, with anode erodibility of 0.52 g."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faishal Fakhri Muhtadi
"Limbah cair amonia merupakan salah satu polutan yang mencemari sungai. Salah satu sumber limbah cair amonia di sungai ialah dari perusahaan pupuk, salah satu contohnya adalah limbah dari PT. Pupuk Iskandar Muda (PT. PIM) Lhokseumawe sebesar 282,722 ppm, perlu dilakukan reduksi amonia agar tidak mencemari linkungan perairan. Teknologi elektrolisis plasma udara merupakan green technology yang dapat mendegradasi limbah amonia menjadi pupuk nitrat cair dengan dihasilkannya spesies unik yang bersifat reaktif, seperti radikal OH. Mekanisme degradasinya ialah limbah amonia tersebut akan teroksidasi menjadi pupuk nitrat cair oleh radikal OH yang dihasilkan dari elektrolisis plasma. Dengan menggunakan teknologi ini selain bisa mereduksi kadar amonia agar aman bagi lingkungan, bisa juga menjadikan limbah tersebut sebagai keuntungan karena dikonversi menjadi pupuk nitrat yang sangat bermanfaat bagi tanaman dan memiliki nilai jual di pasaran. Penelitian ini bertujuan untuk mengetahui proses degradasi limbah amonia dan sintesis pupuk nitrat cair melalui teknologi Air Plasma Electrolysis dengan pengaruh penambahan ion Fe2+, pH larutan, tegangan serta diameter anoda. Metode ini dilakukan pada reaktor batch menggunakan penambahan ion Fe2+ dengan variasi konsentrasi 10 ppm; 30 ppm; 50 ppm, pH larutan dengan variasi 9,3; 10,3; 11,3, tegangan operasi dengan variasi 850 V; 900 V; 950 V, dan diameter anoda dengan variasi 1 mm; 1,6 mm. Hasil penelitian pada kondisi maksimum yaitu degradasi limbah amonia sebesar 57,23% atau sebanyak 14,65 mmol amonia dan produksi nitrat yaitu 1334 ppm atau 27,97 mmol menggunakan larutan amonium sulfat 300 ppm, pH awal 11,3 pada daya 285 Watt, laju alir udara 1 lpm, diameter anoda 1,6 mm, suhu operasi 50 oC, kedalaman anoda 2,5 cm, penambahan ion Fe2+ 50 ppm serta dilakukan dalam waktu 90 menit.

Amonia liquid waste is one of the pollutants that pollute rivers. One source of amonia liquid waste in rivers is from fertilizer companies, one example is waste from PT. Iskandar Muda (PT. PIM) Lhokseumawe fertilizer is 282,722 ppm, it is necessary to reduce amonia so as not to pollute the aquatic environment. Air plasma electrolysis technology is a green technology that can degrade amonia waste into liquid nitrate fertilizer by producing unique reactive species, such as OH radicals. The degradation mechanism is that the amonia waste will be oxidized into liquid nitrate fertilizer by OH radicals generated from plasma electrolysis. By using this technology, besides being able to reduce amonia levels to be safe for the environment, it can also make the waste an advantage because it is converted into nitrate fertilizer which is very beneficial for plants and has a selling value in the market. This study aims to determine the process of degradation of amonia waste and the synthesis of liquid nitrate fertilizer through Air Plasma Electrolysis technology with the effect of adding Fe2+ ions, solution pH, voltage and anode diameter. This method was carried out in a batch reactor using the addition of Fe2+ ions with a concentration variation of 10 ppm; 30 ppm; 50 ppm, the pH of the solution with a variation of 9.3; 10.3; 11.3, operating voltage with a variation of 850 V; 900 V; 950 V, and anode diameter with a variation of 1 mm; 1.6 mm. The results of the study at the maximum condition that the degradation of amonia waste was 57.23% or as much as 14.65 mmol amonia and nitrate production was 1334 ppm or 27.97 mmol using a 300 ppm ammonium sulfate solution, initial pH 11.3 at 285 Watts, the rate of air flow 1 lpm, anode diameter of 1.6 mm, operating temperature 50 oC, anode depth of 2.5 cm, addition of 50 ppm Fe2+ ions and carried out within 90 minutes"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jessica Zivani Wahono
"Contact Glow Discharge Electrolysis (CGDE) atau teknologi elektrolisis plasma merupakan metode yang telah terbukti dalam mendegradasi limbah fenol secara efektif karena dapat memproduksi OH, H, dan spesi aktif lainnya dalam jumlah banyak. Penelitian ini bertujuan untuk memperoleh degradasi fenol secara efisien dengan penambahan injeksi udara secara langsung menuju anoda disertai dengan penambahan ion Fe. Karakterisasi arus-tegangan dalam reaktor CGDE diselidiki untuk memperkirakan kemungkinan daya listrik yang dapat digunakan untuk mendegradasi limbah fenol. Kondisi optimum yang didapat ditandai dengan besarnya produksi H O, persentase degradasi, dan energi.
Hasil percobaan menunjukkan bahwa setiap daya (500, 600, 700 watt) memiliki nilai optimal terhadap persentase degradasi. Kondisi optimal didapatkan pada daya 700 watt dengan laju injeksi udara 0,2 L min dan penambahan 20 mg L ion Fe. Setelah 30 menit pertama, persentase degradasi fenol yang diperoleh sebesar 79,25. Dengan kondisi yang sama, persentase degradasi fenol melonjak hingga 99,57 dengan penambahan 20 mg L ion Fe. Degradasi maksimum yang didapatkan adalah sebesar 99,89 setelah 90 menit. Nilai COD limbah fenol menurun dari 232,19 mg L menjadi 67 mg L setelah proses CGDE.

Contact glow discharge electrolysis (CGDE) or plasma electrolysis technology is a proven effective method of degrading such kind of waste because it can produce OH, H, and other active species in large quantities responsible for breaking down phenol structure. This study aims to obtain high efficiency phenol degradation using injection of air directly through anode and the presence of Fe ions. This research work presents the effect of the voltage to direct current connections in the CGDE reactor was investigated in order to estimate the possibilities for optimum electrical power on phenol degradation. In this research, production of hydrogen peroxide, percentage of phenol degradation, and energy consumption were used as main research indicators.
Experimental results show that each electrical power (500, 600, 700 watt) has an optimal value for the percentage of degradation. The optimal condition was found at 700 watt with the rate of air injection 0.2 L min and the addition of 20 mg L of Fe ions. After the first 30 minutes, the phenol degradation was valued at 79.25. Under the same conditions, with an addition of 20 mg L of Fe ions, the phenol degradation shot up to 99.57. Experimental results show that the largest phenol degradation was obtained at 99.89 after 90 minutes during the experiment. The COD value decreased from 232.19 mg L until 67 mg L after CDGE process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tulus Sukreni
"Proses elektrolisis plasma yang merupakan bagian dari Advanced Oxidation Process (AOP) sangat efektif digunakan untuk degradasi limbah pewarna tekstil. Energi yang dihasilkan selama proses tersebut dapat membentuk oksidan-oksidan yang sangat reaktif, terutama radikal hidroksil, yang dapat mendegradasi senyawa-senyawa dalam limbah pewarna tekstil. Namun, proses ini membutuhkan konsumsi energi yang tinggi untuk pembentukan plasma. Selain itu radikal hidroksil (●OH) yang dihasilkan merupakan oksidator yang bersifat non selektif. Oleh karena itu, untuk meningkatkan efisiensi proses, pada penelitian ini dilakukan variasi beberapa parameter yang berpengaruh terhadap proses elektrolisis plasma seperti konsentrasi dan suhu larutan, posisi kedalaman anoda, serta laju alir volume udara injeksi. Penambahan kedalaman posisi anoda dari 5 mm ke 65 mm menunjukkan peningkatan konsumsi energi sebesar 41,95%. Sementara injeksi udara dengan laju alir volume 6 L/menit dapat menurunkan energi pembentukan plasma sebesar 33,48% bila dibandingkan dengan energi pembentukan plasma tanpa injeksi udara. Variasi parameter-parameter tersebut juga berpengaruh terhadap produksi radikal hidroksil. Peningkatan jumlah radikal hidroksil diperoleh pada posisi anoda yang semakin dalam, serta laju alir udara yang rendah yaitu kurang dari 2 L/menit. Pada laju alir volume yang tinggi, penurunan konsumsi energi yang terjadi berdampak pada penurunan produksi radikal hidroksil dimana semakin tinggi laju injeksi udara, radikal hidroksil yang dihasilkan semakin rendah. Proses degradasi Remazol Red sebagai pewarna tekstil juga dipengaruhi oleh laju alir volume udara injeksi. Pada kondisi laju alir volume udara yang optimum, yaitu 0,05 L/menit, diperoleh degradasi pewarna tekstil sebesar 96,04%, meningkat 39,76% jika dibandingkan dengan proses degradasi tanpa injeksi udara.

The plasma electrolysis process which is part of the Advanced Oxidation Process (AOP) is effectively used for the degradation of textile dye waste. The energy generated during the process can form highly reactive oxidants, especially hydroxyl radicals, which can degrade the compounds in textile dye wastes. However, this process requires high energy consumption for plasma formation. In addition, the hydroxyl radicals (●OH) produced are non selective oxidizer. Therefore, to improve the efficiency of the process, the variation of several parameters in this research which influenced the plasma electrolytic processes were carried out such as concentration and temperature of the solution, the depth of the anode, and the volume flow rate of air injection. The addition of the anode position depth from 5 mm to 65 mm showed an increase in energy consumption of 41.95%. While air injection with a volume flow rate of 6 L/minute can reduce plasma formation energy by 33.48% when compared to the energy of plasma formation without air injection. The variation of these parameters also affected the production of hydroxyl radicals. Increasing the amount of hydroxyl radical was obtained at the anode deeper position and the lower air flow rate which was less than 2 L/minute. At a high volume flow rate, the decrease in energy consumption that occured impacted on the production of hydroxyl radicals in which the higher rate of air injection, hydroxyl radicals generated were lower. The degradation process of Remazol Red as a textile dye was also influenced by the flow rate of injected air. In condition of optimum air flow volume of 0.05 L/minute, textile dye degradation was 96.04%, increased by 39.76% compared to the degradation process without air injection.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2688
UI - Disertasi Membership  Universitas Indonesia Library
cover
Patresia Suryawinata Nagara
"Amonia diproduksi menggunakan proses Haber-Bosch yang menghasilkan emisi tinggi, maka diperlukan alternatif yang ramah lingkungan. Elektrolisis plasma dengan injeksi udara menghasilkan radikal •N melalui injeksi udara dan radikal •H dalam larutan elektrolit. Elektrolisis plasma juga membentuk nitrat karena radikal •OH akibat keberadaan oksigen dalam udara. Penelitian ini bertujuan untuk mengetahui pengaruh pemilihan plasma anodik dan katodik, keberadaan gas oksigen, laju alir injeksi udara, dan pH awal larutan dalam reaktor serta trap cell terhadap produksi amonium dan nitrat dengan teknologi elektrolisis plasma. Penelitian ini menggunakan aditif metanol, elektrolit Na2SO4 dengan konsentrasi 0,02 M, dan sebuah penangkap gas. Hasil produksi amonium dan nitrat diukur konsentrasinya dengan metode spektroskopi UV-Vis. Penelitian ini menghasilkan amonium terbanyak menggunakan elektrolisis plasma katodik (550 V), laju alir udara 0,8 lpm, dan pH awal larutan elektrolit dan trap cell sebesar 3. Kondisi tersebut memproduksi 2,57 mmol amonium, 10,94 mmol nitrat, energi spesifik 578,6 kJ/mmol, dan ketergerusan elektroda sebesar 0,27 gram.

Ammonia is produced using Haber-Bosch process which produces high emissions, so an environmentally friendly alternative is needed. Air plasma electrolysis produces •N radicals through air injection and •H radicals in an electrolyte solution. Plasma electrolysis forms nitrate because •OH radicals due to the oxygen presence in the air. This study aims to determine the effect of anodic and cathodic plasma selection, the presence of oxygen gas, air injection flow rate, and initial pH of electrolyte solution and trap cell solution to the ammonium and nitrate production using plasma electrolysis. This study uses methanol additive, Na2SO4 electrolyte with concentration of 0.02 M, and a trap cell. Produced ammonium and nitrate concentration was measured using UV-Vis spectrophotometer. This study produced highest ammonium using cathodic plasma electrolysis (550 V), air flow rate of 0.8 lpm, and initial pH of electrolyte solution and trap cell of 3. These conditions produced 2.57 mmol ammonium, 10.94 mmol nitrate, specific energy 578.6 kJ/mmol, and electrode erodibility of 0.27 gram."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rafi Hayudo
"Teknologi elektrolisis plasma sudah banyak dibuktikan efektif mendegradasi limbah pewarna tekstil karena kemampuannya menghasilkan radikal hidroksil dalam jumlah yang besar dan menghasilkan pupuk nitrat cair dengan memanfaatkan gas nitrogen dan oksigen yang diinjeksikan dari udara. Penelitian ini bertujuan menguji kemampuan metode elektrolisis plasma dalam mendegradasi limbah salah satu pewarna tekstil, yaitu Remazol Brilliant Blue sekaligus secara simultan mensintesis pupuk nitrat cair pada tegangan tinggi. Penelitian dilakukan dengan membangkitkan plasma dengan katoda stainless steel dan anoda tungsten yang tercelup sedalam 2 cm di larutan K2SO4 serta pewarna remazol brilliant blue dalam reaktor sirkulasi internal dengan volume 1,2 L. Metode ini dilakukan pada reaktor batch menggunakan variasi konsentrasi limbah 100 ppm, 200 ppm, 300 ppm, tegangan 800 V, 900 V, 1000 V, 1100 V, suhu 50 oC, 60 oC, 70 oC, serta diameter elektroda 1 mm; 1,6 mm; dan 2,4 mm. Hasil optimum baik dari segi degradasi maupun konsentrasi nitrat terbentuk didapatkan pada tegangan 1100 V, suhu 60 oC, diameter elektroda 2,4 mm dan konsentrasi limbah 100 ppm. Uji COD menunjukkan nilai sebesar 16,65 mg/L dan dampak persentase ketergerusan tertinggi disebabkan oleh penurunan diameter elektroda.

Plasma Electrolysis Technology has been proven to be effective on textile dye waste degradation due to its ability to produce large amounts of hydroxyl radicals. and producing liquid nitrate fertilizer by utilizing nitrogen gas and oxygen injected from the air. This research aims to test the ability of plasma electrolysis methods to degrade the waste of one textile dye, namely Remazol Brilliant Blue, and the simultaneous synthesis of nitrate liquid fertilizer at a high voltage. The study was conducted by generating plasma with stainless steel cathodes and tungsten anodes dyed as deep as 2 cm in electrolyte solutions of K2SO4 and remazol brilliant blue dye in internal circulation reactors with a 1,2 L volume. This method is carried out on batch reactors using variations in waste concentrations of 100 ppm, 200 ppm, 300 ppm, voltage of 800 V, 900 V, 1000 V, and 1100 V, temperature of 50 oC, 60 oC, and 70 oC, and also electrode diameter variations of 1 mm; 1.6 mm; and 2.4 mm. The optimum results on the degradation and nitrate production side are 1100 V of voltage, 60 oC of temperature, 2.4 mm of electrode diameter and 100 ppm of waste concentrations. The COD test showed a value of 16.65 mg/L and the highest effect of electrode’s erosion percentages is caused by electrode diameter reduction."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Leoreza Haroen
"Amonia dan nitrat merupakan senyawa yang banyak digunakan dalam berbagai industri. Elektrolisis plasma merupakan salah satu metode sintesis amonia dan nitrat yang menjanjikan karena memiliki kelebihan yaitu tidak menghasilkan emisi. Penelitian ini bertujuan untuk mengetahui bagaimana pengaruh bahan elektroda, laju alir udara, pH dan efek aditif metanol terhadap sintesis amonia nitrat melalui proses elektrolisis plasma. Penelitian dilakukan dengan reaktor 1,2 L dan trap cell 500 ml menggunakan variasi bahan elektroda stainless steel dan tungsten, laju injeksi udara 0,4 lpm, 0,6 lpm, 0,8 lpm, dan 1 lpm, variasi pH larutan reaktor 3, 3,5, dan 4 serta penambahan aditif metanol 0%v/v dan 4%v/v dengan elektrolit K2SO4 0,02 M.  Pada penelitian ini, didapatkan hasil nitrat dan ketahanan erosi yang lebih baik oleh elektroda stainless steel dibandingkan tungsten yaitu 4,9 mmol nitrat dan 0,12 gram dalam waktu 30 menit. Laju alir injeksi udara didapatkan titik optimum untuk produksi amonia adalah 0,6 lpm sedangkan untuk nitrat 0,8 lpm, pH larutan reaktor yang semakin asam menghasilkan amonia yang lebih besar sedangkan untuk nitrat memiliki titik optimum di pH 3,5, dan penambahan aditif metanol menghasilkan amonia yang lebih besar sedangkan nitrat yang terproduksi menurun.

Ammonia and nitrate is a compound that is widely used in various industries. Plasma electrolysis is a promising method of ammonia and nitrate synthesis because it has the advantage of not producing emissions. This study aims to determine how the effect of electrode material, air flow rate, pH and methanol additive effect on the synthesis of ammonia nitrate through plasma electrolysis process. The study was conducted with a 1.2 L reactor and a 500 ml trap cell using a variety of stainless steel and tungsten electrode materials, air injection rates of 0.4 lpm, 0.6 lpm, 0.8 lpm and 1 lpm, variations in reactor solution pH 3, 3.5, and 4 as well as the addition of 0%v/v and 4%v/v methanol additives with 0.02 M K2SO4 electrolyte. In this study, the results of nitrate and erosion resistance were better by stainless steel electrodes than tungsten, namely 4.9 mmol nitrate and 0.12 gram in 30 minutes. The air injection flow rate obtained the optimum point for ammonia production was 0.6 lpm while for nitrate 0.8 lpm, the more acidic the pH of the reactor solution, the greater the ammonia while for nitrate it had an optimum point at pH 3.5, and the addition of methanol additives produced ammonia which is greater while the nitrate produced decreases."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sumingkrat
"Pembangunan sektor industri memberikan nilai tambah pada devisa negara, namun jika limbah yang dihasilkan tidak dikelola dengan baik maka akan menimbulkan dampak negatif. Permasalahan sektor industri, sub sektor pembinaan industri adalah semakin banyak industri penghasil limbah B3, maka semakin meningkat pula volume limbah bahan berbahaya dan beracun (B3).
Permasalahan lingkungan dari limbah adalah bila limbah dibuang langsung ke lingkungan tanpa diolah terlebih dahulu, dapat menimbulkan bahaya terhadap lingkungan hidup. Untuk mengurangi risiko yang dapat ditimbulkannya, maka harus dikelola secara khusus antara lain pengolahan dan penimbunan hasil pengolahan tersebut. Limbah padat (cake) industri pelapisan logam mengandung konsentrasi logam berat antara lain chromium, yang berbahaya bagi kesehatan manusia serta mahluk hidup lainnya. Sesuai dengan PP No. 18 Tahun 1999 Jo. PP No. 85 Tabun 1999 tentang Pengelolaan Limbah Bahan Berbahaya Dan Beracun (B3) dan cara penimbunannya menurut Keputusan Kepala Bapedal No:Kep-041Bapedal/0911995 harus ditimbun pada landfill kategori I.
Untuk mengelola limbah B3 tersebut memang diperlukan biaya yang tinggi. Terlebih apabila mengingat tempat penimbunan limbah yang resmi memiliki ijin dari Bapedal masih sedikit, maka perlu upaya pengolahan limbah B3 dengan melakukan uji eksperimentasi. Uji tersebut dapat dilakukan dengan mengubah tipe kategori landfill yang ada untuk menjawab kemungkinan penggunaan kategori landfill yang berbeda.
Landfill kategori I (Secure Landfill Double Liner) adalah landfill yang mempunyai 2 lapisan geomembran dan terdiri dari 8 lapisan, sedangkan landfill kategori III (Landfill Clay Liner) adalah landfill dengan lapisan tanah liat dan terdiri dari 6 lapisan. Landfill yang dirancang di dalam alat simulasi terdiri dari 6 lapisan dengan bahan pengikat kapur dan semen.
Penelitian ini bertujuan untuk mengetahui dan memecahkan permasalahan yang berhubungan dengan pencemaran limbah padat (cake) industri pelapisan logam terhadap lingkungan pada skala alat simulasi. Untuk mengetahui apakah landfill kategori III yang dirancang dapat untuk mengelola limbah padat (cake) industri pelapisan logam. Hal tersebut termasuk untuk mengetahui peranan kapur dan se ffb men sebagai bahan pengikat limbah, peranan tanah liat dengan K= 10-9 m/detik yang dibuat sebagai lapisan landfill dalam mengantisipasi kandungan logam berat chromium agar tidak leachate keluar dari alai simulasi.
Metode penelitian yang digunakan dalam penelitian ini adalah metode penelitian eksperimen laboratorium. Hasil dan kesimpulan yang didapatkan dari metode eksperimental ini dianalisis dengan analisis tabel (face validity). Penelitian eksperimental ini dilaksanakan di dalam laboratorium kimia dan teknik sipil dengan ketentuan pelaksanaan pengujian sesuai standar uji standard American Society for Testing and Materials (ASTM), Japan Institute Standard PIS) dan metode uji Atomic Absorption Spectrophotometer (AAS). Sedangkan peraturan perlindungan kesehatan dan keselamatan kerja yang dipakai adalah Sistem Manajemen Keselamatan dan Kesehatan Kerja (SMK3) Permenaker.
Berdasarkan pembahasan hasil eksperimen di laboratorium dan pengamatan rentang waktu empat bulan dapat disampaikan kesimpulan sebagai berikut :
1. Pada lapisan landfill kategori III modifikasi awal (kontrol) dengan skala 1:10, masih terdapat leachate logam berat chromium dari limbah padat (cake) industri pelapisan logam sebesar 0,278 ppm.
2. Semen dapat menahan leachate logam berat chromium di dalam limbah padat (cake) industri pelapisan logam sebesar 155.65% (maksimum 300%).
3. Pada lapisan landfill kategori III yang dirancang dengan skala 1:10, dapat menahan leachate logam berat chromium:
Untuk tipe landfill K, sebesar 0,183ppm,
Untuk tipe landfill S1, sebesar 0,145ppm,
Untuk tipe landfill S2, sebesar 0,1 13ppm,
Saran yang dapat disampaikan dari hasil penelitian ini adalah :
1. Mengingat penelitian ini merupakan studi awal exploratif yang dilakukan dalam kondisi keterbatasan waktu dan dana, maka perlu dilakukan penelitian lanjutan. Penelitian tersebut dapat dilakukan dengan metode yang sama, tetapi dengan jumlah ulangan dan berat sampel yang sesuai, sehingga dapat diperoleh data yang cukup banyak untuk dapat dilanalisis dengan metode statistik Anova.
2. Sebaiknya dibuat kurva standard logam chromium dari limbah padat (cake) industri pelapisan logam dengan kadar logam berat chromium yang berbeda.
3. Perlu ditinjau kemampuan para pelaku industri pelapisan logam dalam mengimplementasikan hasil penelitian ini, apakah visibel secara ekonomis.

The development in the industrial sector has contributed in providing added value to the national revenue, if the waste produced is not managed will result in adverse impacts. Problems faced within the industrial sector, i.e. within the industrial management sub-sector, is the increasing number of industries producing hazardous waste (B3) resulting in the accumulated volume of hazardous waste (B3).
The main problems of environmental waste are the absence of treatment to waste prior to it being discharged directly to the environment which threatens the environment and humans. To reduce the risk, the waste would have to be specially treated by process and as well as by land filling of the processed products.
Solid waste (cake) from metal plating industries contains heavy metal such as chromium which endangers human health as well as other forms of living organism. Based on government regulation No. 18/1999 followed by Government Regulation No. 85/1999 on the Management Hazardous Waste and the Decree of the Head of Bapedal No.: Kep-04/Bapedal/09/1995 on Means of Disposal, the waste should be treated in Landfill Category I.
Treatment of such waste will require heavy funding especially if the legally assigned landfill location assigned by Bapedal is still limited. Hence, the processing of hazardous waste must be carried out by ffb experimental test. The test would be carried out by changing the existing landfill category type to probe the possibility of using various landfill categories.
Landfill Category I (Secure Landfill Double Liner) is a landfill composed of 8 layers having 2 geo-membrane layers whereas Landfill Category III (Landfill Clay Liner) is a landfill having 6 layers of clay. The landfill is designed in a simulation device consisting of 6 layers with a binding substance of lime and cement.
The research aims at understanding and solving the problems related with the pollution of solid waste (cake) from metal plating industries to the environment at the simulation scale to find out whether the designed Landfill Category III could manage the solid waste (cake) from metal plating industries. The research aims at assessing the role of lime and cement as a waste binding agent and the role of clay with K=10-9 m/s used as the landfill layer to avoid the leachate of the heavy metal chromium from the simulation device.
A laboratory experimental research method was used. The results and conclusion derived from the experimental mode is analyzed using table analysis (face validity). The experimental research was carried out in a chemical and technical laboratory using testing procedures following standards set by the American Society for Testing and Materials (ASTM), Japan Institute Standar (JIS) and testing methods of the Atomic Absorption Spectrophotometer (AAS). The regulation for environmental protection and work safety used is the Safety and Health Management System (SMK3) decree from the Minister of Labor.
Based on experimental results in the laboratory and 4 month observations it was concluded:
1. Primary modification on Landfill Category III (control with scale 1:10), the chromium heavy metal from the solid waste (cake) leachate of the metal plating industry was 0,278 ppm;
2. Cement can hold the leachate of chromium heavy metal in the solid waste (cake) of metal plating industry by 155,65% (maximum 300%);
3. The amount of chromium heavy metal leachate produced by solid waste (cake) from metal plating industries at the designed level of landfill scale 1:10 are as follows:
a. Landfill Type K = 0,183 ppm,
b. Landfill Type Si= 0,145 ppm,
c. Landfill Type 52= 0,113 ppm
This research gives suggestions as follows:
1. This is an explorative preliminary research as limited and funding, so it is needed a further research. In order to do Anova statistic analysis, it is needed to do the same methodology with the number of replication and weight of samples appropriately.
2. It is better for the further research to make standard curve of chromium from cake of metal plating industry with different concentration of chromium.
3. A study of the ability of metal plating industry actors to implement this research is needed to know the economics visibility of this method.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 2001
T8563
UI - Tesis Membership  Universitas Indonesia Library
cover
Ardiansah
"Nitrogen adalah unsur terpenting bagi tanaman untuk hidup, dan hanya dapat diserap oleh tanaman dalam bentuk yang lebih sederhana, yaitu nitrat. Elektrolisis Plasma adalah teknologi untuk sintesis material baru yang spesies reaktif seperti radikal hidroksil yang dapat menginisiasi berbagai reaksi, termasuk reaksi fiksasi nitrogen dari udara menjadi pupuk cair nitrat, yang merupakan pupuk cair untuk tanaman.
Penelitian ini bertujuan untuk mengetahui bagaimana nitrat dapat dibentuk melalui proses Elektrolisis Plasma dan pengaruh konsentrasi elektrolit, laju alir udara, dan efek penambahan ion Fe2+. Penelitian ini dilakukan pada reaktor batch menggunakan elektrolit K2SO4 dengan konsentrasi 0,01 M; 0,02 M; 0,04 M, laju alir udara 0,1 lpm; 0,2 lpm; 0,8 lpm, dan penambahan 50 ppm ion Fe2+. Proses dilakukan pada daya optimal yang diperoleh dari hasil karakterisasi arus-tegangan. Konsentrasi nitrat yang terbentuk diuji secara kuantitatif menggunakan metode spektrofotometri UV-Vis.
Hasil penelitian ini menunjukkan bahwa semakin besar konsentrasi elektrolit dan semakin besar laju alir udara akan meningkatkan produktivitas nitrat. Sementara itu penambahan ion Fe2+ membuat nitrat yang dihasilkan berkurang. Konsumsi energi spesifik yang diperlukan dari setiap variasi berkurang seiring dengan meningkatnya jumlah nitrat. Nitrat tertinggi yang terbentuk adalah 636,8 ppm pada konsentrasi 0,02 M K2SO4, laju alir udara 0,8 lpm, tanpa penambahan ion Fe2+. Konsumsi energi spesifiknya adalah 35,06 kJ/mmol. Hasil ini menunjukkan bahwa nitrat dapat diproduksi secara efektif dengan metode Elektrolisis Plasma.

Nitrogen is the important element for plants to live, and it just can be absorbed by plants in the simpler compounds form, which is nitrate. Contact Glow Discharge Electrolysis (CGDE) is a technology for the synthesis of new materials with the reactive species such as hydroxyl radicals are produced, including fixation of nitrogen from the air into nitrate solutions, which is the liquid fertilizer for plants.
This research aims to determine how the nitrate can be formed through CGDE process and the influence of potassium sulfate concentration, air flow rate, and the Fe2+ ion effect. This research was conducted in a batch reactor using K2SO4 electrolyte with a concentration of 0.01 M; 0.02 M; 0.04 M. air flow rate of 0,1 lpm; 0,2 lpm; 0,8 lpm, and the adding of 50 ppm Fe2+. The process is carried out at optimum power obtained from the results of plasma electrolysis current-voltage characterization. The concentration of nitrate formed was tested quantitatively using the UV-Vis spectrophotometry method.
The results of this research show that the greater the concentration of electrolytes and the greater air flow rate increase the nitrate productivity. Meanwhile the adding Fe2+ make the nitrate produced decrease. The specific energy consumption needed of each variation is decrease with the increase of nitrate amount. Highest nitrate formed is 636,8 ppm at 0,02 M K2SO4 concentration, 0,8 lpm air flow rate, without adding the Fe2+. Its specific energy consumption is 35,06 kJ/mmol. These results indicate that nitrates can be produced effectively by the CGDE method.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diva Rizka Zahrani Maulana
"Tanaman dapat menyerap nitrogen secara efisien jika berbentuk nitrogen terfiksasi, seperti nitrat dan ammonia dalam pupuk. Air Plasma Electrolysis dapat dimanfaatkan dalam produksi pupuk nitrat cair dengan menggunakan bahan baku udara yang diinjeksikan melalui katoda menuju zona plasma. Penelitian ini bertujuan untuk memperoleh produk pupuk nitrat cair yang optimum dari prototipe alat produksi pupuk nitrat cair dengan injeksi udara di katoda dan mendapatkan kondisi operasinya. Penelitian ini dilakukan dalam reaktor batch, dengan variasi daya (400, 500, 600 Watt), laju alir udara (0; 0,4; 0,6; 0,8; 1; 1,2 lpm), jarak antara anoda (zona plasma) dengan injektor katoda (1 cm, 2 cm, 3 cm), variasi komposisi konsentrasi elektrolit (0,01 M K2HPO4/0,006 M K2SO4; 0,011 M K2HPO4/0,007 M K2SO4; 0,018 M K2HPO4/0,007 M K2SO4; 0,011 M K2HPO4/0,008 M K2SO4; dan 0,018 M K2HPO4/0,008 M K2SO4), suhu operasi (25 oC – 50 oC dan 50 oC), dan penambahan aditif Fe2+ (10 ppm, 20 ppm, 30 ppm). Produksi nitrat optimum sebesar 1727,2 ppm dengan energi spesifik sebesar 5,82 kJ/mmol, ketergerusan anoda sebesar 0,06 g, dalam waktu operasi 90 menit, pada daya 600 watt, laju alir udara 0,8 lpm, jarak antara anoda (zona plasma) dan injektor udara katoda sebesar 2 cm, menggunakan larutan elektrolit 0,007 M K₂SO₄ dan 0,011 M KH₂PO₄, dengan penambahan aditif ion Fe²⁺ sebesar 30 ppm, dan penggunaan elektroda Stainless Steel-316 (SS-316).

Plants can efficiently absorb nitrogen when it is in a fixed form, such as nitrate and ammonia in fertilizers. Air Plasma Electrolysis can be utilized in the production of liquid nitrate fertilizer using air injected through the cathode into the plasma zone. This study aims to obtain an optimum liquid nitrate fertilizer product from a prototype nitrate fertilizer production device with air injection at the cathode and to determine its operating conditions. The research is conducted in a batch reactor, with variations in power (400, 500, 600 watts), air flow rate (0; 0.4; 0.6; 0.8; 1; 1.2 lpm), distance between the anode (plasma zone) and cathode injector (1 cm, 2 cm, 3 cm), electrolyte composition (0.01 M K2HPO4/0.006 M K2SO4; 0.011 M K2HPO4/0.007 M K2SO4; 0.018 M K2HPO4/0.007 M K2SO4; 0.011 M K2HPO4/0.008 M K2SO4; and 0.018 M K2HPO4/0.008 M K2SO4), operating temperature (25°C – 50°C and 50°C), and the addition of Fe²⁺ additive (10 ppm, 20 ppm, 30 ppm). The optimum nitrate production is 1727.2 ppm with a specific energy of 5.82 kJ/mmol, anode erosion of 0.06 g, within an operating time of 90 minutes, at a power of 600 watts, air flow rate of 0.8 lpm, a distance between the anode (plasma zone) and cathode air injector of 2 cm, using an electrolyte solution of 0.007 M K₂SO₄ and 0.011 M KH₂PO₄, with the addition of Fe²⁺ ion additive at 30 ppm, and using Stainless Steel-316 (SS-316) electrodes."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>