Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 193023 dokumen yang sesuai dengan query
cover
Athiyyah Fadillah Eriri
"Pengelompokan atau clustering adalah pengelompokan objek-objek yang dilakukan atas dasar kesamaan atau jarak (perbedaan) di mana tidak ada asumsi yang dibuat mengenai banyaknya cluster atau struktur cluster. Salah satu metode yang banyak digunakan dalam penyelesaian masalah clustering adalah algoritme K-Means. Pada algoritme ini, suatu objek yang telah menjadi anggota cluster tertentu, tidak bisa menjadi anggota cluster yang lainnya. Metode ini dikenal sebagai hard clustering. Pendekatan lain dalam melakukan pengelompokan didasarkan pada teori himpunan fuzzy yang dikenal dengan pengelompokan fuzzy. Teori himpunan fuzzy memiliki nilai kekaburan antara salah atau benar. Jadi, dalam melakukan pengelompokan, setiap objek memiliki peluang menjadi anggota pada setiap cluster. Salah satu metode pengelompokan fuzzy adalah Fuzzy C-Means (FCM). Pada tugas akhir ini, metode K-Means dan FCM digunakan untuk mengelompokkan nagari-nagari di Kabupaten Agam. Nagari-nagari di Kabupaten Agam dikelompokan berdasarkan indikator pembangunan keluarga yang berasal dari Laporan Pendataan Keluarga tahun 2015 yang bersumber dari BKKBN (Badan Kependudukan dan Keluarga Berencana Nasional). Pada penelitian ini diperoleh empat cluster hasil dari indeks xie and beni. Jumlah anggota setiap cluster hasil dari algoritme K-Means adalah 32, 28, 11 dan 11. Sedangkan jumlah anggota setiap cluster hasil dari algoritme Fuzzy C-Means adalah 31, 18, 21, dan 12. Perbedaan jumlah anggota cluster yang dihasilkan algoritme K-Means dan Fuzzy C-Means adalah 14.29%. Karena rasio simpangan baku dalam dan antar cluster pada algoritme K-Means memberikan nilai yang lebih kecil dibandingkan algoritme Fuzzy C-Means maka algoritme K-Means memberikan hasil yang lebih baik dari pada algoritme Fuzzy C-Means dalam pengelompokan nagari-nagari di Kabupaten Agam.

Grouping or clustering is a method to group objects that are carried out on the basis of similarity or distance (difference) where no assumptions are made regarding the number of clusters or cluster structures. One method that is widely used in solving clustering problems is the K-Means algorithm. In this algorithm, if an object has become a member of a particular cluster, then it cannot become a member of another cluster. This method is known as hard clustering. Another approach to grouping is based on fuzzy set theory, known as fuzzy grouping. Fuzzy set theory has a blurring value between right or wrong. So, in grouping process, each object has the opportunity to become a member in each cluster. One of the fuzzy grouping methods is Fuzzy C-Means. In this study, the two methods, K-Means and Fuzzy C-Means, are used to group nagari-nagari in Agam District. Nagari is equivalent to villages in other provinces in Indonesia. The nagari grouping in Kabupaten Agam is based on family development indicators derived from the 2015 Family Data Collection Report sourced from BKKBN (Badan Kependudukan dan Keluarga Berencana Nasional). In this study four clusters were obtained based on xie and beni’s index. The numbers of members of each cluster as the result of the K-Means algorithm are 32, 28, 11 and 11. While the numbers of members of each cluster as the result of the Fuzzy C-Means algorithm are 31, 18, 21, and 12. The different cluster members produced by the K-Means and Fuzzy algorithms C-Means is 14.29%. Because the standard deviation ratio within and between clusters in the K-Means algorithm gives a smaller value than the Fuzzy C-Means algorithm, the K-Means algorithm gives better results than the Fuzzy C-Means algorithm on the nagari grouping in Agam District."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reza Andrea
"Ketidakmampuan siswa dalam menyerap berbagai pengetahuan yang disampaikan oleh guru bukan dikarenakan ketidakmampuan pemahamannya dan bukan pula dikarenakan guru tidak mampu mengajar, melainkan dikarenakan ketidakcocokan gaya belajar antara siswa dan guru, sehingga siswa merasa tidak nyaman belajar pada guru tertentu. Hal tersebut juga terjadi di SMKN 2 Penajam Paser Utara, sehingga perlu dilakukan penelitian ini, untuk menganalisis cluster (kelompok) tipe belajar siswa dengan menerapkan metode data mining yaitu K-Means dan Fuzzy C-means. Tujuan adalah mengetahui keefektivan clustering tipe belajar ini terhadap perkembangan daya serap dan peningkatan prestasi belajar siswa. Metode yang digunakan untuk melakukan clustering tipe belajar dengan proses data mining
dimulai dari tahap data cleaning, data selection, data transformation, penambangan data, pattern evolution, dan pengembangan pengetahuan."
Jakarta: Pusat Penelitian dan Pengembangan Sumber Daya, Perangkat, dan Penyelenggaraan Pos dan Informatika Kementerian Komunikasi dan Informatika, 2017
607 JPPI 7:2 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Budyono Saputro
"ABSTRAK
Pengenalan pembicara telah digunakan secara luas dalam kehidupan sehari-hari yang telah menjadi cabang penting dari otentifikasi secara otomatisuntuk identitas pembicara. Ekstraksi fitur suara adalah salah satu masalah yang penting dalam pengenalan pembicara dan merepresentasikan suara. Mel-frequency cepstrum coefficients (MFCC) adalah salah satu fitur penting suara dalam proses pengenalan pembicara. Hasil dari ekstraksi fitur ini selanjutnya akan diklasifikasikan untuk melakukan proses pengenalan pembicara. Dalam skripsi ini akan digunakan Perceptron dan Fuzzy C-Means sebagai metode klasifikasi untuk proses pengenalan pembicara. Tingkat akurasi yang diperoleh dari kedua metode ini menghasilkan 90.00% dengan menggunakan Perceptron dan 72.50% dengan menggunakan Fuzzy C-Means untuk masalah identifikasi pembicara texr-independent."
Universitas Indonesia, 2011
S823
UI - Skripsi Open  Universitas Indonesia Library
cover
Sukim
"Cluster analysis is a mult ivariate analysis technique used to classify objects such that the objects in a cluster are very similar and the objects in different clusters are quite different. This study will discuss the non-hierarchical clustering methods. The methods are C-Means Cluster and Fuzzy C-Means Cluster. These methods are suitable for large data and continuous variables. This study would also present the application of the methods on the case of village grouping according to the underdevelopment status in two regions of level II (Kota Metro and Kabupaten Lampung Timur) in Lampung Province. The unit of observations in this study are 257 villages in Kota Metro (22 villages) and Kabupaten Lampung Timur in Lampung Province obtained from the Village Potential Statistics (Podes - Potensi Desa) 2008.
The results show that the optimal cluster in Kota Lampung data is 4, with a minimum value of the Fukuyama-Sugeno validity index is at -45.4649. As for the data of Kabupaten Lampung Timur, theoptimumnumber ofclustersis13,with aminimum value of the Fukuyama-Sugeno validity index is at 196.9629."
Jakarta: Sekolah Tinggi Ilmu Statistik (STIS-Statistics Institute Jakarta, 2014
JASKS 6:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Aldi Purwanto
"

Kanker merupakan salah satu penyakit dengan angka kematian tertinggi di dunia. Kanker adalah penyakit ketika sel-sel abnormal tumbuh tidak terkendali yang dapat menyerang organ tubuh yang berdampingan atau menyebar ke organ lain. Untuk mendiagnosis kanker paru-paru dapat dilakukan dengan pengambilan gambar rontgen, CT scan, dan biopsi jaringan paru. Tujuan dari penelitian ini adalah untuk memprediksi apakah pasien menderita kanker paru-paru atau tidak, dengan menggunakan data gambar CT scan mereka. Oleh sebab itu, dalam penelitian ini digunakan ekstraksi fitur dari gambar CT scan sebagai data untuk mengklasifikasi kanker paru-paru. Data yang digunakan merupakan data gambar CT scan yang didapat dari SPIE-AAPM Lung CT Challenge 2015. Gambar CT scan paru-paru dengan ukuran 512x512 sebelumnya dilakukan pre-processing 2D crop dan filtering. Dengan mengekstraksi fitur dari data gambar seperti ukuran nodul, Gray Level Co-occurrence Matriks (GLCM), dan Local Binary Pattern (LBP) dapat mengubah data gambar menjadi numerik. K-Fold Cross Validation digunakan untuk memisahkan data menjadi data training dan data testing. Fuzzy C-Means (FCM) dan Fuzzy Kernel C-Means (FKCM) diterapkan untuk pengklasifikasian. Didapatkan performa FKCM lebih baik dibandingkan FCM, dengan rata-rata akurasi 75.60%, precision 83.05%, dan specificity 87.80%. Oleh karena itu, penambahan kernel pada metode Fuzzy C-Means dapat meningkatkan performa dari metode tersebut


Cancer is one of the diseases with the highest mortality rate in the world. Cancer is a disease when abnormal cells grow out of control that can attack the body's organs side by side or spread to other organs. To diagnose lung cancer can be done by taking x-ray images, CT scans, and lung tissue biopsy. The purpose of this study is to classify whether patients have lung cancer or not using their CT scan image data. Therefore, in this study feature extraction from CT images was used as data to classify lung cancer. The data used in the form of CT scan image obtained from SPIE-AAPM Lung CT Challenge 2015. Previously, a CT scan of the lung with a size of 512x512 was pre-processed 2D crop and filtering. By extracting features from image data such as nodule size, Gray Level Co-occurrence Matrix (GLCM), and Local Binary Pattern (LBP) can convert image data to numeric. K-Fold Cross Validation is used to separate data into training data and testing data. Fuzzy C-Means (FCM) and Fuzzy C-Means (FKCM) are applied for classification. FKCM performed better than FCM, with 75.60% average accuracy, 83.05% average precision, and 87.80% average specificity. Therefore, adding a kernel to the Fuzzy C-Means method can improve the performance of the method.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cynthia
"Dengue adalah salah satu penyakit endemik yang terjadi pada banyak daerah sub tropis dan tropis. Nyamuk Aedes aegypti merupakan vektor utama penyakit dengue. Jumlah insiden dengue telah meningkat secara drastis di seluruh dunia dalam beberapa dekade terakhir. Perubahan iklim dapat menyebabkan perubahan curah hujan, suhu, kelembapan, dan arah udara, sehingga dapat berpengaruh pada perkembangbiakan hidup nyamuk Aedes. Pada skripsi ini, penulis mengimplementasikan algoritma ­K-Medoids dan Fuzzy C-Means Clustering menggunakan jarak Euclidean pada data insiden dengue dan cuaca yang diambil dari kelima wilayah di DKI Jakarta pada tahun 2009 hingga 2016. Variabel yang digunakan terdiri atas rata-rata temperatur, rata-rata kelembapan udara relatif, curah hujan, dan insiden dengue. Proses implementasi dalam skripsi ini dibedakan atas 2 skenario penelitian, yaitu menggunakan 4 variabel yang telah disebutkan di atas dan 3 variabel (variabel yang sama seperti sebelumnya, namun tanpa variabel insiden dengue). Tujuan penelitian dalam skripsi ini adalah menganalisis keterkaitan antara variabel cuaca tersebut dan insiden dengue dari kelima wilayah di DKI Jakarta. Untuk menentukan jumlah klaster yang digunakan, pada metode K-Medoids Clustering dilakukan perhitungan Silhouette Coefficient dan pada metode Fuzzy C-Means Clustering dilakukan perhitungan Modified Partition Coefficient. Hasil menunjukkan bahwa terdapat korelasi yang cenderung positif antara insiden dengue dengan rata-rata kelembapan udara relatif dan jumlah curah hujan di DKI Jakarta. Sementara itu, terdapat korelasi yang cenderung negatif antara jumlah insiden dengue dengan rata-rata temperatur di DKI Jakarta. Hasil dari kedua skenario menunjukkan bahwa terdapat kemiripan nilai rata-rata temperatur yang terjadi antara Jakarta Pusat dan Jakarta Utara, serta antara Jakarta Timur, Jakarta Selatan, dan Jakarta Barat. Kemiripan nilai rata-rata kelembapan udara relatif juga terjadi pada wilayah-wilayah seperti yang telah disebutkan sebelumnya. Hasil dari kedua skenario juga menunjukkan bahwa insiden dengue yang terjadi di Jakarta Pusat dan Jakarta Utara cenderung lebih rendah dari Jakarta Timur, Jakarta Barat, dan Jakarta Selatan. Berdasarkan hasil yang diperoleh, pembentukan klaster pada skenario pertama cenderung dipengaruhi oleh jumlah insiden dengue. Sementara itu, pembentukan klaster pada skenario kedua cenderung dipengaruhi oleh jumlah curah hujan.

Dengue is an endemic disease prevalent in sub-tropical and tropical regions. The Aedes aegypti mosquito is the main vector of dengue. Dengue incidence has been rising dramatically throughout the last few decades. Climate change may lead to changes in rainfall, temperature, humidity, and wind direction, so that it can affect the breeding of Aedes mosquitoes. In this study, we employ K-Medoids Clustering and Fuzzy C-Means (FCM) Clustering algorithms using Euclidean distance on five regions in DKI Jakarta every year from 2009 to 2016. The variables used consist of average temperature, average relative humidity, rainfall, and dengue incidence. The implementation process in this study is divided into 2 research scenarios. Firstly using the 4 variables that was mentioned above, and secondly using 3 variables (the same variables as before, but without the dengue incidence variable). The purpose of this study is to analyze the relationships between these weather variables and dengue incidence in the five regions in DKI Jakarta. In order to determine the number of clusters used, for K-Medoids Clustering we determine the Silhouette Coefficient, and for Fuzzy C-Means Clustering we determine the Modified Partition Coefficient. The results show that there tends to be a positive correlation between the number of dengue incidence with average relative humidity and the amount of rainfall. On the other hand, there tends to be a negative correlation between the number of dengue incidence with the average temperature. The results of the two scenarios show that there are similarities in the average temperature between Central Jakarta and North Jakarta, as well as between the East Jakarta, South Jakarta, and West Jakarta. Similarities in the average relative humidity also occur in the areas mentioned before. The results of both scenarios also show that the dengue incidence in Central Jakarta and North Jakarta tend to be lower than in East Jakarta, West Jakarta, and South Jakarta. Based on the results, cluster formation in the first scenario tends to be influenced by the number of dengue incidence. Meanwhile, cluster formation in the second scenario tends to be influenced by the amount of rainfall."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Egira Adhani Khairunnisa
"

Saat ini tidak ada keraguan bagi siswa-siswi sekolah menengah untuk melanjutkan pendidikannya ke jenjang universitas. Namun, transisi dari sekolah menengah ke pendidikan tinggi adalah tantangan besar bagi mahasiswa tahun pertama. Kinerja mahasiswa pada tahun pertama cenderung menentukan kinerja mahasiswa tersebut di tahun-tahun akademik berikutnya. Penting untuk mencari karakteristik-karakteristik mahasiswa berdasarkan kinerjanya pada awal tahun semester akademik, sehingga dapat dilakukan pendeteksian awal untuk mencegah penurunan kinerja dan meningkatkan prestasi akademik mahasiswa. Penelitian ini bertujuan untuk mengelompokkan 140 mahasiswa semester pertama. Fitur-fitur diseleksi menggunakan Chi-Square lalu digunakan Fuzzy C-Means clustering untuk mengelompokkan mahasiswa. Dari hasil simulasi, mahasiswa dikelompokkan ke dalam dua cluster dengan kinerja cluster kedua lebih baik dibanding kinerja cluster pertama.


Currently there is no doubt for high school students to continue their education at the university level. However, the transition from high school to university is a major challenge for the first-year students. Moreover, student performance during the first year tends to determine their performance in the following academic years. It is important to find student's characteristics based on their performance at the beginning of the academic semester so that early detection can be done to prevent performance degradation and increase student academic achievement. This study aims to cluster 140 first year students. Features are selected using the Chi-Square feature selection method and then using Fuzzy C-Means clustering to group the students. From simulation result, students are grouped into two clusters with the second cluster's performance is better than the first cluster's performance.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andi Wulan Lestari A.
"Dalam dekade terakhir ini, kanker menjadi pusat perhatian dunia kesehatan dikarenakan penyakit ini termasuk dalam penyebab utama kematian di seluruh dunia. Menurut statistik GLOBOCAN, International Agency for Research on Cancer IARC pada tahun 2012, terdapat 14.067.894 kasus kanker baru dengan 8.201.575 kematian akibat kanker di seluruh dunia. Oleh sebab itu, dibutuhkan tindakan pencegahan dan pengobatan yang efektif. Salah satunya dengan metode klasifikasi kanker. Metode klasifikasi kanker dapat dijadikan sebagai alat bantu tenaga medis untuk menangani kanker. Dalam tugas akhir ini diusulkan algoritma untuk mengklasifikasikan data kanker dengan menggunakan Fuzzy Possibilistic C-means FPCM dan metode baru yang menggunakan Normed Kernel Function-based Fuzzy Possibilistic C-means NKFPCM. Tujuannya untuk mendapatkan keakuratan terbaik dalam pengklasifikasian data kanker. Untuk meningkatkan keakuratan dua metode tersebut, dilakukan evaluasi kandidat fitur dengan menggunakan pemilihan fitur. Untuk pemilihan fitur digunakan metode Laplacian Score. Hasil yang diperoleh menunjukkan perbandingan keakuratan dan running time dari FPCM dan NKFPCM tanpa dan dengan dilakukan pemilihan fitur. Hasilnya, didapatkan akurasi terbaik saat dengan menggunakan metode NKFPCM dengan dilakukan pemilihan fitur, yaitu 90,91 dengan penggunaan 750 fitur untuk data kanker kandung kemih, 100 dengan penggunaan 250 fitur untuk data kanker darah leukemia , 96,67 dengan penggunaan 3.000 fitur untuk data kanker prostat, dan 100 dengan penggunaan 250 fitur untuk data kanker lambung.

Over the past decade, cancer has become the center of attention in the medical field due to its reputation as one of the main causes of death in the worldwide. According to GLOBOCAN statistics, International Agency for Research on Cancer IARC , there were 14,067,894 new cancer cases and 8,201,575 cancer related deaths occurred in 2012. Therefore, preventive actions and effective treatments are required to reduce these threats. One method of handling of cancer using cancer classification. Cancer classification method can be used as aids to handle Cancer. This research proposed an algorithm to classify cancer data using Fuzzy Possibilistic C Means FPCM and a new method, Normed Kernel Function Based Fuzzy Possibilistic C Means NKFPCM. The purpose of this research is to obtain the best accuracy in the classification of cancer data. To improve the accuracy of these two methods, the feature candidate will be evaluated using feature selection. The feature selection was conducted using Laplacian Score. The results obtained show the comparison of the accuracy and running time of FPCM and NKFPCM without and with feature selection. The results show that the best accuracy obtained when using NKFPCM with features selection, with percentage of 90.91 by using 750 features for bladder cancer data, 100 by using 250 features for blood cancer leukemia data, 96.67 by using 3,000 features for prostate cancer data, and 100 by using 250 features for gastric cancer data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66693
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akmal Fikri
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27814
UI - Skripsi Open  Universitas Indonesia Library
cover
Hendy Fergus Atheri Hura
"ABSTRAK
Penelitian ini mengimplementasikan metode spectral clustering-Fuzzy C-Means pada tiga microarray data ekspresi gen, dengan tujuan untuk mengelompokkan gen-gen yang memiliki tingkat ekspresi yang similar. Spectral clustering secara teoritis terdiri dari tiga tahap utama yaitu: membangun matriks jarak, membentuk matriks Laplacian, dan proses partisi, khususnya dalam tesis ini menggunakan algoritma partisi Fuzzy C-Means. Oleh karena itu, implementasi dari spectral clustering-FCM lebih sederhana dan intuitif pada pelaksanaannya. Analisis cluster singkat juga akan dipaparkan untuk masing-masing microarray data yang digunakan yaitu: Carcinoma, Leukemia, dan Lymphoma. Hasil cluster yang sangat baik didapatkan, sehingga metode yang diusulkan memiliki potensi besar ke depannya dalam penelitan pada bidang medis.

ABSTRACT
This research implements the spectral clustering FCM method on three microarray gene expression data, with the aim of grouping genes with similar expression levels. Spectral clustering is theoretically composed of three main stages building distance matrix, forming Laplacian matrix, and partitioning process, especially in this thesis using Fuzzy C Means partition algorithm. Therefore, the implementation of spectral clustering FCM is simpler and more intuitive in its implementation. Brief cluster analysis will also be presented for each microarray data used Carcinoma, Leukemia, and Lymphoma. Excellent cluster results are obtained, so the proposed method has great potential for future research in the medical field. "
2017
T48274
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>