Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 157446 dokumen yang sesuai dengan query
cover
Awal Try Surya
"Lemak, laktosa, dan protein merupakan tiga komponen penting yang dimiliki pada susu sebagai komponen kualitas susu. Kadar lemak, laktosa, dan protein susu dapat diukur menggunakan instrumen pengukur spektrofotometer, laktoscan, dan metode konvensional lainnya. Namun dari instrumen-instrumen pengukuran tersebut masih cukup mahal, memerlukan waktu yang lama untuk mempersiapkan sampel dengan prinsip kemometrik, sehingga dapat merusak sampel. Dalam penelitian ini dirancang sistem pengukuran kadar lemak, laktosa, dan protein pada susu yang lebih murah, efisien, dan tidak merusak sampel menggunakan kamera hiperspektral sebagai instrumen pengukuran dan berbasis convolutional neural network sebagai algoritma pengukuran. Kamera hiperspektral yang digunakan pada rentang panjang gelombang 400 -1000 nm (VIS-NIR) digunakan untuk mengakuisisi karakteristik spasial dan spektral pada susu ultra high temperature (UHT), sapi, kambing. Algoritma regresi convolutional neural network digunakan untuk melakukan prediksi nilai kadar lemak, laktosa, dan protein pada susu. Pada model regresi Modified CNN-GoogLeNet menghasilkan RMSE sebesar 0,66 dan R2 sebesar 0,95 pada data uji untuk pengukuran kadar lemak. Lalu RMSE sebesar 0,45 dan R2 sebesar 0,88 pada data uji untuk pengukuran kadar laktosa. Kemudian RMSE sebesar 0,36 dan R2 sebesar 0,76 pada data uji untuk pengukuran kadar protein. Hal ini menunjukan sistem pengukuran kadar lemak, laktosa, dan protein menggunakan kamera hiperspektral berbasis algoritma Modified CNN-GoogLenet dapat digunakan untuk prediksi kadar lemak, laktosa, dan protein.

Fat, lactose, and protein are three important components in milk as a component of milk quality. The fat, lactose, and protein content of milk can be measured using a spectrophotometer, lactoscan, and other conventional methods. However, these measurement instruments are quite expensive, require a long time to prepare samples with chemometric principles, so it can damage the sample. In this research, a system for measuring fat, lactose, and protein content in milk is designed that is cheaper, and does not damage the sample (non-destructive) using hyperspectral camera as a measurement instrument and based on a convolutional neural network as a measurement algorithm. Hyperspectral camera used in the wavelength range of 400 -1000 nm (VIS-NIR) was used to acquire the spatial and spectral characteristics of ultra high temperature (UHT), cows, goats milk. Convolutional neural network regression algorithm was used to predict the content of fat, lactose, and protein in milk. The CNN-GoogLeNet Modified regression model give RMSE value is 0.66 and R2 value is 0.95 in the test data to measure fat content. Then RMSE value is 0.45 and R2 value is 0.88 on the test data to measure lactose content. Then RMSE value is 0.36 and R2 value is 0.76 on the test data to measure protein content. This shows that the measurement system for fat, lactose, and protein content using a hyperspectral camera based on the Modified CNN-GoogLenet algorithm can be used to predict fat, lactose, and protein levels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nugi Asmara
"Susu merupakan makanan penyempurna gizi pada manusia. Tidak hanya berasal dari sumber hewani seperti sapi dan kambing, akan tetapi susu juga dapat diperoleh dari tumbuhan seperti kedelai dan kelapa. Karakteristik kandungan yang berbeda pada setiap jenis susu memiliki potensi identifikasi yang berbeda-beda, berdasarkan proses pengolahan, nutrisi, kemurnian, kualitas, dan lain-lain. Penelitian ini bertujuan untuk membuat sistem klasifikasi jenis susu dengan metode yang nondestruktif memanfaatkan citra hiperspektral dan algoritma Deep Learning. Penelitian ini memanfaatkan kamera hiperspektral pada rentang Visible and Near-Infrared (VNIR) yang berada pada rentang 400 - 1000 nm. Penelitian ini meggunakan Convolutional Neural Network (CNN) sebagai algoritma pengklasifikasian citra. Sampel susu yang digunakan berasal dari sapi, kambing, kedelai, dan kelapa (santan) dengan total data mencapai 1920. Semua data yang telah diperoleh kemudian dibuat datasetnya sesuai dengan tipe klasifikasi yang akan diuji. Klasifikasi mencakup jenis susu dengan kelas hewani dan nabati, organisme sumber dengan kelas santan, sapi, kambing, dan kedelai, dan proses pengolahannya dengan kelas segar dan (Ultra High Temperature) UHT. Algoritma CNN yang diuji adalah sebanyak 3 arsitektur, yaitu GoogleNet, AlexNet, dan Proposed CNN. Akurasi tertinggi dengan jumlah data 480 terjadi pada klasifikasi proses pengolahan susu kedelai yang mencapai 100% untuk ketiga arsitektur, dengan waktu komputasi 20 detik. Akurasi tertinggi dengan jumlah data 1920 diperoleh pada kelas jenis susu yang mencapai 99,9% untuk arsitektur Proposed CNN dengan waktu komputasi 78 detik. Hasil ini menunjukkan bahwa citra hiperspektral dan algoritma CNN mampu menjadi kombinasi baik untuk mengklasifikasikan jenis susu.

Milk is a beverage that completes human nutrition. It is not only produced by animal such as cow and goat, but also can be obtained by plant such as soy and coconut. The nutrition composition contained on milks are different one another. The differences of nutrition composition have their identification potential, such as the processing, nutrition differences, purity, quality, etc. Hence, it is necessary to build a system that able to identify milk types with a nondestructive method utilizing hyperspectral image and Deep Learning algorithm. This research utilized hyperspectral camera at Visible and Near-Infrared (VNIR) range of light (400 – 1000 nm). We used Convolutional Neural Network (CNN) as its image classification algorithm. Milk sample was collected from cow, goat, soy, and coconut and obtained exactly 1920 datas. After the data collected, we created datasets based on type of classification it would be tested. The classification includes milk types with classes of animal-based and plant-based milk, the organisms that produce the milk with classes of coconut, cow, goat, and soy, and the processing method with classes of fresh and Ultra High Temperature (UHT). The tested algorithms of CNN architecture are GoogleNet, AlexNet, and Proposed CNN. The highest accuracy for 480 data was 100% reached by processing method classification of soy milk and the computation took only 20 seconds. Meanwhile, the highest accuracy for 1920 data was 99,9% reached by Proposed CNN architecture and the computation took only 78 seconds. These results showed that hyperspectral imaging and CNN algorithm are suitable for classifying types of milk. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diaz Ramadhan
"
Klorofil merupakan sekelompok pigmen amfifilik berwarna hijau yang memainkan peran
penting dalam proses fotosintesis. Ekstraksi dari klorofil secara tradisional kebanyakan akan
melibatkan teknik yang destruktif dan dapat mendegradasi molekul klorofil sehingga akan
mengurangi properti dari fungsionalitas senyawa. Dengan kemajuan teknologi, teknik untuk
ekstraksi klorofil dapat dilakukan dengan metode non-destruktif. Penelitian ini
memanfaatkan perkembangan teknologi tersebut dengan mencoba untuk
mengaplikasikannya untuk memprediksi kandungan klorofil berdasarkan varietas daun
menggunakan citra multispectral pada model ML dengan arsitektur CNN (Convolutional
Neural Network). Penelitian ini dilakukan dengan mencari sampel dari varietas daun untuk
mendapatkan populasi data, sampel-sampel tersebut akan diambil citranya dan diproses
sehingga tercipta suatu dataset yang dapat digunakan. Dataset-dataset ini selanjutnya akan
diberi beberapa perlakuan berbeda dan akan dicabangkan dengan augmentasi yang akan
menjadi varian dataset. Model dari arsitektur CNN yang digunakan berupa AlexNet dan
ResNet-18 yang dilatih untuk mendapatkan model regresi. Analisa dari hasil akan dilakukan
dengan mencari hasil akhir metrik R2 dan RMSE yang akan dibandingkan untuk uji
performa pada tiap dataset dengan model yang digunakan. Berdasarkan model yang telah
dilatih, dataset dengan performa terbaik berupa dataset 6 Channel dengan nilai pada model
AlexNet dengan parameter RMSE sebesar 8.02 pada label latih dan 8.76 pada label validasi,
dengan nilai R2 sebesar 0.84 pada label latih dan 0.79 pada label validasi. Sedangkan pada
model ResNet, dataset 6 Channel masih memiliki nilai performa terbaik pada kedua metrik
parameter. Namun, pada model ResNet, seluruh dataset mengalami penurunan performa
yang jauh dibanding model AlexNet, hal ini dapat disebabkan oleh sampel dataset yang
diambil maupun perlakuan dari dataset yang digunakan pada model ini.

Chlorophyll is a group of green amphiphilic pigments that play an important role in the
process of photosynthesis. Extraction of chlorophyll traditionally mostly involves
destructive techniques and can degrade the chlorophyll molecules, thereby reducing the
functional properties of the compounds. With the advancement of technology, techniques
for chlorophyll extraction can be done with non-destructive methods. This research utilizes
these technological developments by trying to apply them to predict chlorophyll content
based on leaf varieties using multispectral images in the ML model with CNN
(Convolutional Neural Network) architecture. This research is carried out by finding
samples of leaf varieties to obtain population data, these samples will be taken and processed
to create a dataset that can be used. These datasets will then be given several different
treatments and will be branched out with augmentation which will become variant datasets.
The models of the CNN architecture used in the form of AlexNet and ResNet-18 are trained
to obtain a regression model. Analysis of the results will be done by finding the final results
of the R2 and RMSE metrics which will be compared for performance testing on each dataset
with the model used. Based on the models that have been trained, the dataset with the best
performance is the 6 Channel dataset with a value on the AlexNet model with RMSE
parameters of 8.02 on the training label and 8.76 on the validation label, with an R2 value
of 0.84 on the training label and 0.79 on the validation label. While in the ResNet model,
the 6 Channel dataset still has the best performance value on both parameter metrics.
However, in the ResNet model, all datasets experience a significant decrease in performance
compared to the AlexNet model, this can be caused by the dataset samples taken or the
treatment of the datasets used in this model.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Laksmana Pratama
"Turbiditas merupakan salah satu indikator yang dapat digunakan untuk menilai kualitas air. Turbiditas dapat diukur menggunakan instrumen konvensional seperti turbidimeter, spektrofotometer, dan nefelometri visual. Namun, semua instrumen tersebut memiliki kekurangannya masing-masing, seperti biaya yang relatif tinggi dan kurang efisien. Pada penelitian ini diusulkan metode pengukuran yang lebih terjangkau dan efisien dengan memanfaatkan kamera ponsel, serta model regresi support vector regression dan EfficientNet-B0 berbasis convolutional neural network sebagai instrumen pengukuran. Akuisisi citra dilakukan di dua lingkungan. Lingkungan 1 didefinisikan sebagai lingkungan dengan cahaya langsung yang menyinari sampel, mengikuti prinsip turbidimetri, sedangkan lingkungan 2 didefinisikan sebagai lingkungan dengan pencahayaan yang bergantung hanya kepada cahaya sekitar dengan intensitas cahaya yang tak tentu. Citra yang telah diakuisisi oleh ponsel melalui berbagai proses prapengolahan data seperti segmentasi, augmentasi, penerapan filter Gaussian, dan ekstraksi fitur saturasi dan tekstur sebelum diteruskan ke model regresi. Dari hasil evaluasi didapatkan kesimpulan bahwa model EfficientNet-B0 lebih unggul dibandingkan dengan support vector regresssion dengan fitur saturasi, tekstur maupun gabungan. Model EfficientNet-B0 mendapatkan nilai R2 sebesar 0.992, MAE sebesar 2.474 dan MSE sebesar 10.669 untuk citra lingkungan 1, dan nilai R2 sebesar 0.97, MAE sebesar 3.333 dan MSE sebesar 29.137 untuk citra lingkungan 2.

Turbidity is an indicator that can be used to assess water quality. Turbidity can be measured using conventional instruments such as turbidimeter, spectrophotometer, and visual nephelometry. However, all of these instruments have their respective drawbacks, such as relatively high costs and inefficient. In this study, a more affordable and efficient measurement method is proposed by utilizing a cellphone camera, as well as a support vector regression and EfficientNet-B0 model based on convolutional neural network as a measurement instrument. Image acquisition will be carried out in two environments. Environment 1 is defined as an environment with direct light shining on the sample, following the principle of turbidimetry, while environment 2 is defined as an environment in which the illumination depends on the ambient light with an indeterminate light intensity. The image that has been acquired by the cellphone will go through various data preprocessing processes such as segmentation, augmentation, application of Gaussian filters, and extraction of saturation and texture features before being forwarded to the regression model. From the evaluation results, it can be concluded that the EfficientNet-B0 model is superior to the support vector regression with saturation, texture, or combined features. The EfficientNet-B0 model gets an R2 value of 0.992, an MAE of 2.474 and an MSE of 10,669 for environment 1 image, and an R2 value of 0.97, an MAE of 3.333 and an MSE of 29,137 for environment 2 image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahri Alamsyah
"Dunia digital khususnya image processing berkembang seiring waktu berjalan dikarenakan kebutuhan masyarakat dan pentingnya keamanan sistem berbasis digital. Salah satu teknologi yang sangat mengalami kemajuan pesat adalah pengenalan wajah (face recognition) menggunakan artificial intelligence. Wajah seseorang yang sudah terdaftar di dalam database akan dikenali oleh sistem untuk keperluan validasi atau verifikasi. Di dalam penelitian ini dirancang sistem pengenalan wajah (face recognition) menggunakan algoritma machine learning dan Principal Component Analysis (PCA) sebagai pereduksi dimensi. Pengujian dilakukan dengan menggunakan beberapa metode, yakni: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K- NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) dan Convolutional Neural network (CNN). CNN berfokus pada layer dan tidak memerlukan reduksi dimensi, sehingga hasilnya lebih akurat. Model machine learning yang digunakan untuk classifier selain CNN adalah standar/default, sedangkan CNN menggunakan arsitektur LeNet-5, dengan dropout rate sebesar 0.25. Training dilakukan selama 60 epoch dengan loss function crosscategorical entropy, optimizer Adam, dan batch size sebesar 20. Data masukan adalah citra wajah berukuran 64 × 64 × 1 yang diperoleh dari dataset olivetti faces. Akurasi tertinggi metode PCA, SVM, maupun LR sebesar 91.25%, sementara akurasi terbaik CNN mencapai 98.75%. Selain akurasi, pemakaian confusion matrix dan classification report digunakan untuk menguji performa metode yang ada melalui evaluasi model klasifikasi.

The digital world, especially image processing, is evolving due to the needs of society and the importance of digital-based system security. One of the technologies that are rapidly progressing is face recognition using artificial intelligence. The system will recognize a person's face already registered in the database for validation or verification purposes. A face recognition system was designed using machine learning algorithms and Principal Component Analysis (PCA) as dimension reduction in this study. Testing is conducted using several methods: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K-NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) and Convolutional Neural network (CNN). CNN focuses on layers and does not require dimensional reduction to increase the accuracy of the result. The machine learning model used for classifiers other than CNN is standard/default settings, while CNN uses the LeNet-5 architecture, with a dropout rate of 0.25. The training was conducted for 60 epochs with loss function cross-categorical entropy, optimizer Adam, and batch size of 20. Input data is a 64 × 64 × 1 facial image obtained from the Olivetti faces database. The highest accuracy of PCA, SVM and LR methods was 91.25%, while CNN's best accuracy reached 98.75%. In addition to accuracy, the use of confusion matrix and classification report is used to test the performance of existing methods through the evaluation of classification models."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Novian Rahman Hakim
"Kanker payudara adalah salah satu kanker paling umum terjadi di kalangan wanita dan tingkat kelangsungan hidupnya cenderung rendah ketika stadiumnya ditemukan sudah tinggi. Untuk meningkatkan kelangsungan hidup kanker payudara, deteksi dini sangat penting. Ada dua cara untuk mendeteksi kanker payudara: diagnosis dini dan skrining. Untuk membuat diagnosa yang akurat pada stadium awal kanker payudara, munculnya massa dan mikro-kalsifikasi pada citra mamografi merupakan dua indikator penting. Beberapa Computer-Aided Detection (CADe) telah dikembangkan untuk mendukung ahli radiologi karena pendeteksian mikro-kalsifikasi penting dalam menegakkan diagnosis dan perawatan yang direkomendasikan berikutnya. Sebagian besar sistem CADe yang ada saat ini mulai menggunakan Convolutional Neural Network (CNN) untuk mengimplementasikan deteksi mikro-kalsifikasi pada mammogram dan hasil kuantitatifnya sangat memuaskan, rata-rata tingkat akurasinya lebih dari 90%. Penelitian ini melakukan pendekatan otomatis untuk mendeteksi lokasi setiap mikro-kalsifikasi pada citra mammogram yang lengkap dan secara sederhana. Total lebih dari 350 gambar dari dataset INbreast digunakan dalam studi penelitian ini serta implementasi menggunakan data lokal Rumah Sakit (RS) sebanyak 23 citra. Proses ini dapat membantu ahli radiologi untuk melakukan diagnosis dini dan meningkatkan akurasi deteksi wilayah mikro-kalsifikasi. Performa sistem yang diusulkan diukur berdasarkan nilai error Mean Squared Logarithmic Error (MSLE) sebagai teknik untuk mengetahui perbedaan antara nilai yang diprediksi oleh model yang diusulkan dan nilai sebenarnya, didapat nilai loss terbaik yang diperoleh adalah 0,05. Hasil validasi daring mendapatkan nilai sensitivitas sebesar 88.14%, presisi 91.6% dan akurasi sebesar 90.3%. Hasil implementasi pada data lokal RS menunjukkan model CADe dapat mendeteksi mikro-kalsifikasi dengan cukup baik.

Breast cancer is one of the most common cancer among women and the survival rate tends to be low when its stage found high when treated. To improve breast cancer survival, early detection is critical. There are two ways of detection for breast cancer: early diagnosis and screening. To make an accurate diagnosis in the early stage of breast cancer, the appearance of masses and micro-calcifications on the mammography image are two important indicators. Several Computer-Aided Detection (CADe) have been developed to support radiologists because the automatic detection of micro-calcification is important for diagnosis and the next recommended treatment. Most of the current CADe systems at this time started using Convolutional Neural Network (CNN) to implement the micro-calcification detection in mammograms and their quantitative results are very satisfying, the average level of accuracy is more than 90%. This research conducts an automated approach to detect the location of any micro-calcification in the mammogram images with the complete image and in a simple way. A total more than 350 images from INbreast dataset were used in this research study and for implementation used 23 images from local hospital data. This process can help as an assistant to the radiologist for early diagnosis and increase the detection accuracy of the microcalcification regions. The proposed system performance is measured according to the error values of Mean Squared Logarithmic Error (MSLE) as the technique to find out the difference between the values predicted by the proposed model and the actual values, the best loss value obtained by the training model was achieved in 0.05. The results for data online validation for sensitivity is 88.14%, precision is 91.6% and accuracy is 90.3%. The CADe model can detect micro-calcification quite well using local hospital data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adinda Maharani Dwi Yuan Syah
"ABSTRAK
Daerah perbatasan perairan Indonesia merupakan salah satu wilayah yang rentan akan kegiatan ilegal yang dapat merugikan negara. Oleh karena itu, perlu adanya pengawasan untuk setiap objek yang melewati perbatasan perairan tersebut. Pengawasan dapat dilakukan dengan pendeteksian jenis kapal yang melewati area perbatasan antar negara. Saat ini di Indonesia sudah terdapat pendeteksian khusus untuk mendeteksi adanya kapal perang asing. Selain kapal perang, kapal nelayan juga perlu dilakukan pengawasan untuk mencegah adanya illegal fishing. Pendeteksian kapal perang dan kapal nelayan dapat dilakukan dengan menggunakan mesin. Mesin dapat diprogram untuk menjalani perintah secara berulang kali, hal tersebut disebut sebagai Machine Learning, yang merupakan salah satu bidang dari Artificial Intelligence. Metode untuk memprogram pembelajaran mesin tersebut disebut dengan Deep Learning. Deep learning bekerja dengan membentuk hubungan antara neuron seperti layaknya cara kerja otak manusia atau biasa disebut dengan neural network.Salah satu jenis dari neural network yang terkenal adalah Convolutional Neural Network(CNN). CNN digunakan untuk simulasi pendeteksian kapal nelayan dan kapal militer dengan hasil keluaran berupa nilai akurasi training, akurasi validasi, dan juga prediksi. CNN juga ditambahkan additional layer, yaitu dropout dan batch normalization untuk meningkatkan ketepatan prediksi. Hasil yang didapatkan adalah pengaruh dari parameter layer dan dataset yang digunakan terhadap nilai akurasi pada pelatihan program. Dari simulasi didapatkan nilai akurasi yang paling baik dengan penggunaan pooling layer jenis max pooling dengan penggunaan layer tambahan berupa batch normalization dan dropout.

ABSTRACT
Indonesia's waters border is one of the areas that are vulnerable to illegal activities that can disserve the country. Detecting types of ships that cross border areas between countries is needed. Controlling can use machine thats automatically detect the object can do detection of warships and fishing boats. The concept is called machine learning. Machine learning is one of the types of Artificial Intelligence. The method for programming the machine learning is called Deep Learning. Deep learning works by forming relationships between neurons like the way the human brain works or commonly called a neural network. Convolutional Neural Network (CNN) is the famous method for deep learning. CNN is used to simulate the detection of fishing vessels and military vessels with the output in the form of training accuracy, validation accuracy, and the final prediction. CNN can also added an additional layer, namely dropout and batch normalization to improve the accuracy of predictions. The results obtained are the effect of the layer and dataset parameters used on the accuracy value in the training program. The best accuracy is obtained by using max pooling for pooling layer with additional layers of batch normalization and dropout."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sayyidah Hanifah Putri
"Kolesterol merupakan zat lilin mengandung lemak yang dibutuhkan untuk memproduksi hormon dan substansi lainnya dalam tubuh. Apabila jumlahnya berlebih, maka akan tercampur dengan subtansi lain dan membentuk plak pada dinding pembuluh darah. Kolesterol yang tertimbun pada pembuluh darah biasanya disebut kolesterol jahat atau Low Density Liporpotein (LDL) yang merupakan penyebab timbulnya risiko penyakit jantug koroner dan stroke. Untuk mengukur kadar LDL biasanya dilakukan dengan pengambilan sampel darah (invasif) dengan metode lipid profile test. Selain itu metode secara non-invasif berbasis iridologi saat ini juga dikembangkan. Penelitian ini dilakukan untuk membentuk suatu sistem deteksi kadar LDL secara non-invasif berbasis iridologi yaitu dengan citra mata serta menggunakan deep learning sebagai model klasifikasi. Salah satu indikator berlebihnya kadar LDL dalam tubuh ialah adanya cincin yang berwarna putih keabuan yang mengelilingi bagian iris atau biasa disebut corneal arcus. Sistem yang dirancang terdiri dari instrumen akuisisi citra, algoritma pemrosesan citra dan model klasifikasi deep learning. Pemrosesan yang dilakukan ialah menggunakan algoritma Circular Hough Transform (CHT) untuk proses lokalisasi dan Rubber-Sheet Normalization untuk menormalisasi bagian iris. Untuk mendapatkan bagian corneal arcus maka dilakukan segmentasi pada citra iris mata kanan dan kiri. Model CNN digunakan sebagai model klasifikasi kelas LDL tinggi dan normal sehingga menghasilkan akurasi sebesar 97%. Sehingga sistem dapat dikatakan bekerja dengan baik dalam prediksi status kadar LDL dalam tubuh.

Cholesterol is a waxy substance contains fat that required to produce hormones and other substances in the body. If the amount of cholesterol is excessive, it can be mixed with other substances and formed plaque on blood vessels. Cholesterol that builds up in blood vessels is usually called bad cholesterol or Low Density Liporpotein (LDL) which is the cause of the risk of coronary heart disease and stroke. Measuring LDL levels is usually done by taking blood samples (invasive) with the lipid profile test method. Other than that, a non-invasive method based on iridology was also developed. This research was focus to develop a non-invasive detection system for LDL levels status prediction based on eye image (iridology) using Convolutional Neural Network (CNN) as a classification model. One indicator of excess LDL levels in the body is the presence of a grayish white ring that surrounds the iris which is called corneal arcus. The system designed consists of image acquisition instruments, image processing algorithms and deep learning classification models which is CNN. The image processing is done using Circular Hough Transform (CHT) algorithm for the localization process and Rubber-Sheet Normalization for normalize the iris region. Segmentation is conducted to get the corneal arcus located at the outer of the iris region. This LDL levels status prediction system that used CNN as a classification model  with 5-fold cross validation results an accuracy of 97%. Those result show that the system worked in LDL levels prediction.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desan Rafsanjani
"Pisang (Musa sp.) merupakan salah satu buah dengan keberagaman yang banyak di Indonesia. Terdapat sekitar 6 sampai 9 subspesies atau varietas pisang Musa acuminata. Pemodelan multi-varieties untuk pengukuran kadar gula total pada suatu buah bertujuan untuk memudahkan proses perhitungan untuk satu kelompok varietas sehingga hanya didapatkan satu model saja yang disebut universal model. Dalam penelitian ini, penulis mencoba membuat universal model untuk pengukuran kadar gula total pada 3 varietas pisang Musa acuminata menggunakan citra hiperspektral berbasis Visible-Near Infrared (VNIR). Universal model utama yang akan digunakan berbasis Convolution Neural Network (CNN). Convolution Neural Networks (CNN) merupakan kumpulan suatu layer (neural) 3 dimensi yang membentuk suatu jaringan (network) yang berfungsi untuk pengolahan data berdimensi tiga melalui proses konvolusi. 3 komponen utama dalam perancangan perangkat keras untuk akuisisi data citra hyperspectral, di antaranya kamera hiperspektral, lampu halogen, dan slider. Pada penelitian ini digunakan 3 jenis buah pisang berbeda, yaitu pisang ambon kuning, pisang cavendish, dan pisang mas. Model universal atau model untuk memprediksi kadar gula total pada pisang cavendish, pisang mas, dan pisang ambon pada penelitian ini didapatkan parameter regresi sebesar 1,1285 untuk RMSEP; 0,2338 untuk RMSEC; 0,8747 untuk RP2; dan 0,9946 untuk RC2. Implementasi deep learning CNN sebagai regresi untuk sistem pengukuran kadar gula total pada varietas pisang Musa acuminata dapat digunakan pada penelitian ini karena didapatkan nilai parameter regresi yang hampir sama dengan parameter hasil regresi pada algoritma PLSR.

Banana (Musa sp.) is one of the most diverse fruits in Indonesia. There are about 6 to 9 subspecies or varieties of Musa acuminata banana. Multi-varieties modeling for measuring the total sugar content in a fruit aims to facilitate the calculation process for one varieties group so that only one model is obtained which is called the universal model. In this study, the authors tried to obtain a universal model for measuring total sugar content in 3 Banana Varieties Musa acuminata using hyperspectral imaging based on Visible-Near Infrared (VNIR). The main universal model to be used is based on Convolution Neural Network (CNN). Convolution Neural Networks (CNN) is a set of 3-dimensional (neural) layers that form a network that used for three-dimensional data processing through a convolutional. 3 main hardware components used for hyperspectral image data acquisition, including a hyperspectral camera, halogen lights, and sliders. In this study, three different types of banana were used, there is yellow ambon banana, cavendish banana, and mas banana. Universal model or a model to predict total sugar content in cavendish banana, cas banana, and ambon banana in this study obtained a regression parameter of 1.1285 for RMSEP; 0.2338 for RMSEC; 0.8747 for RP2; and 0,9946 for RC2. The implementation of deep learning CNN as a regression for the total sugar content measurement system in Musa acuminata banana variety can be used in this study due to the regression parameter values are almost the same as the regression parameters in the PLSR algorithm"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syamsul Erisandy Arief
"Hadirnya beragam layanan penyintesis suara manusia di Internet memungkinkan siapa pun untuk melakukan sintesis suara manusia dengan memanfaatkan layanan ini. Di tangan yang salah, teknologi ini dapat merugikan masyarakat awam dan meningkatkan peluang keberhasilan penipuan. Maraknya layanan penyintesis suara manusia yang sudah hampir tidak dapat dibedakan oleh telinga manusia memberikan keluangan untuk menghadirkan sebuah sistem yang dapat membedakan suara manusia dengan suara manusia sintetis. Penelitian ini memanfaatkan teknologi pembelajaran mesin yang berupa Convolutional Neural Networks pada spektogram suara manusia dari himpunan data pelatihan dengan 16 suara manusia yang berisikan 4 suara pria asli, 4 suara pria sintetis, 4 suara wanita asli, dan 4 suara wanita sintetis dengan jumlah 1.008 berkas rekaman suara manusia berformat WAV yang telah dirancang dan dibuat khusus untuk penelitian ini dengan pembagian pelatihan dan validasi sebesar 80% dan 20% secara berurut. Hasil akhir dari penelitian ini memberikan sebuah model CNN dengan bobotnya yang memberikan nilai data loss sekecil 0,00022 dan sebuah sistem yang dapat melakukan deteksi keaslian suara manusia berdasarkan berkas rekaman suara manusia dan model CNN serta bobot yang diberikan.

The presence of human voice synthesis services on the Internet allows everyone to create synthetic human voices by leveraging these services. In the wrong hands, this technology could harm unsuspecting citizens and promote chances of scams. The abundance of human voice synthesis service that is almost indistinguishable by human ears gave presence to a system that could distinguish between real and synthetic human voices. This study leverages machine learning technology in the form of Convolutional Neural Networks on a spectrogram from a training dataset with 16 different human voices consisting 4 authentic men voices, 4 synthetic men voices, 4 authentic women voices, and 4 synthetic women voices with the total of 1,008 WAV formatted human voice recording files that was designed and made specifically for this study with the splitting ratio for training and validation set to 80% and 20% respectively. The end result of this study produces a CNN model and its weights with a data loss score of 0.00022, as well as a system that can perform authenticity detection on a human voice based on the given human voice recording file and the CNN model with its weights."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>