Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21503 dokumen yang sesuai dengan query
cover
Christofer Kevin
"Segregasi adalah sebuah fenomena pemisahan fraksi berukuran kecil dan besar didalam suatu campuran sehingga timbul keberadaan agregat kasar dan agregrat halus pada suatu campuran yang tidak merata. Akibat distribusi yang tidak seragam tersebut, kemungkinan timbulnya lubang, pengelupasan, dan retak pada aspal jalan raya sangat mungkin terjadi. Maka dari itu penting untuk kita bisa melakukan tindakan pencegahan sebagai bentuk meminimalisir kemungkinan terjadinya fenomena tersebut. Segregasi pada aspal umumnya biasa dideteksi lewat inspeksi visual secara manual. Namun, dalam menggunakan metode tersebut dinilai penilaian yang didapatkan akan cenderung subjektif dan diperlukan waktu yang lama. Dengan demikian, penelitian kali ini dilakukan untuk memberikan solusi terbaru untuk mendeteksi daerah segregasi dengan cara yang lebih kredibel, waktu yang lebih cepat, dan ekonomis. Solusi tersebut dengan memanfaatkan metode pengolahan citra digital yang masih jarang penggunaanya. Dalam prosesnya, metode ini akan dicoba diimplementasikan bersama dengan metode Support Vector Machine. Kemudian, variabel yang akan digunakan sebagai fokus utama adalah standar deviasi. Pada penelitian kali ini akan dilakukan pengujian klasifikasi daerah segregasi dan non segregasi pada lingkungan aspal jalan di Universitas Indonesia.

Segregation is a phenomenon of separating small and large fractions in a mixture, resulting in the presence of coarse aggregate and fine aggregate in an uneven mixture. As a result of the non-uniform distribution, the possibility of potholes, raveling, and cracks in the asphalt of the highway is very likely to occur. Therefore, it is important for us to be able to take preventive measures as a form of minimizing the possibility of this phenomenon occurring. Segregation in asphalt is generally detected through manual visual inspection. However, in using the assessment method obtained will tend to choose and take a long time. Thus, this research was conducted to provide a new solution to detect segregation areas in a more credible, faster and economical way. This solution utilizes digital image processing methods that are still rarely used. In the process, this method will be implemented together with the Support Vector Machine method. Then, the variable that will be used as the main focus is the standard deviation. In this study, we will test the classification of segregated and non-segregated areas on the asphalt road environment at the University of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Woro Sudaryanti
"Penelitian ini melakukan studi mengenai sistem identifikasi pembicara berbahasa Indonesia menggunakan SVM. Parameter sistem terdiri atas silence removal, PCA, nilai rata-rata dan varians MFCC. Ujicoba menggunakan data berita berbahasa Indonesia dari televisi dan radio yang disegmen dalam 5, 10, 15 detik dengan jumlah data 26 jam (715 pembicara).
Hasil penelitian ini menunjukkan ketepatan pengenalan pembicara sebesar 94-98% untuk kombinasi parameter silence removal dan rata-rata MFCC dengan akurasi terbaik pada segmen waktu 10 detik. Namun dengan bertambahnya jumlah pembicara, ketepatan pengenalan cenderung berkurang. Penelitian ini dapat dikembangkan untuk sistem perolehan informasi data speech berdasarkan siapa yang berbicara dalam suatu sesi data.

This research studies speaker identification system for Indonesian speech based on SVM. Parameters of this system are silence removal, PCA, average and varians values of MFCC. The experiments use 26 hours (715 speakers) Indonesian broadcast news from radio and television segmented into 5, 10, 15 seconds.
The results achieve 94-98% identification accuracy for combination of parameters silence removal and average of MFCC. The best accuracy comes from 10 seconds time segment. However, the accuracy falls when the number of speakers increases. This study could be used for speech retrieval system based on who speaks in a speech session.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Woro Sudaryanti
"Penelitian ini melakukan studi mengenai sistem identifikasi pembicara berbahasa Indonesia menggunakan SVM. Parameter sistem terdiri atas silence removal, PCA, nilai rata-rata dan varians MFCC. Ujicoba menggunakan data berita berbahasa Indonesia dari televisi dan radio yang disegmen dalam 5, 10, 15 detik dengan jumlah data 26 jam (715 pembicara). Hasil penelitian ini menunjukkan ketepatan pengenalan pembicara sebesar 94-98% untuk kombinasi parameter silence removal dan rata-rata MFCC dengan akurasi terbaik pada segmen waktu 10 detik. Namun dengan bertambahnya jumlah pembicara, ketepatan pengenalan cenderung berkurang. Penelitian ini dapat dikembangkan untuk sistem perolehan informasi data speech berdasarkan siapa yang berbicara dalam suatu sesi data.

This research studies speaker identification system for Indonesian speech based on SVM. Parameters of this system are silence removal, PCA, average and varians values of MFCC. The experiments use 26 hours (715 speakers) Indonesian broadcast news from radio and television segmented into 5, 10, 15 seconds. The results achieve 94-98% identification accuracy for combination of parameters silence removal and average of MFCC. The best accuracy comes from 10 seconds time segment. However, the accuracy falls when the number of speakers increases. This study could be used for speech retrieval system based on who speaks in a speech session."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T25915
UI - Tesis Open  Universitas Indonesia Library
cover
Ian Herahman
"Sudah sejak lama tanda tangan menjadi salah satu cara untuk melakukan otentikasi dalam kehidupan sehari-hari mulai dari pengesahan dokumen, surat- surat penting bahkan untuk transaksi perbankan. Namun tingkat keamanan dari penggunaan tanda tangan ini tergolong rendah karena tanda tangan dapat ditiru dengan mudah. Seiring dengan perkembangan teknologi, digunakan teknik verifikasi tanda tangan online untuk meningkatkan keamanan dalam otentikasi tanda tangan.
Penelitian ini akan menganalisa performa sistem verifikasi tanda tangan online dengan menggunakan algoritma SVM dan GMM pada database SVC 2004 yang mengandung 7 fitur pada setiap tanda tangan. Database ini memiliki 40 dataset tanda tangan dimana setiap dataset terdiri dari 20 tanda tangan asli dan 20 tanda tangan tiruan atau 1600 tanda tangan secara keseluruhan.
Berdasarkan hasil simulasi dengan menggunakan 10 data training, sistem verifikasi GMM menghasilkan FRR sebesar 4,5%, FAR 3% dan waktu komputasi rata-rata 21,3 detik sedangkan pada SVM dihasilkan FRR 2,625%, FAR 1,25% dan waktu komputasi rata-rata 1,84 detik.

For a long time, signature has become one of many authentication methods that commonly used in daily life such as document and other obligations authentication, even for banking transaction. However the use of signature could be classified as low level security authentication because it can easily forged. With the advanced of technology, online signature verification has been used to increase the security level in signature authentication.
This research will analyze the performance of online signature verification using SVM and GMM algorithm on SVC 2004 signature database which contains 7 features of each signature. The database has 40 contributors who sign 20 authentic signatures, while 20 other are forged ones. In total the database has 1600 signatures.
Based on simulation results using 10 training data, signature verification using GMM resulted in 4,5% FRR, 3% FAR and average computation time of 21,3 seconds, while SVM has 2,625% FRR, 1,25% FAR and average computation time 1,84 second.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44640
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gausul Furida Firdaus
"Didalam skripsi ini dijelaskan tentang konsep Least Square Support Vector Machines (LS-SVM) untuk pengembangan sistem pengenalan tanda nomor kendaraan bermotor. Sistem akan mengenali plat nomor kendaraan untuk keperluan proses identifikasi secara otomatis. Pengenalan karakter merupakan modul inti dalam sistem yang mengenali tanda nomor kendaraan dari video. Yang menjadi fokus penelitian ini ialah ketepatan dalam mengenali setiap karakter, kecepatan proses, tingkat ketelitian hasil pengenalan akibat kondisi blur, posisi plat nomor yang miring, kecepatan perekaman video, suasana pengambilan video, resolusi video, dan jumlah data latih. Metode Least Square Support Vector Machine (LS-SVM) digunakan untuk meningkatkan akurasi dan kecepatan komputasi dengan kernel linier serta one against one untuk metode multiclass. Metode deteksi garis tepi dan morphology digunakan pada proses lokalisasi plat nomor. Untuk mengenali karakter secara akurat proses training dipisah antara karakter angka dan huruf. Hasil penelitian menunjukan tingkat ketelitian pengenalan tanda nomor kendaraan mencapai maksimal 98.66% untuk resolusi 1280x720p dan jumlah data latih sebanyak 15. Akurasi minimal yang diujikan pada resolusi 320x240 dan jumlah data latih sebanyak 3 diperoleh sebesar 25.50%.

In this paper, we review the use of least square support vector machines (LS-SVM) concept in development system of license plate recognition. License plate of vehicle will recognize by system for identification process automatically. Charackter recognition is a core of system which is essentially multi-classification problem. The major focus of research is identification each character accurately and rapidly in case of blurs, tilt, noise, video resolution, video capturing atmosphere and amount of training set. LS-SVM with linier kernel and one against one for multiclass problem use to further improve recognition accuracy and speed of LPR system. Edge detection and morphology use in license plate localization process of system LPR. In other to recognize a number plate more accurately we separate trained model with number and English character. Our method got a maximum recognition rate 98.66% in resolution 1280x720p with 15 training set. Minimum recognitoin rate that have tested is 25.50% for resolution 320x240 with 3 training set."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S54470
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifah
"Diabetes Melitus (DM) merupakan gangguan sistem metabolik akibat pankreas tidak memproduksi cukup insulin atau tubuh tidak mampu menggunakan insulin yang ada secara efektif. Menderita diabetes dalam jangka waktu panjang dapat mengakibatkan berbagai macam komplikasi salah satu di antaranya adalah Retinopati diabetik. Retinopati diabetik  adalah kelainan pada bagian mata yang disebabkan oleh adanya kerusakan dan penyumbatan pada pembuluh darah di bagian belakang mata (retina). Pada penelitian kali ini akan di gunakan data retinopati diabetik dengan menggunakan metode seleksi fitur Recursive Feature Elimination (RFE) dan Chi-Square dan akan di klasifikasi menggunakan Support Vector Machine.

Diabetic retinopathy is one of the complication of diabetes, which is an eye disease that can cause blindness. Its happen because of damage of retina as a result of the long illness of diabetic melitus. People usually do research using image data in diabetic patients. This paper present about diabetic retinopathy will extracting with feature selection. In this study, we use data diabetic patients who will be extracted with a feature selection method. Feature selection used in this study is Recursive Feature Elimination (RFE) and Chi-Square. For classification of diabetic retinopathy has been done by Support Vector Machine (SVM). From the experimental result with various tunning hyperparameters, the classification model can obtain the accuracy between 97%-100% for both methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Ihsan Farhani
"Indonesia menempati posisi kedua sebagai negara penghasil karet alami di dunia. Karet alami memiliki nama lain yaitu lateks. Belakangan ini produksi lateks di Indonesia menurun. Salah satu faktor penyebab menurunnya produksi lateks Indonesia adalah penyakit gugur daun. Jamur Pestalotiopsis sp. adalah salah satu jamur yang dapat menyebabkan penyakit gugur daun. Penyakit gugur daun yang disebabkan oleh jamur ini pertama kali terjadi di Indonesia pada tahun 2016 di Sumatera Utara. Penyakit tersebut menyebabkan tanaman karet menggugurkan daun sebelum waktunya sehingga menyebabkan produksi lateks berkurang. Cadangan makanan pohon karet lebih banyak dialokasikan untuk menumbuhkan kembali daun yang telah gugur dibanding untuk memproduksi lateks. Luas lahan pohon karet di Indonesia yang terinfeksi penyakit gugur daun Pestalotiopsis sp. sudah mencapai 30.328,84 hektar pada tahun 2021 menyebabkan penurunan produksi lateks hingga 30%. Pendeteksian penyakit gugur daun dapat dilakukan secara morfologi yaitu dengan pegamatan pada daun. Gejala penyakit gugur daun yang disebabkan oleh Pestalotiopsis sp. adalah munculnya bintik cokelat pada tulang daun yang lama kelamaan berkembang menjadi bintik cokelat gelap. Bintik tersebut kemudian membesar, menyebabkan daerah di sekitar daun mengalami nekrosis kemudian gugur. Kekurangan dari pendeteksian secara morfologi adalah memerlukan waktu dan tenaga yang cukup besar, serta keahlian khusus di bidang tanaman karet. Dalam penelitian ini, akan dilakukan pendeteksian penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. dengan bantuan machine learning untuk mengurangi tenaga dan waktu yang diperlukan dalam mendeteksi penyakit gugur daun. Model machine learning akan menerima input data citra daun tanaman karet. Model yang digunakan dalam pendeteksian adalah k-means clustering untuk mensegmentasi data citra daun karet, convolutional autoencoder untuk melakukan fitur ekstraksi pada data citra hasil segmentasi dan suppport vector machine sebagai classifier. Dari hasil eksperimen dengan 5 kali percobaan didapat accuracy testing sebesar 62,91%, accuracy training sebesar 78,50%. Accuracy testing dan accuracy training memiliki perbedaan yang cukup signifikan menandakan model mengalami overfitting. Overfitting terjadi ketika dataset yang tersedia hanya sedikit, pada penelitian ini yaitu 257 data citra namun, model yang dilatih kompleks. Sehingga diperlukan penambahan data citra untuk menghindari overfitting dan meningkatkan accuracy dari model.

Indonesia occupy the second position as a natural rubber producing country in the world. Natural rubber has another name, namely latex. Recently, latex production in Indonesia has declined. One of the factors causing the decline in Indonesian latex production is leaf fall disease. The fungus Pestalotiopsis sp. is one of the fungi that can cause leaf fall disease. Leaf fall disease caused by this fungus first occurred in Indonesia in 2016 in North Sumatra. The disease causes rubber plants to drop their leaves prematurely, causing reduced latex production. Rubber tree food reserves are allocated more to regrow fallen leaves than to produce latex. The area of rubber trees in Indonesia infected with the Pestalotiopsis sp. leaf fall disease. has reached 30,328.84 hectares in 2021 causing a decline in latex production by up to 30%. Disease detection can be done morphologically by observing the leaves. Symptoms of leaf fall disease caused by Pestalotiopsis sp. is the appearance of brown spots on the veins of the leaves which over time develop into dark brown spots. These spots then enlarge, causing the area around the leaves to experience necrosis and then fall. The drawback of morphological detection is that it requires a lot of time and effort, as well as special expertise in the field of rubber plantations. In this research, we will detect leaf fall disease caused by the fungus Pestalotiopsis sp. with the help of machine learning to reduce the effort and time needed to detect leaf fall disease. The machine learning model will be using image of rubber plant leaves as input data. The model used in the detection is k-means clustering to segment rubber leaf image data, convolutional autoencoder to perform feature extraction on segmented image data and support vector machine as a classifier. From the experimental results with 5 trials obtained testing accuracy of 62.91%, training accuracy of 78.50%. Accuracy testing and accuracy training have significant differences indicating that the model is overfitting. Overfitting occurs when the available dataset is only a few, namely 257 image data but the model being trained is complex. So it is necessary to add image data to avoid overfitting and increase the accuracy of the model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fairuz Zahira
"Dengan berkembangnya teknologi, sensor telah menjadi sebuah alat untuk membantu manusia dalam hal apapun, mulai dari kesehatan hingga teknologi. Perkembangan teknologi yang ada saat ini membuat sebuah ponsel cerdas memiliki berbagai macam sensor. Hal ini tentu saja lebih praktis dan nyaman dibandingkan alat sensor yang biasanya tidak nyaman untuk digunakan. Sensor-sensor tersebut nantinya dapat dimanfaatkan dengan mengolah datanya untuk menjadi sebuah Human Activity Recognition.
Penelitian ini akan mengevaluasi sebuah aplikasi untuk menyimpan data sensor dengan menggunakan Android Studio dengan menggunakan Support Vector Machine untuk menentukan keakuratan data. Melalui aplikasi pendeteksi sensor, data akan dikumpulkan dari relawan yang melakukan empat macam gerakan. Gerakan itu terdiri dari berjalan, duduk, berdiri, dan berbaring. Data inilah yang kemudian diolah menggunakan metode SVM yang keluarannya menunjukkan tingkat akurasi pengklasifikasian tiap data sensor.

With the development of technology today, sensors have long been a tool to help humans in everything from health to technology. Fortunately, the current technological developments make a smartphone have a variety of sensors. This is, of course, more practical and comfortable than sensor devices which are usually not comfortable to use. These sensors can later be utilized by processing the data to become an Activity Recognition.
This study will evaluate an application to store sensor data using Android Studio by using Support Vector Machine to determine the accuracy of the data. Through the sensor detection application, data will be collected from volunteers who carry out four types of movements. The movement consists of walking, sitting, standing, and lying down. This data is then processed using the SVM method.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhimas Yudha Prawira
"Twitter merupakan salah satu media sosial yang digunakan secara massive di Indonesia. Para pengguna Twitter ini membicarakan berbagai macam hal, salah satunya terkait pencalonan presiden. Perbincangan para pengguna Twitter ini memiliki nilai sentimen baik positif maupun negatif. Dukungan masyarakat terhadap masing-masing kandidat calon presiden dapat diketahui dengan melihat sentimen masyarakat melalui perbincangan mereka di Twitter, hal ini sering disebut juga sebagai analisis sentimen. Namun, jumlah pengguna dan obrolan para pengguna Twitter yang sangat banyak mengakibatkan data yang akan diproses membutuhkan waktu yang cukup lama. Untuk melakukan proses analisis sentimen para pengguna Twitter secara cepat dan otomatis dapat digunakan bantuan mesin. Salah satu metode yang digunakan untuk melakukan proses analisis sentimen adalah Support Vector Machine (SVM). Pada dasarnya, semakin banyak data yang digunakan sebagai data training dalam pemilihan model fungsi klasifikator maka akan memberikan generalisasi akurasi analisis sentimen untuk data testing yang tinggi pula. Namun di sisi lain, semakin banyaknya data training juga akan menyebabkan besarnya dimensi ruang fitur. Hal ini membuat mesin membutuhkan waktu yang cukup lama dalam melakukan pembentukan fungsi klasifikator. Untuk menanggulangi hal ini, akan dilakukan metode optimasi fitur sehingga mesin dapat tetap membentuk fungsi klasifikator dengan akurasi yang tinggi namun dengan dimensi ruang fitur yang rendah.

Twitter is a social media that used in Indonesia massively. Twitter users talk (tweet) about various things, one of them is about presidential nomination. Twitter user conversations have a positive or negative sentiment. Community support for each presidential candidate can be determined by looking at the public sentiment through their conversations on Twitter, this is often referred to sentiment analysis. However, the number of users and tweets cause the data to be processed requires quite a long time. Machine can be used to make the process of Twitter sentiment analysis quickly and automatically. One method that used to perform the sentiment analysis process is a Support Vector Machine (SVM). Basically, the more data that used as data training in the model selection function will give a high accuracy generalization sentiment analysis on data testing. On the other hand, the increasing number of training data will also cause large dimensional feature space. This makes the machine takes a long time to perform model selection. To overcome this problem, feature optimization will be performed. Feature optimization will preserve the high accuracy of the model, but with a low dimensional feature space."
Universitas Indonesia, 2014
S57179
UI - Skripsi Membership  Universitas Indonesia Library
cover
Filzahanti Nuha Ramadhani
"Hipertensi adalah salah satu masalah kesehatan besar di dunia. Hipertensi merupakan salah satu penyebab kerusakan vaskular retina yang disebut Hypertensive retinopathy (HR). HR dapat memunculkan komplikasi yang beragam seperti oklusi pada pembuluh darah retina, rusaknya saraf optik, dan kebutaan. Penelitian ini membahas bagaimana Hypertensive Retinopathy dapat dideteksi melalui citra fundus. Dalam penelitian ini, digunakan metode ekstraksi fitur Local Binary Pattern (LBP) dan metode klasifikasi Support Vector Machine (SVM) dalam mendeteksi HR. Hasil simulasi mununjukkan akurasi Support Vector Machine dalam mengklasifikasi hypertensive retinopathy dan retina normal dengan membandingkan beberapa parameter pada metode LBP, diperoleh nilai akurasi, precision, dan recall tertinggi yaitu 87,5%, 80%, dan 100% secara berturut. Hal ini terjadi pada komposisi data 90% training dan 10% testing untuk parameter LBP dengan radius R=3 dan jumlah tetangga P=24.

Hypertension is one of the biggest health problems in the world. Hypertension is one of the causes of retinal vascular damage which is called hypertensive retinopathy (HR). HR can lead to various complications such as optic nerve damage, retinal vein occlusion, and blindness. This research studies how hypertensive retinopathy can be detected using fundus image. Extraction feature method, Local Binary Pattern (LBP) and classification method, Support Vector Machine (SVM) are used in this research to detect HR. The results show the accuracy of Support Vector Machine in classifying hypertensive retinopathy and normal retina by comparing parameter in LBP. The experiment achieved the best accuracy of 87,5%. The best accuracy is achieved using 90% training data and 10% testing data with radius R=3 and number of neighbors P=24 in LBP."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>