Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 177258 dokumen yang sesuai dengan query
cover
Dewi Wulandari
"Mata merupakan salah satu indera terpenting bagi kehidupan manusia. Umumnya, banyak manusia yang mengabaikan gangguan fungsi penglihatan, dimana gangguan fungsi penglihatan ini mengindikasikan awal mula penyakit mata. Penyakit mata adalah gangguan fungsi penglihatan berkisar dari gangguan fungsi penglihatan ringan hingga gangguan fungsi penglihatan berat yang dapat menyebabkan kebutaan. Dalam melakukan diagnosa terhadap pasien gangguan fungsi penglihatan memiliki jenis penyakit mata yang diderita, diperlukan tahapan pemeriksaan retina dengan ophthalmoscopy atau fotografi fundus. Setelah itu, seorang dokter spesialis mata menganalisis jenis penyakit mata yang diderita pasien tersebut. Namun, karena terbatasnya sarana fasilitas kesehatan dan dokter spesialis mata yang memeriksa dan mengoperasi. Oleh karena itu, dibutuhkan alat deteksi dini dengan menggunakan data citra agar pasien gangguan penglihatan dapat ditangani sebelum pasien menderita gangguan fungsi penglihatan berat atau dapat mengalami kebutaan. Pada penelitian ini, diusulkan oleh peneliti model klasifikasi citra fundus ke dalam kelas normal, katarak, glaukoma, dan retina disease menggunakan Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data citra yang digunakan merupakan data fundus image retina yang berasal dari website kaggle. Sebelum data citra fundus image masuk ke dalam proses training model, dilakukan tahapan preprocessing pada data citra fundus image. Pada tahapan proses training dalam CNN digunakan fungsi optimasi untuk meminimalkan fungsi loss. Adapun fungsi optimasi yang digunakan dalam penelitian ini adalah Adam dan diffGrad. Hasil penelitian ini menunjukkan bahwa kedua fungsi optimasi tersebut memiliki hasil evaluasi training yang tidak jauh berbeda pada kedua fungsi optimasi. Keunggulan menggunakan kedua fungsi optimasi ini adalah mudah diterapkan. Pada penelitian ini didapatkan training loss terkecil sebesar 0,4838, validation loss terkecil sebesar 0,6658, dan training accuracy terbaik sebesar 0,8570 yang dimiliki oleh fungsi optimasi Adam. Sedangkan untuk validation accuracy terbaik sebesar 0,7189 yang dimiliki oleh fungsi optimasi diffGrad. Sedangkan running time tercepat pada proses training model sebesar 2840,9 detik yang dimiliki oleh fungsi optimasi diffGrad. Setelah tahapan proses training, dilakukan evaluasi dengan data testing. Secara keseluruhan, apabila dilihat dari hasil testing yang terbaik dimiliki oleh fungsi optimasi Adam dengan nilai accuracy sebesar 63%, recall sebesar 63%, dan precision sebesar 63%. Sedangkan running time tercepat pada proses testing model adalah 5,4 detik yang dimiliki oleh fungsi diffGrad. Dapat disimpulkan bahwa metode CNN menggunakan Arsitektur AlexNet dan fungsi optimasi Adam memberikan performa terbaik dalam mendeteksi penyakit mata pada data fundus image.

The eyes are one of the most important senses for human life. Generally, many people ignore visual impairment, where this visual impairment indicates the onset of eye disease. Eye disease is a visual impairment ranging from mild visual impairment to severe visual impairment which can lead to blindness. In diagnosing patients with visual impairment who have the type of eye disease they suffer, it is necessary to carry out a retinal examination with ophthalmoscopy or fundus photography. After that, an ophthalmologist analyzes the type of eye disease the patient is suffering from. However, due to limited medical facilities and ophthalmologists who examine and operate. Therefore, an early detection tool is needed using image data so that visually impaired patients can be treated before the patient suffers from severe visual impairment or can go blind. In this study, researchers proposed a model for classifying fundus images into normal, cataract, glaucoma, and retinal disease classes using Convolutional Neural Network (CNN) with AlexNet architecture. The image data used is retinal fundus image data from the Kaggle website. Before the fundus image data enters the training model process, a preprocessing stage is carried out on the fundus image data. At this stage of the training process in CNN, an optimization function is used to minimize the loss function. The optimization functions used in this study are Adam and differed. The results of this study indicate that the two optimization functions have training evaluation results that are not much different from the two optimization functions. The advantage of using these two optimization functions is that they are easy to implement. In this research, the smallest training loss is 0.4838, the smallest validation loss is 0.6658, and the best training accuracy is 0.8570 which is owned by the Adam optimization function. As for the best validation accuracy of 0.7189 which is owned by the diffGrad optimization function. Meanwhile, the fastest running time in the model training process is 2840.9 seconds, which is owned by the diffGrad optimization function. After the stages of the training process, evaluation is carried out with data testing. Overall, when viewed from the testing results, Adam's optimization function is the best with an accuracy value of 63%, recall of 63%, and precision of 63%. Meanwhile, the fastest running time in the model testing process is 5.4 seconds, which is owned by the diffGrad function. It can be concluded that the CNN method using AlexNet Architecture and Adam's optimization function provides the best performance in detecting eye diseases in fundus image data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Rabi`Ah Al`Adawiyah
"Penyakit mata berat yang telat tertangani seperti katarak, glaukoma, serta retinopati diabetik merupakan salah satu penyebab utama gangguan penglihatan dan kebutaan. Pencegahan dapat dilakukan dengan melakukan pendektesian dini melalui citra fundus. Untuk mengatasi minimnya dokter mata dan persebarannya yang masih belum merata, dilakukan pendektesian penyakit mata secara otomatis melalui gambar mata dengan pendekatan deep learning. Dalam penelitian ini, digunakan metode Transfer Learning U-Net dengan VGG16 sebagai pretrained model (V-Unet) yang telah dilatih pada online database, ImageNet. Data yang digunakan dalam penelitian ini merupakan data citra fundus yang diperoleh dari platform Kaggle. Preprocessing data pada citra fundus yang dilakukan untuk meningkatkan kinerja model adalah centered crop, resize, dan rescale. Fungsi optimasi Adam digunakan untuk meminimalkan fungsi loss ketika melatih model. Pada penelitian ini, dilakukan pemisahan data training, validasi, testing dengan 3 rasio berbeda, yaitu kasus I dengan rasio 60:20:20, kasus II dengan rasio 70:20:10, dan kasus III dengan rasio 80:10:10. Hasil penelitian ini menunjukkan bahwa V-Unet memiliki kinerja paling baik pada kasus II berdasarkan skor AUC dan running time dengan nilai rata-rata skor AUC 0,8622 dan rata-rata running time 3,7079 detik sedangkan berdasarkan nilai akurasinya V-Unet memiliki kinerja paling baik pada kasus III dengan rata-rata nilai akurasi sebesar 66,34%.

Untreated severe eye diseases such as cataracts, glaucoma, and diabetic retinopathy is one of the main causes of visual impairment and blindness. Prevention can be done by doing early detection through fundus images. To overcome the lack of ophthalmologists and their uneven distribution, an automatic detection of eye diseases is carried out through eye images using a deep learning approach. In this study, Transfer Learning U-Net method was used with VGG16 as a pre-trained model (V-Unet) which had been trained on the online database, ImageNet . The data used in this study is fundus image data that obtained from the Kaggle platform. Preprocessing data on the fundus image that is carried out to improve model performance is centered crop, resize, and rescale. Adam's optimization function used to minimize the loss function when training the model. In this study, the training, validation, testing data was separated with 3 different ratios, namely case I with a ratio of 60:20:20, case II with a ratio of 70:20:10, and case III with a ratio of 80:10:10. The results of this study indicate that V-Unet has the best performance in case II based on the AUC score and running time with an average AUC score of 0.8622 and an average running time of 3.7079 seconds while based on accuracy value the best case is case III with an average accuracy value of 66.34%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amin Nur Ambarwati
"Katarak merupakan keadaan di mana lensa mata yang biasanya terlihat jernih dan bening menjadi keruh yang disebabkan oleh sebuah kumpulan protein yang terletak di depan retina. Hal ini menyebabkan jaringan lensa mata mulai rusak dan menggumpal, sehingga berkurangnya cahaya yang masuk ke retina dan pandangan akan terlihat buram, kurang berwarna, serta dapat menyebabkan kebutaan yang permanen. Mendiagnosis penyakit katarak pada seseorang dapat menggunakan proses pemeriksaan citra fundus, hasil dari citra fundus kemudian dideteksi menggunakan salah satu pendekatan deep learning. Dalam penelitian ini, digunakan pendekatan deep learning yaitu metode Convolutional Neural Networks (CNN) classic dan CNN LeNet-5 pada fungsi aktivasi ReLU dan Mish dalam mendeteksi katarak. Data yang digunakan dalam penelitian ini yaitu data ODR yang merupakan online database yang berisi citra fundus dengan bervariasi ukuran citra. Dataset kemudian memasuki tahap preprocessing dalam meningkatkan performa model seperti mengkonversikan citra RGB menjadi grayscale dari intensitas green channel, kemudian menerapkan proses binerisasi citra menggunakan thresholding untuk menyesuaikan target atau label berdasarkan diagnosis dokter dan mengetahui tingkat kerusakan bagian mata dalam mendeteksi mata mengalami katarak atau tidak. Hasil performa pada penelitian ini menunjukkan bahwa model CNN LeNet-5 dengan fungsi aktivasi Mish lebih baik dibandingkan model CNN clasic dengan fungsi aktivasi Mish dalam mendeteksi penyakit katarak. Hasil performa keseluruhan yang optimal pada penelitian ini berdasarkan nilai accuracy, precision, recall, dan F1- score secara berturutturut yaitu 87%, 87,5%, 89,3%, 86,7%, dengan running time yang dibutuhkan pada training 95,67 detik dan testing 0,1859 detik.

Cataract is a condition in which the normally clear lens of the eye becomes cloudy due to a collection of proteins located in front of the retina. This causes the tissue of the eye's lens to begin to break down and clot, resulting in less light entering the retina and blurred vision, lack of color, and can lead to permanent blindness. Diagnosing cataracts in a person can use the process of examining the fundus image, the results of the fundus image are then detected using one of the deep learning approaches. In this study, a deep learning approach was used, namely Convolutional Neural Networks (CNN) classic and CNN LeNet-5 method on the ReLU and Mish activation functions in detecting cataracts. The data used in this study is ODR data which is an online database containing fundus images with varying image sizes. The dataset then enters the preprocessing stage to improve model performance, such as converting the RGB image to grayscale from the intensity of the green channel, then applying a binary image process using thresholding to adjust the target or label based on the doctor's diagnosis and determine the level of eye damage to detect cataracts or not. The performance results in this study indicate that the CNN LeNet- 5 model with Mish activation function is better than the CNN classic model with Mish activation function in detecting cataract disease. Optimal overall performance results in this study are based on the values of accuracy, precision, recall, and F1-score, respectively, namely 87%, 87,5%, 89,3%, 86,7%, with the running time required for training 95,67 seconds and testing 0,1859 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ely Sudarsono
"Indonesia merupakan salah satu negara dengan penduduk terbanyak yang mengalami kebutaan yang disebabkan oleh katarak sebesar 77,7 %. Pendeteksian terhadap pasien katarak dapat dilakukan menggunakan citra fundus dengan metode komputasi. Salah satu metode komputasi populer dalam klasifikasi citra fundus adalah deep learning yang merupakan salah satu pendekatan machine learning. Pada tesis ini, model convolutional neural network (CNN) yang digunakan adalah arsitektur AlexNet dengan Lookahead-diffGrad optimizer. Data yang digunakan dalam penelitian ini diambil dari situs Kaggle yang berisi citra fundus katarak. Selanjutnya, dilakukan tahap pra-pengolahan pada citra seperti menerapkan resize dan menerapkan normalisasi agar semua citra dapat diinput ke dalam model dengan ukuran yang sama serta meningkatkan kinerja model. Hasil penelitian ini menunjukkan CNN dengan Lookahead-diffGrad optimizer pada dataset citra retina katarak dapat mengklasifikasikan data menjadi dua kelas, yaitu normal dan katarak, sehingga dapat membantu untuk mendiagnosis penyakit tersebut dengan baik. Selain itu, hasil terbaik juga diperoleh oleh CNN dengan Lookahead-diffGrad optimizer berdasarkan nilai loss sebesar 0,0010 dan akurasi 100 % dibandingkan berbagai optimizer lainnya untuk mengklasifikasikan dataset citra retina katarak.


Indonesia is one of the countries with the most people experiencing blindness due to cataracts at up to 77.7% of the population. Detection of cataract patients can be done using fundus images with computational methods. One of the popular computational methods in the classification of fundus images is deep learning, which is one of machine learning approaches. In this thesis, the convolutional neural network (CNN) model used is the AlexNet architecture with Lookahead-diffGrad optimizer. The data used in this study were taken from the Kaggle website which contains the images of cataract fundus. Furthermore, the pre-processing stage of the image is carried out such as applying resizing and applying normalization so that all images can be inputted into the model with the same size and improve the performance of the model. The results of this study indicate that CNN using the Lookahead-diffGrad optimizer on the retinal cataract image dataset can classify the data into two classes, namely normal and cataracts, so that it can help diagnose the disease properly. In addition, the best results were obtained by CNN with the Lookahead-diffGrad optimizer based on a loss value of 0.0010 and 100% accuracy compared to other optimizers for classifying the retinal cataract image dataset."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Elkania Samanta Nagani
"Penyakit mata perlu pendeteksian dan diagnosis yang tepat mengingat peran organ mata yang penting dalam kehidupan. Salah satu cara mendeteksi penyakit mata yang menyebabkan kebutaan adalah melalui ophthalmoscopy, dengan hasil pemeriksaan berupa citra fundus. Penelitian ini menggunakan metode Convolution Neural Network (CNN) dengan arsitektur CO-ResNet. Data yang digunakan dalam penelitian ini diambil dari online database yang berisi data multi-kelas penyakit mata. Preprocessing crop center dan resize digunakan dalam penelitian ini agar ukuran data citra dapat dijadikan input model. Fungsi optimasi untuk meminimalkan loss function ketika melatih model yang digunakan dalam penelitian ini adalah fungsi Adam dengan setting hyperparameter learning rate, epoch, 𝛽1 , dan 𝛽2 . Fungsi loss yang digunakan untuk masalah pengklasifikasian multikelas dalam penelitian ini adalah categorical cross entropy. Hasil penelitian menunjukan nilai yang diperoleh dengan training loss terkecil sebesar 0,4066 dan validation loss terkecil sebesar 0,4950. Sementara itu, nilai training accuracy terbaik sebesar 87% dan validation accuracy terbaik sebesar 79%. Setelah melalui proses training, dilakukan proses testing untuk mengevaluasi kinerja model. Hasil testing terbaik yang didapat dengan nilai testing accuracy sebesar 75,25%, precision sebesar 75,6%, recall sebesar 75,4%, dan F1-score sebesar 75,4%. Secara keseluruhan, metode CO- ResNet bekerja dengan cukup baik dalam mengklasifikasi dan mendeteksi penyakit mata.

Eye diseases need proper detection and diagnosis considering the important role of eye organs in life. One way to detect eye diseases that cause blindness is through ophthalmoscopy, with the results of the examination being an image of the fundus. This research uses the Convolution Neural Network (CNN) method with CO-ResNet architecture. The data used in this study were taken from an online database containing data on multi-class eye diseases. Preprocessing crop center and resize are used in this study so that the size of the image data can be used as model input. The optimization function to minimize the loss function when training the model used in this study is the Adam function with the hyperparameters setting are learning rate, epoch, 𝛽1, and 𝛽2. The loss function used for the multiclass classification problem in this study is categorical cross entropy. The results showed that the value obtained with the smallest training loss was 0.4066 and the smallest validation loss was 0.4950. Meanwhile, the best training accuracy value is 87% and the best validation accuracy is 79%. After going through the training process, a testing process is carried out to evaluate the performance of the model. The best testing results were obtained with testing accuracy values of 75.25%, precision of 75.6%, recall of 75.4%, and F1-score of 75.4%. Overall, the CO-ResNet method works quite well in classifying and detecting eye diseases."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mas Andam Syarifah
"Katarak menjadi penyebab kebutaan tertinggi di Indonesia. Dilaporkan oleh Kementrian kesehatan RI bahwa hasil survey yang dilakukan terhadap penduduk dibeberapa kota besar di Indonesia sebanyak 3% mengalami kebutaan, dan 81% dari nilai tersebut diakibatkan oleh katarak. Cara yang paling ampuh dalam mengatasi katarak ialah operasi dan perawatan setelahnya. Namun, diperlukan biaya 70 juta rupiah untuk operasi satu mata. Salah satu cara yang dihimbau ialah dengan mendeteksi dini pada kelainan mata. Pemeriksaan dilakukan oleh seorang spesialis mata yaitu Ophtalmology, dengan menggunakan bantuan fundus image mata dapat merepresentasikan keadaan pasien. Oleh karena itu diperlukan cara yang mampu mendeteksi katarak secara otomatis. Proses pembelajaran mesin menjadi cara yang banyak digunakan dalam menyelesaikan berbagai masalah, seperti masalah supervised atau masalah unsupervised. Untuk mengklasifikasi pasien katarak atau normal, dapat dibantu dengan metode Convolutional Neural Network (CNN) dengan model arsitektur VGG16 yang merupakan metode pembelajaran dengan algoritma deep learning biasa digunakan sebagai metode penyelesaian masalah gambar. Fundus image mata akan diekstrak menjadi fitur map yang akan menjadi ciri dari data. Kemudian setiap fitur map diolah melalui lapisan lainnya. Setiap lapisan berisikan parameter yang perlu dioptimasi agar proses pembelajaran data menjadi mudah dan efektif. Oleh karena itu diperlukan metode optimasi yang dapat mencari parameter terbaik yang dapat meminimumkan fungsi loss. Pada penelitian ini, dibangun metode optimasi RAdam berbasis Lookahead yang mampu mempercepat proses komputasi dan mempertahankan stabilitas dari learning rate. Dari hasil eksperimen pengklasifikasian fundus image mata katarak dan mata normal menggunakan model CNN dengan arsitektur VGG16 dan optimasi Lookahead-RAdam mendapatkan nilai loss 0,00608, akurasi 97,5% dan waktu lama proses 2388,081 detik.

Cataracts are the leading cause of blindness in Indonesia. It was reported by the Ministry of Health of the Republic of Indonesia that the results of a survey conducted on the population of several big cities in Indonesia were 3% blind, and 81% of this value was caused by cataracts. The most effective way to deal with cataracts is surgery and aftercare. However, it costs 70 million rupiah for one eye surgery. One of the recommended ways is for early detection of eye disorders. The examination is carried out by eye specialists, namely Ophthalmologists, using the help of a fundus image of the eye to represent the patient's condition. However, specialists in Indonesia are not evenly distributed throughout the country. Therefore, we need another way that can detect cataracts automatically. The machine learning approach is an approach that is widely used to solve various problems, such as supervised problems or unsupervised problems. There are many methods to help classify cataract or normal patients, one of which is by the Convolutional Neural Network (CNN) with the VGG16 architectural model which is a learning method with deep learning algorithms commonly used as a method of solving image problems. The Fundus image of the eye will be extracted into a feature map that will characterize the data. Then, each feature map is processed through other layers. Each layer contains parameters that need to be optimized so that the data learning process becomes easy and effective. Therefore, we need an optimization method that can find the best parameters that can minimize the loss function. In this study, constructed the RAdam optimization based Lookahead which is able to accelerate the computation process but also maintain the stability of the learning rate. From the experimental results of the classification of the fundus images of cataract and normal eye using the CNN model with the VGG16 architecture and the optimization Lookahead-RAdam, the value of loss is 0.00608, accuracy of 97.5% and a processing time of 2388.081 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Widi Nugroho
"Bayi prematur adalah bayi yang lahir dengan usia kehamilan kurang dari 37 minggu yang memiliki sistem saraf dan organ-organ yang belum sempurna sehingga lebih beresiko mengalami berbagai masalah kesehatan. Salah satu masalah kesehatan yang dapat terjadi adalah pada organ mata yang merupakan organ penting dalam perkembangan bayi. Retinopathy of Prematurity (ROP) merupakan salah satu penyakit mata yang terjadi pada bayi prematur yang disebabkan oleh pembentukan pembuluh darah retina yang tidak normal. Proses diagnosis yang dilakukan oleh dokter mata belum bisa mengatasi kenaikan jumlah kasus ROP, sehingga disini penulis menggunakan pendekatan deep learning untuk melakukan klasifikasi tingkat keparahan ROP pada citra fundus retina. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur ResNet50. Data yang digunakan pada penelitian ini merupakan data sekunder yang diperoleh dari online database Kaggle berupa 90 data citra fundus retina yang terbagi atas 38 citra bukan penderita ROP, 19 citra penderita ROP Stage 1, 22 citra penderita ROP Stage 2, dan 11 citra penderita ROP Stage 3. Pada tahap persiapan data, dilakukan perbaikan kontras citra menggunakan Contrast Limited Adaptive Histogram (CLAHE) dan image masking. Kemudian dilakukan resize citra menjadi ukuran 224×224. Data kemudian diaugmentasi menggunakan teknik flip horizontal dan rotation agar data menjadi lebih banyak yang kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 20% untuk data validation. Training model dilakukan menggunakan model dengan arsitektur ResNet50 dengan hyerparameter model yaitu batch size 64, learning rate 0.001, dan epoch sebanyak 30, fungsi optimasi Adam (Adaptive moment estimation), dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan berhasil memperoleh nilai rata-rata kinerja training model sebesar 99.714% dan 92.85% pada akurasi training dan akurasi validation-nya, selain itu diperoleh nilai 0.01864 dan 0.18434 pada loss training dan loss validation. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 97.352%, testing loss sebesar 0.0986374, dan AUROC sebesar 0.0955. Selain melakukan evaluasi kinerja, peneliti juga akan menggunakan GradCAM untuk menampilkan visualisasi ciri-ciri yang dianggap penting untuk nantinya membantu dokter dalam mengevaluasi ROP.

Premature infants are babies born with a gestational age of less than 37 weeks, and they have underdeveloped nervous systems and organs, making them more susceptible to various health issues. One of the health problems that can occur involves the eye, which plays a crucial role in the baby's development. Retinopathy of Prematurity (ROP) is one of the eye diseases that affects premature infants and is caused by abnormal blood vessel formation in the retina. The current diagnostic processes performed by ophthalmologists have not been effective in addressing the increase in ROP cases. Therefore, in this study, the author employs a deep learning approach to classify the severity of ROP in retinal fundus images. The deep learning method utilized is the Convolutional Neural Network (CNN) with the ResNet50 architecture. The research data consists of 90 retinal fundus images obtained from the online database Kaggle, comprising 38 images of non-ROP cases, 19 images of ROP Stage 1, 22 images of ROP Stage 2, and 11 images of ROP Stage 3. In the data preparation phase, the image contrast is enhanced using Contrast Limited Adaptive Histogram (CLAHE) and image masking techniques. Subsequently, the images are resized to 224×224 dimensions. Data augmentation is performed using horizontal flip and rotation techniques to increase the dataset, which is then split into 80% training data and 20% testing data. From the 80% training data, 20% is further allocated for validation data. The model is trained using the ResNet50 architecture with hyperparameters set to batch size 64, learning rate 0.001, and 30 epochs. The optimization function used is Adam (Adaptive Moment Estimation), and the loss function is categorical cross-entropy. The modeling process is repeated five times, and the average performance of the training model is achieved at 99.714% for training accuracy and 92.85% for validation accuracy, with training and validation losses of 0.01864 and 0.18434, respectively. As for the average performance of the testing model, the testing accuracy is 97.352%, the testing loss is 0.0986374, and the AUROC (Area Under the Receiver Operating Characteristic) is 0.0955. In addition to evaluating the model's performance, the researcher also employs GradCAM to visualize important features, which can assist doctors in evaluating ROP cases.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Taufiq Dardjat
"ABSTRAK
Percobaan dimaksudkan untuk mendeteksi dini kelainan glaukoma. Citra berwarna dari hasil pemotretan fundus okuler penderita glaukoma yang merupakan penyebab kebutaan dan menunjukan kelainan gambaran pada dijadikan sample. Selanjutnya dengan memanfaatan teknologi pengolahan citra berupa proyeksi radial dilakukan analisis citra tersebut. Metoda ini tergantung pada fakta bahwa area defek mempunyai refleksi yang lebih rendah pada panjang gelombang hijau dan biru dibanding area normal.
Metoda ini terdiri dari sampling dan sumasi(penjumlahan data) sepanjang garis radial antara dua lingkaran yang berpusat pada cup. Citra yang dipergunakan pada penelitian ini berupa foto fundus okuler berwarna yang didijitalisasi. Dari eksperimen ini dapat disimpulkan bahwa metoda ini dapat mendeteksi kelainan fundus yang relatif kecil dan dini yang biasanya hanya dapat ditemukan oleh ahli mata yang berpengalaman baik.
Metoda ini juga dapat dikatakan lebih baik dan praktis dan pada teknik enhansmen karena tidak membutuhkan iluminasi kompensasi, juga karena dapat mendeteksi cup secara otomatis.
Penelitian perlu dilanjutkan ke tahap aplikasi langsung tersebut sehingga penelitian ini semakin dekat pada pemanfaatan teknologi canggih ini untuk bidang kesehatan mata khususnya kelainan pada retina seperti glaukoma.

ABSTRACT
Early stage glaucoma can be diagnosed by finding retinal nerve fiber defect using color image processing. This method base on the refluctance of defect part has low value in green and blue wavelength. But the difference between defect part and their normal part is very little
Here, new method is proposed to detect that the small difference. This method consists of sampling and summation along the radial lines drawn between two circles whose centers are same and located at the center of the eye. Through experiments, it is found that the small difference of defect part that can be detected only by doctors with experience is detected by this method.
It is considered that this method is better than the color enhancement. And also, the detection of cup and blood vessel has been shown as the method to assist the automatic processing.
It is necessary to apply this method to many patients to check the usefulness of the method and will be continued to make full automatic processing system in the future."
Depok: Fakultas Kedokteran Universitas Indonesia, 1993
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Ardanareswari Chaerani
"Glaukoma adalah salah satu penyebab kebutaan terbanyak kedua di dunia yang disebabkan oleh tekanan yang meninggi pada bola mata. Dalam proses mendiagnosa glaukoma, dibutuhkan waktu yang lama dikarenakan tidak ada perubahan secara signifikan pada citra fundus. Pada penelitian ini, penulis menggunakan Convolutional Neural Network (CNN) untuk mengekstraksi fitur dan metode klasifikasi Deep Belief Network (DBN) dalam mengklasifikasi glaukoma pada data citra fundus. Hasil pada model CNN-DBN dibandingkan dengan metode ekstraksi fitur CNN dan klasifikasi Support Vector Machine (SVM) yang dinamakan model CNN-SVM. Arsitektur CNN yang digunakan pada penelitian ini adalah ResNet-50. Dataset yang digunakan dalam penelitian ini diperoleh dari 2 online database, yaitu cvblab dan kroy1809. Pada proses ekstraksi fitur, model dilatih dari fully connected layer pada ResNet-50. Kemudian, vektor fitur dari fully connected layer diklasifikasi menggunakan metode klasifikasi DBN dan SVM. Berdasarkan hasil simulasi, CNN-DBN memiliki hasil akurasi, precision, dan recall terbaik dibandingkan dengan metode CNN-SVM dan CNN dengan akurasi 96.46%, precision 95.86%, dan recall 98.05% pada pembagian dataset training dan testing 70:30.

Glaucoma is the second most common factor of blindness in the world caused by the increasing pressure on the eyeball. It takes a long time to diagnose glaucoma due no significant change in the fundus image. In this study, the author used the Convolutional Neural Network (CNN) to extract the features and the Deep Belief Network (DBN) classification method to classify glaucoma in fundus images. The results on the CNN-DBN model will be compared with to the CNN feature extaction method and the Support Vector Machine (SVM) classification method, named the CNN-SVM model. The CNN architecture used in this study is ResNet-50. The dataset used in this study are from 2 online database, cvblab and kroy1809. In the feature extraction process, the model is trained using the CNN method with the ResNet-50 architecture. Afterward, the feature vectors of the fully connected layer are classified using the DBN and SVM classification methods. Based on the simulation results, CNN-DBN has the best results than CNN-SVM and CNN method with the accuracy of 90%, precision of 95%, and recall of 92% with splitting data training and testing of 70:30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amnia Salma
"Retinopati Diabetik (RD) merupakan salah satu penyakit yang dapat menyebabkan penurunan fungsi penglihatan pada mata, bahkan dapat menyebabkan kebutaan jika penanganan yang dilakukan tidak tepat. Upaya penanganan penyakit RD dapat dilakukan dengan deteksi dini. Melalui pendeteksian dini, pasien RD dapat diobati sesuai dengan tingkat keparahan yang diderita. Namun, pemeriksaan penyakit RD membutuhkan waktu yang lama dan hanya dapat dilakukan oleh profesional.
Para peneliti telah mengembangkan sistem deteksi pengklasifikasian penyakit RD yang dengan memanfaatkan perkembangan teknologi seperti penerapan Artifficial Intelligence (AI) pada gambar fundus. Dalam penelitian ini, peneliti mengaplikasikan Attention Mechanism (AM) pada Convolutional Neural Network (CNN) untuk selanjutnya menganalisis dan mengevaluasi hasil dari kinerja algoritma tersebut dalam mengklasifikasikan RD ke dalam level normal, mild, moderate, severe dan PDR. AM berfokus pada daerah yang berpenyakit dan CNN digunakan untuk proses klasifikasi. Arsitektur CNN yang digunakan adalah AlexNet dan GoogleNet. Phyton digunakan sebagai bahasa pemrograman dengan perpustakaan Pytorch. Hasil performa akurasi yang paling tinggi diperoleh oleh GoogleNet dan AM dengan capaian akurasi mencapai 85%. Performa model pada tiap-tiap kelas menunjukkan nilai akurasi terbaik pada kelas normal, severe, dan PDR dengan capaian nilai f-1 score masing-masing 86%, 90% dan 95%. Sementara untuk kedua kelas lainnya yaitu mild dan moderate cenderung lebih rendah, yaitu 73% dan 76%. Hal ini menunjukkan bahwa model mampu mengklasifikasikan kelas normal, Severe, dan PDR lebih baik daripada mild dan moderate.

Diabetic retinopathy (DR) is a disease that can cause decreased vision function in the eye, and can even lead to blindness. Efforts to treat DR disease can be done with early detection. Through early detection, DR patients can be treated according to their severity. However, DR disease examination takes a long time and can only be done by a professional.
Researchers have developed a detection system for classifying DR disease by technological developments such as the application of Artifficial Intelligence to fundus images. In this study, the researchers applied the Attention Mechanism (AM) to CNN to further analyze and evaluate the results of the algorithm's performance in classifying RD into normal, mild, moderate, severe and PDR levels. AM focused on pathological area in the fundus images and CNN is used as classifier. We used Architecture of CNN such AlexNet and GoogleNet. The results of the highest accuracy performance were obtained by GoogleNet and AM with the achievement of 85%. The performance of the model in each class shows the best accuracy values in the normal, severe, and PDR classes with the achievement of f-1 scores of 86%, 90% and 95%, respectively. Meanwhile, the other two classes, namely mild and moderate, tended to be lower, namely 73% and 76%. This shows that the model is able to classify normal, severe, and PDR classes better than mild and moderate.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>