Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 96599 dokumen yang sesuai dengan query
cover
Benediktus Ma’dika
"Baterai litium-ion merupakan teknologi yang menjanjikan untuk mendukung transisi energi berbasis fosil ke energi baru terbarukan pada kendaraan listrik yang ramah lingkungan karena kinerja penyimpanan energinya yang unggul. Penelitian material energi untuk baterai litium-ion terus dilakukan secara intensif hingga saat ini. Untuk mendukung hal tersebut, penelitian ini mensintesis Lithium Lanthanum Titanate ( LLTO, dengan formula kimia Li0,5La0,5TiO3) dari kombinasi lantanum oksalat lokal (95,296 % atomik lanthanum), litium karbonat komersial dan titanium oksida komersial melalui solid-state reaction yang sederhana dan berbiaya rendah. Dalam metode ini, digunakan kalsinasi dua tahap di mana tahap pertama dilakukan pada temperatur 800 °C selama 8 jam di bawah kondisi atmosfer biasa sedangkan tahap kedua dilakukan pada tiga variasi temperatur yakni 1.050 °C, 1.150 °C dan 1.250 °C selama 12 jam di bawah kondisi atmosfer biasa yang masing-masing menghasilkan 97,98, 98,141 dan 92,328 % berat Li0,5La0,5TiO3. LLTO yang disintesis pada temperatur kalsinasi kedua 1.150 °C menunjukkan luas permukaan dan volume pori yang paling besar, butir-butir tersusun secara acak dan memiliki sifat pseudokapasitansi sehingga memberikan kapasitas spesifik yang tinggi sebesar 17.120 mAh g-1 (pada C-rate 0,5 dan potensial yang mendekati nol) dan konduktivitas yang tinggi sekitar 2,45 × 10 -2 S/cm. LLTO ini menjanjikan untuk digunakan sebagai anoda potensial rendah dalam baterai litium-ion.

Lithium-ion battery is one of the promising technologies to support the transition of fossil-based energy to renewable energy in eco-friendly electric vehicles due to its superior energy storage performance. Research on energy materials for lithium-ion batteries continues to be carried out intensively to date. To support this plan, this research has synthesized Lithium Lanthanum Titanate (LLTO, with a chemical formula Li0,5La0,5TiO3) from a combination of local lanthanum oxalate (95.296 % atomic of lanthanum), commercial lithium carbonate, and commercial titanium oxide through a low-cost and simple solid-state reaction. In this method, a two-stage calcination method was used, where the first step was carried out at a temperature of 800 °C for 8 h under atmospheric conditions while the second step was carried out at three different temperatures namely 1050 °C, 1150 °C and 1250 °C for 12 h under atmospheric conditions yielding 97.98, 98.141 and 92.328 weight % of Li0,5La0,5TiO3, respectively. The LLTO synthesized at the second calcination temperature of 1150 °C exhibited largest surface area and pore volume, randomly arranged particles, and pseudocapacitive feature as to provide a high specific capacity of 17,120 mAh g-1 (at a C-rate 0, 5 and near-zero potentials) and a high conductivity of 2.45 × 10 -2 S/cm. This LLTO holds promise for use as a low-potential anode in lithium-ion batteries."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Salaam
"Litium Titanat (Li4Ti5O12) memiliki beberapa kelebihan : sifat zero strain, charge-discharge yang panjang, tidak menimbulkan SEI (Solid Electrolyte Interphase). Namun Litium Titanat (LTO) memiliki kapasitas yang rendah (10-9 S cmn-1), dimana diatasi melalui pembuatan komposit dengan material lain. Grafit memiliki kapasitas spesifik yang besar, 372 mAh/g. Penambahan ZnO dapat meningkatkan kapasitas dan konduktivitas.
Penelitian ini berfokus mengetahui pengaruh penambahan ZnO variasi 3%, 5%, dan 7% dengan konsentrasi grafit tetap sebesar 5% sintesis solid state dengan sampel pembanding neat LTO dan LTO/Grafit disertai penambahan serbuk LiOH sebesar 6%. XRD menunjukkan adanya Li4Ti5O12 yang terbentuk, dengan ukuran kristalit terbesar pada LTO/Grafit-ZnO 3%. Hasil EIS menunjukkan LTO/Grafit-ZnO 5% memiliki konduktivitas terbaik.
Hasil CV menunjukkan Eo terbesar pada 3%, dan uji CV menghasilkan kapasitas spesifik yang lebih besar dari pengujian CD akibat C rate yang lebih besar, dengan kapasitas spesifik tertinggi CV pada LTO/Grafit-ZnO 3%, dan kapasitas terbesar CD pada LTO/Grafit-ZnO 5%, tidak terlalu jauh dengan kapasitas LTO/Grafit-ZnO 3%.
Perhitungan retensi menunjukkan LTO/Grafit-ZnO 3% memiliki rate capability baik sehingga tahan lama. Ketiga sampel memiliki efisiensi coulomb tinggi, sehingga tidak ada energi yang hilang selama charge-discharge. Meninjau hasil penelitian, dibutuhkan penelitian lebih lanjut untuk menghasilkan hasil yang optimal dalam meningkatkan konduktivitas serta kapasitas.

Lithium Titanate (L4Ti5O12) has several advantages, zero strain, good charge-discharge stability, and does not form SEI (Solid Electrolyte Interphase). However, LTO has low specific capacity (10-9 S cmn-1), and to improve that is to make a composite with another materials. Graphite has high specific capacity, 372 mAh/g, and the addition of ZnO would enhanced the capacity and conductivity.
This research focused on examined the effect of ZnO by various concentration 3%, 5% and 7% with a fixed concentration of graphite 5% by using solid state method and make a comparison between the neat LTO along with LTO/Graphite with the addition of excess LiOH 6% for LTO. XRD shows the presence of Li4Ti5O12 on each samples with the biggest crystallite size found in LTO/Graphite-ZnO 3%.
EIS shows LTO/Graphite-ZnO 5% has the best conductivity, and CV shows that LTO/Graphite-ZnO 3% has the biggest specific capacity. CD shows LTO/Graphite-ZnO 5% has the biggest capacity, with a little deviation form LTO/Graphite-ZnO 3%.
Retention indicate the LTO/Graphite-ZnO 3% has good rate capability, and all the samples have good coulumbic efficiency, indicates no energy lost during charge-discharge. Reveiweing the results, further research is need to obtained the best results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael
"ABSTRAK
Baterai adalah komponen listrik yang digunakan untuk menyimpan listrik. Saat ini, baterai yang paling banyak digunakan adalah baterai Lithium Ion. Baterai lithium memiliki kepadatan energi yang relatif tinggi dibandingkan pendahulunya, tetapi sangat beracun dan berbahaya bagi organisme hidup dan memerlukan penanganan yang hati-hati dalam operasinya, salah satunya adalah dengan menggunakan sistem manajemen baterai. Dalam tesis ini, dirancang perlindungan overcharging dan sistem manajemen baterai balancing pasif untuk baterai Lithium seri terhubung. Pengujian prototipe dilakukan dengan menguji kemampuan perlindungan pengisian berlebih dengan memantau setiap tegangan sel dan nilai saat ini saat diisi. Pengujian kemampuan balancing pasif dilakukan dengan mengukur setiap tegangan sel saat diisi. Berdasarkan dari data pengujian prototipe sirkuit balancing overcharging dan pasif, disimpulkan bahwa prototipe mampu memberikan perlindungan pengisian daya yang berlebihan dan mampu menyeimbangkan secara pasif setiap seri sel baterai terhubung pada 3,75 Volt menggunakan 0,2 Ampere arus pengisian.

ABSTRACT
atteries are electrical components that are used to store electricity. Currently, the most widely used battery is a Lithium Ion battery. Lithium batteries have a relatively high energy density compared to their predecessors, but are highly toxic and dangerous to living organisms and require careful handling in their operations, one of which is to use a battery management system. In this thesis, designed overcharging protection and passive battery balancing management system for connected series Lithium batteries. Prototype testing is done by testing the overcharging protection capability by monitoring each cell voltage and current value when charged. Passive balancing capability testing is done by measuring every cell voltage when filled. Based on the prototype overcharging and passive balancing circuit testing data, it was concluded that the prototype is able to provide excessive charging protection and is able to passively balance each series of battery cells connected at 3.75 Volts using 0.2 Amperes of charging current."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Ismoyojati
"Li4Ti5O12 merupakan salah satu material yang menjanjikan untuk bahan anoda baterai litium ion. Li4Ti5O12 adalah material yang bersifat zero strain, dimana material tidak mengalami ekspansi volum pada saat prose charge/discharge. Namun, Li4Ti5O12 memiliki kapasitas teoritis yang relatif rendah (175 mAh/g). Hal ini membuat perlu dilakukannya modifikasi terhadap material Li4Ti5O12 untuk meningkatkan performa elektrokimianya. Salah satu cara yang dapat dilakukan adalah dengan menggabungkan material Li4Ti5O12 dengan timah (Sn), yang mana memiliki kapastitas teoretis yang sangat tinggi (994 mAh/g). Namun, Sn memiliki permasalahan ekspansi volum yang sangat besar dan juga pulverization pada saat siklus charge/discharge. Oleh karena itu, digunakan grafit untuk mencegah terjadinya ekspansi volum yang berlebihan dari Sn. Grafit memiliki efek stress-relieving pada Sn, sehingga dapat menghambat ekspansi volumnya pada saat siklus charge/discharge.
Pada penelitian ini, dilakukan sintesis komposit LTO/Sn-grafit dengan metode solid state. Untuk mengetahui pengaruh kadar Sn pada komposit tersebut, dilakukan variasi kadar Sn sebesar 5% wt.; 10% wt.; dan 15% wt. Dari penelitian ini, didapatkan hasil bahwa sampel dengan kadar Sn 10% wt. memiliki kapasitas discharge dan nilai potensial kerja terbaik. Sampel dengan kadar Sn 5% wt. memiliki kemampuan retensi paling baik. Sampel dengan kadar Sn 15% wt. memiliki nilai hambatan terkecil.

Li4Ti5O12 is one of promising materials for lithium ion battery anode material. Li4Ti5O12 is a zero strain material, where the material does not undergo volume expansion during the charge/discharge process. However, Li4Ti5O12 has a relatively low theoretical capacity (175 mAh/g). Modifying Li4Ti5O12 material is necessary to improve its electrochemical performance. Method that can be done is by combining Li4Ti5O12 with tin (Sn), which has a very high theoretical capacity (994 mAh/g). However, Sn has very large volume expansion problems as well as pulverization phenomena during its charge/discharge cycle. Therefore, graphite is used to prevent the excessive volume expansion of Sn. Graphite has the effect of stress-relieving on Sn, so it can inhibit its volume expansion during the charge/discharge cycle.
In this study, composite synthesis of LTO/Sn-graphite was carried out by solid state method. To determine the effect of Sn content on these composites, Sn variations were carried out at 5% wt., 10% wt., and 15% wt. The results of this study shown that sample with 10% wt. Sn content has the best discharge capacity and working potential value. Sample with 5% wt. Sn content has the best retention capability. Sample with 10% wt. Sn content has the least resistance value.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Febby Fitratama
"

Baterai Lithium-Ion merupakan salah satu media yang efektif untuk meyimpan energi. Baterai ini pun terus diteliti lebih lanjut untuk meningkatkan efisiensi dan kekuatan baterai. Pada saat ini. Anoda LTO merupakan material yang sedang dikembangkan sebagai pengganti anoda grafit. LTO atau litium titanat memiliki beberapa kelebihan seperti sifat zero strain yaitu tidak terjadi perubahan volume atau perubahan volume yang sangat rendah saat charge dan discharge. Sintesis LTO dilakukan dengan menggunakan metode solid state dengan proses mekanokimia dan sintering pada suhu 850o C selama 6 jam. Kadar Zn yang ditambahkan sebesar 3 wt%, 7wt% dan 11 wt%. dan grafit sebesar 3 wt%. Penambahan doping Zn pada LTO meningkatkan konduktifitas elektronik dan kapasitas spesifik dari baterai. Komposit LTO-Grafit/Zn dilakukan karakterisasi menggunakan XRD dan SEM-EDS. Uji performa baterai dilakukan menggunakan pengujian EIS, CV dan CD. Hasil pengujian EIS didapatkan nilai konduktifitas tertinggi pada komposit LTO-grafit/Zn 3%. Kapasitas spesifik tertinggi hasil uji CV didapatkan LTO-grafit/Zn 11% sebesar 154.3 mAH/g. Kapasitas chage discharge tertinggi didapatkan LTO-grafit/Zn 11% pada current rates 0.5 C sampai 15C


Lithium-Ion batteries are one of the effective media for storing energy. This battery continues to be investigated further to increase the efficiency and power of the battery. At this time. LTO anode is a material that is being developed as a substitute for graphite anode. LTO or lithium titanate has several advantages, such as the zero strain characteristic, that is, there is no change in volume or volume changes that are very low during charge and discharge. The LTO synthesis was carried out using a solid state method with a mechanochemical process and sintering at a temperature of 850o C for 6 hours. Zn content added is 3 wt%, 7wt% and 11 wt%. and graphite at 3 wt%. Addition of Zn doping to LTO increases the electronic conductivity and specific capacity of the battery. LTO-Graphite/Zn composites were characterized using XRD and SEM-EDS. Battery performance test is carried out using EIS, CV and CD testing. The EIS test results obtained the highest conductivity value on 3% LTO-graphite / Zn composites. The highest specific capacity CV test results obtained LTO-graphite/Zn 11% of 154.3 mAH / g. The highest chage discharge capacity is obtained by LTO-graphite/Zn 11% in the current rates of 0.5 C to 15C.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rakha Aditama Anjani
"Lithium Ferro Phosphate (LiFePO4) adalah kandidat yang menjanjikan sebagai bahan sumber energi elektrik yang ramah lingkungan. Penambahan Ni komposit dalam baterai berbasis Li-ion dapat meningkatan performa dari baterai LiFePO4. Dalam penelitian ini, LiFePO4 akan disintesis dengan menggunakan Fe2O3, H3PO4, dan LiOH melalui cara solid-state dan dilakukan perlakuan panas yaitu sintering. Setelah itu, prekursor dikompositkan dengan tiga variasi penambahan konten Nikel dalam % berat, yaitu 5, 7 dan 10% melalui metode solid-state dengan ball mill diberi label LFP/5-Ni, LFP/7.5-Ni dan LFP/10-Ni. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan Nikel pada struktur dan morfologi sampel yang dihasilkan.

Lithium Ferro Phosphate (LiFePO4) is a promising candidate as an environmental friendly electric energy sources. The addition of Nickel composite in Lithium-ion battery based can enhance the performance of LiFePO4 batteries. In this experiment, LiFePO4 was synthesized using Fe2O3, H3PO4, and LiOH by solid-state method and heat treated with sintering process. After that, the precursor were composited with the various Nickel composition, in % wt, 5, 7.5 and 10% with solid-state method by using ball mill and labeled as LFP/5-Ni, LFP/7.5-Ni and LFP/10-Ni respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of Nickel addition on structure and morphology of the resulting samples."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Guardio Orlando Fibiodendi
"Banyaknya penggunaan kendaraan berbahan bakar fosil menyebabkan berbagai macam permasalahan. Permasalahan tersebut timbul karena bahan bakar fosil memiliki jumlah terbatas dan emisi gas buang yang berbahaya bagi lingkungan. Solusi untuk mengatasi permasalahan tersebut adalah dengan beralih menggunakan kendaraan berbahan bakar listrik. Kendaraan listrik menggunakan baterai sebagai media penyimpanan energi. Baterai berbasis lithium-ion sering digunakan untuk penggunaan kendaraan listrik karena memiliki banyak kelebihan. Dengan latar belakang tersebut, skripsi ini bertujuan untuk mempelajari karakteristik dari baterai kendaraan berbasis lithium-ion dan konsumsi energinya pada kendaraan. Dari uji laboratorium diketahui bahwa semakin besar arus pengisian maka semakin besar nilai tegangan rata-rata dan kapasitas energi yang diisikan ke baterai.
Uji laboratorium juga menunjukkan bahwa semakin besar arus pengosongan maka semakin kecil nilai tegangan rata-rata baterai dan kapasitas energi yang diambil dari baterai. Pada pengujian konsumsi KARLING diperoleh bahwa pada saat kendaraan dikemudikan dengan kecepatan konstan, arus pengosongan rata-ratanya besar dan tegangan rata-ratanya kecil. Berkebalikan dengan hal tersebut, pada saat kendaraan dikemudikan dengan menyesuaikan lintasan, banyak mengalami percepatan dan perlambatan, arus rata-rata pengosongannya kecil namun tegangan rata-ratanya lebih besar. Untuk konsumsi energinya, pada pengujian dengan cara mengemudi yang menyesuaikan lintasan, konsumsi energinya lebih besar karena kebutuhan daya saat percepatan lebih besar dan waktu tempuh lebih lama.

The large number of fossil fueled vehicles usage causes a variety of problems. The problem occurs because fossil fuels have limited quantities and exhaust emissions that are harmful to the environment. The solution due to this problems is using electrical vehicle. Electrical vehicle needs batteries as energy storage. Lithium ion based battery is often used for electrical vehicle usage because it has many advantages. With this background, the thesis aims to study the characteristics of vehicle lithium ion based battery and its energy consumption on vehicle.
From the laboratory test, it is known that the greater the charging current the more the average voltage and the energy capacity charged to the battery. The laboratory test also shows that the greater the discharge current the smaller the average voltage and the energy capacity discharged from battery. On the KARLING consumption test, it is obtained that when the vehicle is driven with constant velocity, the average discharge current is large and the average voltage is small. Contrary with that, when the vehicle is driven following the track, vehicle often accelerated or decelarated, the average discharge current is smaller but the average voltage is larger. For the energy consumption, the track adjusting driving method has larger energy consumption because the power demand when the vehicle accelarated is larger and the driving time is longer."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Netta Claudia
"Salah satu anoda yang dewasa ini banyak dikembangkan untuk meningkatkan kapasitas dan performa baterai ion litium adalah anoda litium titanat (Li4Ti5O12). Anoda litium titanat memiliki kelebihan dalam aspek kestabilan termal dan karakteristik zero strain. Kekurangan dari material ini, yaitu konduktivitas listrik dan kapasitas yang rendah. Pada penelitian ini akan diobservasi perubahan karakteristik dari material anoda litium titanat yang dibuat menjadi komposit dengan grafit dan doping Fe dengan variasi konsentrasi 0,1, dan 5 mol%. Sintesis dilakukan dengan metode solid state dan hasil sintesis dikarakterisasi menggunakan XRD dan SEM, kemudian difabrikasi menjadi koin sel untuk dilakukan pengujian performa dengan EIS, CV, dan CD.

One of many anodes currently being developed to increase the capacity and performance of lithium ion batteries is lithium titanate anode (Li4Ti5O12). The lithium titanate anode has advantages in its thermal stability and zero strain characteristic. The main disadvantages of this material are the low electrical conductivity and capacity. This research will be observing the characteristic changes of the lithium titanate material made into composites with graphite (5 wt%) and iron (Fe) doping with concentrations of 0,1, and 5 mol%. The synthesis was carried out by solid state method and the synthesized material was characterized using XRD and SEM, then fabricated into cell coins for performance testing with EIS, CV, and CD."
Depok: Fakultas Teknik Universitas Indonesia , 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aisha Betalia
"LTO atau Li4Ti5O12 litium titanat merupakan suatu senyawa yang digunakan sebagai komponen anoda dalam baterai Li-ion. Anoda LTO digunakan karena memiliki sifat zero strain dan juga tidak menghasilkan SEI Solid Electrolyte Interphase yang dimana menyebabkan rendahnya performa baterai. Namun, LTO juga memiliki masalah yaitu kapasitasnya yang rendah. Untuk mengatasi masalah ini, LTO perlu dikombinasikan dengan material lain yang memiliki kapasitas tinggi seperti karbon aktif dan Sn. Selain itu, dengan membuat LTO menjadi bentuk nanorod pun juga akan meningkatkan performa baterai. LTO nanorod disintesis dengan metode hidrotermal di dalam larutan NaOH 4 M. Kemudian LTO nanorod yang telah disintesis dicampur dengan Sn yang bervariasi, yaitu 5, 10, dan 15 wt , serta 5 wt karbon aktif. Komposit LTO nanorod/Sn-CA tersebut kemudian dikarakterisasi menggunakan XRD, SEM-EDS, dan BET. Performa baterai juga diuji menggunakan pengujian EIS, CV, dan CD. Hasil penelitian menunjukkan bahwa kapasitas tertinggi didapatkan oleh LTO nanorod/15 Sn-CA yaitu sebesar 127,24 mAh/g. Dari penelitian ini dapat disimpulkan bahwa LTO nanorod/15 Sn-CA dapat digunakan sebagai alternatif untuk komponen anoda.

LTO or Li4Ti5O12 lithium titanate is a compound that is used as an anode component in lithium ion battery. LTO anode is used because it has zero strain properties and doesn rsquo t produce SEI solid electrolyte interphase which cause low battery performance. However, LTO also has a problem, which is its low capacity. To overcome this problem, the LTO needs to be combined with other materials that have high capacity, which, in this case, are active carbon AC and Sn. Making the LTO to be nano sized can also improve the performance of the battery, thus we tried to synthesize LTO in nanorods form. LTO nanorods is synthesized by hydrothermal in NaOH 4 M solution. The LTO nanorods is mixed with various Sn 5wt , 10wt , and 15wt and 5wt activated carbon. LTO nanorods Sn AC composite was characterized using XRD, SEM EDS, and BET and the battery performance was analyzed by EIS, CV, and CD. The results showed that the highest capacity was obtained at LTO nanorods AC 15wt Sn with 127.24 mAh g. This result shows that LTO nanorods AC 15wt Sn could be used as an alternative for anode component."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Baghaskara Surendra
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, Li4Ti5O12 akan disintesis dengan menggunakan metode solid-state dengan menggunakan komersial TiO2 dan komersial litium hidroksida (LiOH). Setelah itu, komersial bubuk nikel dipanaskan pada suhu 600oC selama 4 jam untuk mendapatkan NiO sebagai logam oksida transisi. Penambahan NiO ke LTO kepada semua sampel sebesar 3%. Tiga variasi penambahan lama waktu proses sintering sebesar 4 jam, 8 jam, 10 jam, diberi label sampel LTO/NiO 3% (4 jam), LTO/NiO 3% (8 jam) and LTO/NiO 3% (10 jam). Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan NiO pada struktur dan morfologi sampel yang dibuat. Hasil karakterisasi sampel menunjukkan bahwa penambahan NiO 3% memiliki konduktivitas lebih baik. Hasil dari tes Electrochemical Impedance Spectroscopy juga menunjukkan LTO/NiO 3% (4 jam) memiliki konduktivitas terbaik dengan nilai resistansi terkecil

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, Li4Ti5O12 was synthesized with solid-state method by using TiO2 with the help of lithium hydroxide (LiOH) and nickel powder as the precursor materials, resulting in LTO. Commercial nickel powder was heated at 600oC for 4 hours to obtain NiO as transition metal oxide. NiO addition to the LTO for all samples is 3% in weight%. Three variations of different sintering holding time for 4 hours, 8 hours and 10 hours labelled as LTO/NiO 3% (4 hours), LTO/NiO 3% (8 hours) and LTO/NiO 3% (10 hours), respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of NiO addition and different holding time on structure and morphology of the resulting samples. The result showed that the addition of NiO will make the samples have better conductivity. According to Electrochemical Impedance Spectroscopy, LTO/NiO 3% (4 hours) also has the best conductivity with the lowest resistivity."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>