Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 135406 dokumen yang sesuai dengan query
cover
Hazel Raditya Mizumareru
"Pada beberapa tahun kebelakang perkembangan bidang machine learning telah mengalami kemajuan yang pesan dari berbagai domain dimana dibutuhkan sistem otomasi. Hal ini membuat model yang advanced seperti Deep Convolutional Neural Network dapat mencapai performa yang baik dalam melakukan klasifikasi, identifikasi objek hingga bahkan melebihi kemampuan manusia dalam beberapa domain. Salah satu aplikasi dari perkembangan ini adalah klasifikasi gambar terutama pada bidang medis misalnya pada klasifikasi paru-paru. Belakangan ini pandemi COVID-19 menjadi peristiwa yang cukup berdampak kepada dunia medis. Machine learning dapat membantu proses penanganan pandemi COVID-19 terutama dalam klasifikasi jenis penyakit pada paru-paru. Pada penelitian ini digunakan dataset hasil x-ray paru-paru COVID-19 radiography yang dibuat oleh kelompok riset dari Qatar. Pada dataset ini terdapat 4 kelas label yaitu paru-paru normal, Covid, Lung Opacity dan Viral Pneumonia yang akan diklasifikasi menggunakan model CNN berbasis transfer learning. Model yang digunakan pada penelitian ini adalah MobileNetV2 dan EfficientNetB6. Kemudian dilakukan penanganan imbalanced data dengan menggunakan metode upweighting, downsampling dan class weighting untuk mengangani dataset yang tidak rata. Didapatkan hasil klasifikasi terbaik dari model EfficientNetB6 dengan skema training 60: validasi 40 dengan akurasi 96.74%. Sedangkan untuk  model MobileNetV2 didapat hasil klasifikasi terbaik dengan skema training 60: validasi 40 dengan akurasi 94.28 %.  

Messages from various domains where automation systems are required have been incorporated into the machine learning field's development over the last few years. This enables sophisticated models, like Deep Convolutional Neural Networks, to perform well in classifying and object identification—even outperforming human capabilities in some cases. One use for this technology is image classification, particularly in the medical industry where the classification of the lungs is one example. A significant impact on the medical community has recently been caused by the COVID-19 pandemic. Machine learning can aid in the management of the COVID-19 pandemic, particularly in the classification of different lung disease types. Four label classes—normal lungs, Covid, lung opacity, and viral pneumonia—are present in this dataset and will be identified using a transfer learning-based CNN model. MobileNetV2 and EfficientNetB6 are the models that were used in this study. The EfficientNetB6 model, which had a training scheme of 60: 40 validation and an accuracy of 96.74 percent, produced the best classification results. The best classification outcomes for the MobileNetV2 model, meanwhile, were achieved with a training scheme of 60: 40 validation and an accuracy of 94.28 percent.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasnan Fiqih
"Hampir separuh dunia bergantung pada makanan yang berasal dari laut sebagai sumber protein utama. Di Pasifik Barat dan Tengah 60% dari ikan tuna ditangkap secara illegal, tidak dilaporkan, dan tidak diatur dengan regulasi dapat mengancam ekosistem laut, pasokan ikan global, dan mata pencaharian lokal. Salah satu solusi yang dapat dilakukan adalah dengan menggunakan kamera keamanan untuk menangkap gambar aktivitas kapal. Pada penelitian ini akan dibuat sistem untuk mengklasifikasi jenis ikan yang ditangkap dari gambar kamera keamanan kapal tersebut. Sistem ini menggunakan model transfer learning yang sudah dilakukan fine tuning dan dilatih menggunakan dataset yang disediakan oleh The Nature Conservancy. Dari penelitian ini didapatkan performa terbaik dengan akurasi 98.19% menggunakan model EfficientNetV2L dan optimizer Stochastic Gradient Descent (SGD) dengan learning rate 1e-4, momentum 0.9, weight decay 1e-6, dan split ratio training testing 80/20. Dengan sistem ini pengolahan data untuk menghitung jumlah penangkapan ikan berdasarkan spesies akan lebih efisien.

Almost half of the world depends on food that comes from the sea as the main source of protein. In the West and Central Pacific 60% of tuna fish are caught illegally, unreported and unregulated, threatening marine ecosystems, global fish supplies and local livelihoods. One possible solution is to use a security camera to capture images of ship activity. In this study a system will be created to classify the types of fish caught from the ship's security camera images. This system uses a transfer learning model that has been fine tuned and trained using the dataset provided by The Nature Conservancy. From this study, the best performance was obtained with an accuracy of 98.19% using the EfficientNetV2L model and the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 1e-4, momentum of 0.9, weight decay of 1e-6, and split ratio training testing of 80/20. With this system, data processing to calculate the amount of fish caught by species will be more efficient.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Josh Frederich
"Diagnosis otomatis kanker kulit dari lesi kulit dengan menggunakan gambar dermoskopi masih merupakan tugas yang menantang bagi kecerdasan buatan khususnya pada Artificial Neural Network dengan menggunakan deep learning. Penggunaan arsitektur yang tepat pada klasifikasi merupakan faktor penting dalam membuat diagnosis otomatis yang akurat. Meski demikian, model-model klasifikasi yang sudah terbuat tersebut masih belum dapat sempurna melakukan kategorisasi pada penyakit lesi kulit. Pada riset ini dilakukan penggantian arsitektur model klasifikasi yang digunakan dengan menggunakan arsitektur terbaru seperti EfficientNet B0 dan B1. Model EfficientNet B0 terbaik dengan menggunakan augmentasi saja memiliki akurasi, presisi, recall, dan f1-score sebesar 91%, 76%, 68%, dan 71% sedangkan EfficientNet B1 terbaik dengan menggunakan augmentasi dan class weight memiliki akurasi, presisi, recall, dan f1-score sebesar masing-masing 89%, 78%, 73%, dan 73%. Model EfficientNet B1 terbaik tersebut dapat mengungguli model state of the art yang ada dengan kenaikan recall dan f1-score sebesar 2% dan 12% dari model semi-supervised. Model juga dapat diimplementasikan dengan graphical user interface sehingga dapat digunakan oleh dokter spesialis kulit dalam pemeriksaan dermoskopi.
Automatic diagnosis of skin cancer from skin lesions using dermoscopy images is still a challenging task for artificial intelligence, especially in Artificial Neural Networks using deep learning. The use of the correct architecture in the classification is an important factor in making an accurate automatic diagnosis. However, the classification models that have been made are still not able to perfectly categorize skin lesions. In this research, a replacement of the classification model architecture used by using the latest architectures such as the EfficientNet B0 and B1 was conducted. The best EfficientNet B0 model that only used augmentation has the accuracy, precision, recall, and f1-scores of 91%, 76%, 68%, and 71% while the best EfficientNet B1 that used augmentation and class weights has the accuracy, precision, recall, and f1-score of 89%, 78%, 73%, and 73%, respectively. The best EfficientNet B1 model can outperform the existing state of the art model with an increase in recall and f1-score by 2% and 12% from the semi-supervised model, respectively. The model can also be implemented with a graphical user interface so that dermatologist can use it in dermoscopy examinations."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajar Indah Fitriasari
"Pencitraan 'X-ray' dapat digunakan sebagai alternatif penunjang diagnostik klinis untuk mendeteksi penyakit COVID-19 pada paru-paru pasien. 'Machine learning' atau 'Deep Learning' akan disematkan pada 'computer-aided-diagnosis' (CAD) untuk meningkatkan efisiensi dan akurasi dalam menangani permasalahan membedakan COVID-19 dengan penyakit lain yang memiliki karakteristik yang serupa. Beberapa sistem kecerdasan buatan berbasis 'Convolutional Neural Network' (CNN) pada penelitian sebelumnya, memiliki akurasi yang menjanjikan dalam mendeteksi COVID-19 menggunakan citra 'X-ray' rongga dada. Dalam penelitian ini, dikembangkan 'classifier' berbasis CNN dengan teknik 'transfer learning', yakni memanfaatkan model CNN pra-terlatih dari ImageNet bernama Xception dan ResNet50V2 yang dikombinasikan agar sistem menjadi lebih akurat dalam kemampuan ekstraksi fitur untuk mendeteksi COVID-19 melalui citra 'X-ray' rongga dada. 'Classifier' yang dikembangkan terdiri dari 2 jenis, yakni 'classifier' yang disusun secara serial dan paralel. Pengujian dilakukan dalam 2 skenario berbeda. Pada skenario 1, digunakan 'dataset' dan pengaturan parameter yang mengacu pada penelitian sebelumnya, sedangkan skenario 2 dilakukan dengan menambahkan sejumlah citra kedalam 'dataset' baru serta pengaturan parameter yang berbeda untuk memperoleh peningkatan akurasi. Dari pengujian untuk kelas COVID-19 pada skenario 1, diperoleh 'classifier' paralel berhasil menggungguli 'classifier' lain dengan mencapai akurasi rata-rata 93,412% serta memperoleh 'precision', 'recall,' dan 'f1-score' masing – masing mencapai 96.8%, 99.6% dan 98%. Pada skenario 2, 'classifier' paralel mencapai akurasi rata-rata yang lebih tinggi, yakni mencapai 96,678% serta memperoleh 'precision', 'recall,' dan 'f1-score' yang cukup tinggi pula, yakni masing – masing mencapai 98.8%, 99.8% dan 99.4% untuk kelas COVID-19. Adanya penambahan jumlah 'dataset' pada skenario 2 dapat meningkatkan akurasi dari 'classifier' yang dikembangkan. Secara keseluruhan, 'classifier' paralel yang dikembangkan dapat direkomendasikan menjadi alat yang dapat membantu praktisi klinis dan ahli radiologi untuk membantu mereka dalam diagnosis, kuantifikasi, dan tindak lanjut kasus COVID-19.

X-ray imaging can be used as an alternative support clinical diagnostics to detect COVID-19 in the patient's lungs. Machine learning or Deep Learning will be embedded in computer-aided diagnosis (CAD) to increase efficiency and accuracy in dealing with problems distinguishing COVID-19 from other diseases that have similar characteristics. Several artificial intelligence systems based on the Convolutional Neural Network (CNN) in previous studies have promising accuracy in detecting COVID-19 using Chest X-ray images. In this study, a CNN-based classifier with transfer learning techniques was developed, which utilizes a pre-trained CNN model from ImageNet named Xception and ResNet50V2 combined that makes the system powerful using multiple feature extraction capabilities to detect COVID-19 through Chest X-ray images. There are 2 types of classifiers developed, classifiers arranged in serial and parallel. The testing in this study was carried out in two different scenarios. In the scenario 1, the dataset and parameter settings are used referring to previous studies, while the scenario 2 was carried out by adding several images to the new dataset and setting different parameters to obtain increased accuracy. From testing of the COVID-19 class in the scenario 1, the parallel classifier succeeded in outperforming other classifiers by achieving an average accuracy in 93.412% and also obtains precision, recall and f1-score, which reached 96.8%, 99.6%, and 98% respectively. In the scenario 2, the parallel classifier achieved a higher average accuracy of 96.678%, and also obtained quite high precision, recall and f1-score, which reached 98.8%, 99.8% and 99.4% for the COVID-19 class, respectively. The addition of the number of datasets in scenario 2 can increase the accuracy of the developed classifier. Overall, the developed parallel classifier can be recommended as a tool that can help clinical practitioners and radiologists to aid them in diagnosis, quantification, and follow-up of COVID-19 cases."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Jeremy Filbert Baskoro
"Perkembangan dari variasi modulasi menjadi semakin maju dan kompleks, terutama pada kondisi signal-to-noise ratio (SNR) rendah, sehingga dibutuhkan algoritma klasifikasi secara otomatis yang dapat diandalkan. Pada penelitian ini, penulis memodelkan sebuah arsitektur deep learning baru yang terdiri dari convolutional neural network (CNN) untuk mengekstrak karakteristik spatial, recurrent neural network (RNN) untuk mengekstrak karakteristik temporal, dan dense neural network (DNN) untuk mengekstrak fitur untuk diklasifikasikan pada kondisi SNR rendah. Model yang ditawarkan mengimplementasikan input multi-channel untuk mengekstrak sinyal termodulasi in-phase dan quadrature, serta menggunakan urutan RNN long-short term memory dan gated recurrent unit (LSTM-GRU) untuk meningkatkan keakuratan klasifikasi. Dari eksperimen yang dilakukan, model yang diusulkan memiliki keakuratan yang lebih baik pada modulasi QAM16, QAM64, dan QPSK dibandingkan dengan model state-of-the-art yang lain dengan rata-rata akurasi yang didapatkan adalah sebesar 61.46% pada SNR rendah menggunakan dataset RadioML 2016.10A.

The development of modulation variation is more advanced and more complex, especially on low signal-to-noise ratio (SNR) condition, resulting a reliable automatic modulation classification algorithm is required. In this research, we introduced a deep learning architecture consisting of convolutional neural network (CNN) to extract spatial characteristics, recurrent neural network (RNN) to extract temporal characteristics, and dense neural network (DNN) to extract feature for low SNR condition recognition. The proposed model implements multi-channel input of in-phase and quadrature modulated signal along with RNN sequence of long-short term memory and gated recurrent unit (LSTM-GRU) to improve classification accuracy. From the set experiment, the proposed model has better accuracy on 16-QAM, 64-QAM, and QPSK modulation in compare with other state-of-the-art models and obtains 61.46% average accuracy on low SNR using RadioML2016.10A dataset."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Radyan Jatya Gamana
"Pengelasan TIG adalah salah satu metode pengelasan yang dapat diterapkan pada logam non-ferrous. Otomatisasi proses pengelasan TIG harus memberikan hasil las yang lebih hemat biaya dan kualitas yang lebih tinggi di lingkungan produksi divisi manufaktur. Penelitian ini bertujuan untuk menerapkan metode deep learning pada optimalisasi TIG Welding dengan mengolah hasil pengelasan dengan Convolutional Neural Networks (CNN). Dengan menggunakan dua jaringan saraf YOLOv5 dan ResNet50 yang berbeda, penulis akan memiliki empat metode klasifikasi citra yang berbeda dengan ResNet50, deteksi dan klasifikasi objek YOLOv5, kombinasi deteksi objek YOLOv5 dan ResNet50, dan klasifikasi ResNet50 menggunakan preprocessing center-crop. Penelitian ini akan mengidentifikasi hasil pengelasan dengan memberi label pada gambar sebagai “Weld Bagus” atau “Weld Buruk”, kelas las yang baik tidak memiliki cacat, sedangkan kelas las yang buruk memiliki cacat retak, terbakar, porositas, dll. Berdasarkan penelitian ini metode terbaik adalah kombinasi antara YOLOv5 dan ResNet50 neural network dengan akurasi 96%, loss 4%, presisi 93,1%. Metode dengan menggunakan ResNet50 klasifikasi memiliki akurasi 46%, loss 54%, dan presisi 0%. Metode YOLOv5 objek deteksi dan klasifikasi memiliki akurasi 94,34%, loss 5,66%, dan presisi 100%. Metode ResNet50 klasifikasi dengan center-crop pre-processing memiliki akurasi 82%, loss 18%, dan presisi 87,5%. Variasi dan jumlah data mempengaruhi pelatihan dan pengujian data.

TIG welding is one of the welding methods that can be applied to non-ferrous metals. TIG welding process automation should deliver more cost-effective, higher-quality welds in a manufacturing division's production environment. This study aims to apply deep learning methods to optimize TIG Welding by processing welding results with Convolutional Neural Networks (CNN). By using two different YOLOv5 and ResNet50 neural networks, the author will have four different image classification methods with ResNet50, YOLOv5 object detection and classification, a combination of YOLOv5 and ResNet50 object detection, and ResNet50 classification using center-crop preprocessing. This study will identify the results of welding by labeling the image as “Good Weld” or “Bad Weld”, a good welding class has no defects, while a bad welding class has cracking, burning, porosity defects, etc. Based on this research, the best method is a combination of YOLOv5 and ResNet50 neural network with 96% accuracy, 4% loss, 93.1% precision. The method using ResNet50 classification has 46% accuracy, 54% loss, and 0% precision. The YOLOv5 object detection and classification method has an accuracy of 94.34%, loss of 5.66% and precision of 100%. The ResNet50 method of classification with center-crop pre-processing has an accuracy of 82%, loss of 18% and precision of 87.5%. Variation and amount of data affect the training and testing of data."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febrian Faqih Abdullah
"Pada penelitian ini dilakukan penggabungan citra dari dua sumber energi yang berbeda berdasarkan kerangka kerja deep learning. Tujuannya untuk menghasilkan citra objek dengan material penyusun lebih dari satu yang lebih baik dan lebih informatif. Hasil penelitian menunjukkan bahwa metode yang diajukan dapat menghasilkan citra yang lebih minim noise, kontras yang baik, dan dapat mempertahankan struktur objek. Evaluasi kualitas citra menggunakan metrik objektif, seperti FMIdct, FMIpixel, FMIw, Nabf, dan SSIM, menunjukkan peningkatan dibandingkan dengan metode tradisional. Rata-rata nilai FMI yang lebih tinggi menunjukan bahwa keterkaitan informasi hasil fusi dengan kedua sumber lebih baik dibanding kedua metode pembanding. Nilai Nabf yang lebih rendah menunjukan noise yang muncul akibat dari proses fusi lebih minim dibanding kedua metode lainnya. Nilai SSIM pada hasil fusi menggunakan metode ini juga memiliki nilai yang lebih tinggi dibanding dengan kedua metode yang dibandingkan. Sampel yang memiliki rata-rata nilai metrik terbaik adalah busi dengan nilai tertinggi metrik evaluasi FMIdct adalah 2,96×10^(-1), nilai FMIpixel adalah 9,70×10^(-1), nilai FMIw adalah 3,69×10^(-1), nilai SSIM adalah 9,92×10^(-1), dan nilai Nabf terrendah adalah 3,82×10^(-3). Kesimpulannya, penelitian ini berhasil mengembangkan pendekatan baru dalam penggabungan citra CT menggunakan framework VGG19. Metode ini memiliki potensi untuk meningkatkan diagnosis dan analisis non-medis seperti pada evaluasi kualitas produksi pada industri manufaktur dengan menghasilkan citra yang lebih informatif dan akurat.

In this research, images from two different energy sources are combined based on a deep learning framework. The goal is to produce better and more informative images of objects with more than one constituent material. The results show that the proposed method can produce images with less noise, good contrast, and can maintain the structure of the object. Evaluation of image quality using objective metrics, such as FMIdct, FMIpixel, FMIw, Nabf, and SSIM, shows improvement compared to traditional methods. The higher average FMI value indicates that the fused information is better related to the two sources than the two comparison methods. The lower Nabf value indicates that the noise arising from the fusion process is more minimal than the other two methods. The SSIM value in the fusion results using this method also has a higher value than the two methods compared. The sample that has the best average metric value is the spark plug with the highest value of FMIdct evaluation metric is 2.96×10-1, FMIpixel value is 9.70×10-1, FMIw value is 3.69×10-1, SSIM value is 9.92×10-1, and the lowest Nabf value is 3.82×10-3. In conclusion, this study successfully developed a new approach in CT image fusion using the VGG19 framework. This method has the potential to improve non-medical diagnosis and analysis such as production quality evaluation in the manufacturing industry by producing more informative and accurate images."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thomas Hadi Wijaya
"Penelitian ini berfokus pada pengaplikasian teknologi deep learning, secara khusus menggunakan Residual Network (ResNet101) dalam prediksi perencanaan dosis untuk pasien kanker paru-paru. Tiga variasi input data diproses untuk dilatih dan diuji menggunakan ResNet, dan kemudian dievaluasi untuk menentukan variasi input yang paling akurat. Tujuan utama penelitian ini adalah memahami mekanisme kerja deep learning dalam prediksi perencanaan dosis, mengevaluasi akurasi prediksi menggunakan ResNet, dan menganalisis kinerja model pada masing-masing variasi input data. Metodologi yang digunakan melibatkan penggunaan model input dan output untuk menghasilkan kurva distribusi-volume dosis (DVH) prediksi dan aktual. DVH merupakan kurva yang digunakan untuk mengukur seberapa besar dosis yang diterima dalam persentase volume pada organ tertentu. Evaluasi dilakukan menggunakan metode Mean Absolute Error (MAE) dari persentase volume prediksi dan referensi masing-masing pasien pada rentang dosis yang ditentukan yaitu 0-60 Gy dengan lebar bin sebesar 0,25 Gy. Hasil evaluasi menunjukkan bahwa variasi data input A memberikan nilai MAE sebesar 11,24% ± 10,58%, variasi data input B memberikan MAE sebesar 12,79% ± 11,27%, dan variasi data input C memberikan MAE sebesar 12,22% ± 12,13%. Hasil tersebut memperlihatkan bahwa variasi data input A memiliki tingkat akurasi terbaik dengan nilai error dan standar deviasi terendah. Evaluasi juga melibatkan penggunaan train-val loss untuk masing-masing model yang dilatih. Temuan ini menunjukkan bahwa penggunaan citra CT sebagai channel 1, gabungan ROI tanpa ROI target sebagai channel 2, dan ROI target sebagai channel 3 memberikan prediksi perencanaan dosis yang paling akurat untuk pasien kanker paru-paru.

This study focuses on the application of deep learning technology, specifically using Residual Network (ResNet101), to predict dosage planning for lung cancer patients. Three variations of input data were processed for training and testing using ResNet, and then evaluated to determine the most accurate input variation. The primary objectives of this research are to understand the mechanism of deep learning in dosage planning prediction, evaluate prediction accuracy using ResNet, and analyze model performance for each input data variation. The methodology involved using input and output models to generate predicted and actual dose-volume histogram (DVH) curves. DVH is a curve used to measure the dose received as a volume percentage in a specific organ. Evaluation was conducted using the Mean Absolute Error (MAE) method from the volume percentage prediction and reference for each patient within a dose range of 0-60 Gy with a bin width of 0,25 Gy. The evaluation results showed that input data variation A yielded an MAE of 11,24% ± 10,58%, input data variation B yielded an MAE of 12,79% ± 11,27%, and input data variation C yielded an MAE of 12,22% ± 12,13%. These results indicate that input data variation A had the best accuracy with the lowest error and standard deviation. Evaluation also included using train-val loss for each trained model. These findings suggest that using CT images as channel 1, a combination of ROIs excluding the target ROI as channel 2, and the target ROI as channel 3 provides the most accurate dosage planning prediction for lung cancer patients."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jauzak Hussaini Windiatmaja
"Sumber informasi di jejaring berita daring adalah instrumen yang memungkinkan individu membaca berita, menerbitkan berita, dan berkomunikasi. Hal ini sudah menjadi tren dalam masyarakat yang sangat mobile. Oleh karena itu, proses verifikasi fakta suatu pemberitaan menjadi sangat penting. Dengan pertimbangan tersebut, sebuah tools berbasis web service untuk verifikasi fakta menggunakan metode deep learning dengan teknik ensemble dibangun. Penggunaan teknik ensemble pada model deep learning adalah proses beberapa model pembelajaran mesin digabungkan secara strategis untuk menyelesaikan masalah menggunakan lebih dari satu model. Untuk melatih model, dibangun sebuah dataset. Dataset berisi pasangan klaim dan label. Klaim dibangun dengan data crawling di kanal berita berbahasa Indonesia. Tiga model deep learning dibangun dan dilatih menggunakan dataset yang dibuat, dengan arsitektur jaringan dan hyperparameter yang berbeda. Setelah model dilatih menggunakan dataset, ketiga model diagregasikan untuk membentuk sebuah model baru. Untuk memastikan bahwa model agregat berfungsi lebih baik daripada model tunggal, performa model deep learning ensemble dibandingkan dengan model deep learning dasar. Hasil penelitian menunjukkan bahwa model ensemble memiliki akurasi 85,18% sedangkan model tunggal memiliki akurasi 83,9%, 83,19%, dan 81,94%. Hasil ini menunjukkan bahwa model ensemble yang dibangun meningkatkan kinerja verifikasi fakta dari tiga model tunggal. Hasil penelitian juga menunjukkan bahwa metode deep learning mengungguli performa metode machine learning lain seperti naive bayes dan random forest. Untuk memvalidasi kinerja tools yang dibangun, response time dari web service diukur. Hasil pengukuran menunjukkan rata-rata response time 6.447,9 milidetik.

Information sources on social networks are instruments that allow individuals to read news, publish news, and communicate. This is a trend in a highly mobile society. Therefore, the process of verifying facts is very important. With these considerations, we built a web service-based tool for fact verification using deep learning methods with ensemble technique. The use of ensemble techniques in deep learning models is a process in which several machine learning models are combined to solve problems. To train the model, we created a dataset. Our dataset of Indonesian news contains pairs of claims along with labels. Claims are built by crawling data on Indonesian news channels. Three deep learning models have been built and trained using the previously created dataset with different network architectures and hyperparameters. After the model is trained, three models are aggregated to form a new model. To ensure that the aggregated model performs better than the single model, the deep learning ensemble model is compared to the single models. The results showed that the ensemble model has an accuracy of 85.18% while the single models have an accuracy of 83.9%, 83.19%, and 81.94% consecutively. These results indicate that the ensemble model built improves the fact-verification performance of the three single models. The results also show that by using the same dataset, deep learning methods outperform other machine learning methods such as naive bayes and random forest. To validate the performance of the tools we created, the response time of the web service is measured. The measurement result shows an average response time of 6447.9 milliseconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Hilmizen
"Pada awal pandemi COVID-19, keputusan medis pada pasien ditentukan oleh dokter berdasarkan banyak tes medis (misalnya, tes reaksi berantai polimerase, tes suhu, CTScan atau X-ray). Metode transfer learning telah digunakan dalam beberapa penelitian dan berfokus hanya pada satu biomarker (misalnya, hanya CT-Scan atau X-Ray saja) untuk mendiagnosis pneumonia. Dalam studi terbaru, modalitas tunggal memiliki keakuratan klasifikasi sendiri dan setiap biomarker yang berbeda dapat memberikan informasi pelengkap untuk mendiagnosis COVID-19 pneumonia. Tujuan pada penelitian ini adalah membangun model multimodal yaitu dengan menggabungkan dua masukan (input) menjadi satu keluaran (output) pada tahapan pembuatan model. Dua model transfer learning yang berbeda telah digunakan pada masing-masing masukan dengan dataset open-source 2849 gambar CT-Scan dan 2849 gambar X-ray untuk mengklasifikasikan gambar CT-Scan dan gambar X-ray menjadi dua kelas: normal dan COVID-19 pneumonia. Model transfer learning yang digunakan adalah model DenseNet121, model MobileNet, model Xception, model InceptionV3, model ResNet50 dan model VGG16 untuk proses ekstraksi fitur. Alhasil, akurasi klasifikasi terbaik didapatkan sebesar 99,87% saat penggabungan jaringan ResNet50 dan VGG16. Kemudian, akurasi klasifikasi terbaik didapatkan sebesar 98,00% saat menggunakan modalitas tunggal model ResNet50 dengan data CT-Scan dan akurasi klasifikasi sebesar 98,93% untuk model VGG16 dengan data X-Ray. Metode penggabungan multimodal learning menunjukkan akurasi klasifikasi yang lebih baik dibandingkan dengan metode yang menggunakan hanya satu modalitas saja.

Due to COVID-19 Pandemic, medical decisions on patients were made by doctors based on many medical tests (e.g., polymerase chain reaction test, temperature test, CT-Scan or X-ray). Transfer learning methods have been used in several studies and focus on only one biomarker (eg, CT-Scan or X-Ray only) for diagnosing pneumonia. In recent studies, a single modality has its own classification accuracy and each different biomarker can provide complementary information for diagnosing COVID-19 pneumonia. The purpose of this research is to build a multimodal model by combining two inputs (inputs) into one output (output) at the modeling stage. Two different transfer learning models were used at each input with an open-source dataset of 2849 CT-Scan images and 2849 X-ray images to classify CT-Scan images and X-ray images into two classes: normal and COVID-19 pneumonia. . The transfer learning model used is the DenseNet121 model, the MobileNet model, the Xception model, the InceptionV3 model, the ResNet50 model and the VGG16 model for the feature extraction process. As a result, the best classification accuracy was obtained at 99.87% when merging the ResNet50 and VGG16 networks. Then, the best classification accuracy was obtained at 98.00% when using a single modality ResNet50 model with CT-Scan data and a classification accuracy of 98.93% for the VGG16 model with X-Ray data. The multimodal learning combination method shows better classification accuracy than the method that uses only one modality."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>