Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 154674 dokumen yang sesuai dengan query
cover
Dennis Febri Dien
"Penyakit jantung menjadi permasalahan utama di dunia medis. Hal ini dikarenakan sulitnya mendeteksi gejala awal dari penyakit tersebut. Pendeteksian gejala ini dapat dilakukan dengan memonitori sinyal elektrokardiogram pasien untuk mendeteksi jenis aritmia yang diderita. Penelitian klasifikasi aritmia mengunakan pemrosesan komputer telah berhasil mengidentifikasi tipe aritimia satu dengan lainnya. Namun dalam permasalahan dunia nyata, pasien dapat menderita jenis aritmia yang merupakan gabungan dari jenis aritmia lainnya. Penelitian ini bertujuan untuk melakukan klasifikasi aritmia secara multi-label pada data elektrokardiogram. Data yang digunakan adalah data yang berasal dari The China Physiological Signal Challenge 2018. Eksperimen yang dilakukan terbagi menjadi dua proses, yaitu pemilihan dan pemelajaran data. Teknik yang digunakan untuk pemilihan data dengan memotong data berdasarkan letak QRS sinyal menggunakan Combined Adaptive Threshold. Kemudian hasil data segmentasi sinyal dipelajari menggunakan 1DCNN dan LSTM dengan Attention. Penelitian ini berhasil melakukan klasifikasi multi-label pada data aritmia dan memperoleh rata-rata F1-Score sebesar 81.7% berdasarkan hasil evaluasi terbaik menggunakan K-Cross Validation.

Heart Disease is the main problem in medical world. One of the reasons is because the disease is still hard to detect it earlier. The main method to detect the heart disease is monitoring electrocardiogram signal and try to identify arrhythmia of the patient. The latest research has succeeded to classify the arrhythmia using deep learning. But in the real-world problem, patient can be having a multiple arrhythmia at the same time. This research focus on to classify multiple arrhythmia with electrocardiogram data. The data that had been used for this research is from The China Physiological Signal Challenge 2018. The experiment had two step process, there are sampling step, and learning step. Technique that had been used for sampling is based on slicing the data using QRS detection based on Combined Adaptive Threshold. Then the result of the segmentation is used for training data in 1DCNN and LSTM with attention This research has succeeded to get average of F1- Score 81.7% based on the best evaluation result using K-Cross Validation."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Okky Ibrohim
"ABSTRAK
Penyebaran ujaran kebencian dan ujaran kasar di media sosial merupakan hal yang harus diidentifikasi secara otomatis untuk mencegah terjadinya konflik masyarakat. Selain itu, ujaran kebencian mempunyai target, golongan, dan tingkat tersendiri yang juga perlu diidentifikasi untuk membantu pihak berwenang dalam memprioritaskan kasus ujaran kebencian yang harus segera ditangani. Tesis ini membahas klasifikasi teks multi label untuk mengidentifikasi ujaran kasar dan ujaran kebencian disertai identifikasi target, golongan, dan tingkatan ujaran kebencian pada Twitter berbahasa Indonesia. Permasalahan ini diselesaikan menggunakan pendekatan machine learning menggunakan algoritma klasifikasi Support Vector Machine (SVM), Naïve Bayes (NB), dan Random Forest Decision Tree (RFDT) dengan metode transformasi data Binary Relevance (BR), Label Power-set (LP), dan Classifier Chains (CC). Jenis fitur yang digunakan antara lain fitur frekuensi term (word n-grams dan character n-grams), fitur ortografi (tanda seru, tanda tanya, huruf besar/kapital, dan huruf kecil), dan fitur leksikon (leksikon sentimen negatif, leksikon sentimen positif, dan leksikon kasar). Hasil eksperimen menunjukkan bahwa secara umum algoritma klasifikasi RFDT dengan metode transformasi LP memberikan akurasi yang terbaik dengan waktu komputasi yang cepat. Algoritma klasifikasi RFDT dengan metode transformasi LP menggunakan fitur word unigram memberikan akurasi sebesar 66,16%. Jika hanya mengidentifikasi ujaran kasar dan ujaran kebencian (tanpa disertai identifikasi target, golongan, dan tingkatan ujaran kebencian), algoritma klasifikasi RFDT dengan metode transformasi LP menggunakan gabungan fitur word unigram, character quadgrams, leksikon sentimen positif, dan leksikon kasar mampu memberikan akurasi sebesar 77,36%.


Hate speech and abusive language spreading on social media needs to be identified automatically to avoid conflict between citizen. Moreover, hate speech has target, criteria, and level that also needs to be identified to help the authority in prioritizing hate speech which must be addressed immediately. This thesis discusses multi-label text classification to identify abusive and hate speech including the target, category, and level of hate speech in Indonesian Twitter. This problem was done using machine learning approach with Support Vector Machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) classifier and Binary Relevance (BR), Label Power-set (LP), and Classifier Chains (CC) as data transformation method. The features that used are term frequency (word n-grams and character n-grams), ortography (exclamation mark, question mark, uppercase, lowercase), and lexicon features (negative sentiment lexicon, positif sentiment lexicon, and abusive lexicon). The experiment results show that in general RFDT classifier using LP as the transformation method gives the best accuracy with fast computational time. RFDT classifier with LP transformation using word unigram feature give 66.16% of accuracy. If only for identifying abusive language and hate speech (without identifying the target, criteria, and level of hate speech), RFDT classifier with LP transformation using combined fitur word unigram, character quadgrams, positive sentiment lexicon, and abusive lexicon can gives 77,36% of accuracy.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
T52442
UI - Tesis Membership  Universitas Indonesia Library
cover
William Yangjaya
"Dalam penelitian ini, telah dibangun sebuah sistem akuisisi data elektrokardiograf (EKG) 12-lead berbasis Raspberry Pi 4 yang berbobot rendah, berdaya rendah dan terjangkau. Raspberry Pi 4 digunakan untuk mengakuisisi dan memproses sinyal elektrokardiograf (EKG) dengan performa tinggi, karena memiliki kombinasi antara fleksibilitas dan versality. Sebagai pusat dari sistem akuisisi data yang dibangun, Raspberry Pi menerima, memproses, dan menyimpan data dari Analog Front-End to Digital Converter (ADC) ADS1298RECGFE-PDK. ADS1298 memiliki beberapa kelebihan diantaranya adalah akuisisi data secara simultan, resolusi 24-bit, membutuhkan daya <0.2 mW dan noise<1μV. Komunikasi data yang digunakan dalam sistem yang dibangun adalah Serial Peripheral Interface (SPI). Sistem ini menggunakan sumber daya dari baterai Sony VTC5 18650 untuk mencegah interferensi power line. Untuk bagian pemrosesan sinyal, penulis mengimplementasikan filter low pass Butterworth dengan orde 5 dan Fast Fourier Transform (FFT) pada program Python. Bahasa pemrograman yang digunakan adalah C yang digunakan untuk komunikasi antara Raspberry Pi dengan ADS1298RECGFE-PDK dan Python yang digunakan pemrosesan sinyal. Sistem ini telah dievaluasi menggunakan ProSim 4 yang menghasilkan bentuk gelombang ECG dengan ECG rate 120 BPM, 150 BPM, dan Aritmia, serta pengambilan data partisipan. Dicari juga selisih sinyal yang diperoleh dengan CardioCare 2000 dan hubungannya menggunakan regresi linier pada 120 BPM. Didapatkan nilai error selisih, gradien, dan intercept terbesar adalah 23.615%, 0.062%, dan 9.030%. Sistem ini akan digunakan dalam studi lain untuk mendeteksi Aritmia dengan metode klasifikasi Convolutional Neural Network (CNN). Hasil dari klasifikasi menunjukkan accuracy 100%, specificity 100%, dan sensitivity 100%.

In this study, a low weight, low cost, and affordable Raspberry Pi 4 based 12-lead electrocardiograph (ECG) data acquisition system has been built. Raspberry Pi is used to acquire and process electrocardiograph (ECG) signals in high performance, because it has a combination of flexibility and versality. As the center of the data acquisition system built, Raspberry Pi acquires, processes, and stores data from the ADS1298RECGFE-PDK Analog Front-End to Digital Converter (ADC). ADS1298 has several advantages including simultaneous data acquisition, 24-bit resolution, requires power <0.2 mW and noise <1μV. Data communication used in the system built is the Serial Peripheral Interface (SPI). The system uses the power source of the Sony VTC5 18650 battery to prevent power line interference. For the signal processing section, the authors implement the Butterworth low pass filter in order 5 and Fast Fourier Transform (FFT) in the Python program. The programming language used is C which is used for communication between Raspberry Pi with ADS1298RECGFE-PDK and Python which is used for signal processing. This system has been evaluated using ProSim 4 which produces ECG waveforms with ECG rates of 120 BPM, 150 BPM, and Arrhythmia, as well as participant data collection. This system is also looking for the difference in the signal obtained by CardioCare 2000 and its linear relationship using linear regression.The biggest difference, gradient, and intercept error values are 23.615%, 0.062%, and 9.030%. This system will be used in other studies to predict arrhythmias using the Convolutional Neural Network (CNN) classification method. The results of the classification show 100% accuracy, 100% specificity, 100% sensitivity."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fairuz Astari Devianty
"Dengan tumbuh dan berkembangnya platform media sosial, komunikasi bisa menjadi lebih mudah dilakukan. Namun, hal tersebut dapat disalahgunakan, seperti penyebaran hate speech melalui media sosial yang semakin marak terjadi. Meski kebebasan berekspresi adalah hak setiap orang di Indonesia, namun karena dampak negatifnya konten kebencian harus dihilangkan. Salah satu solusinya adalah dengan membangun sebuah model yang dapat mendeteksi hate speech secara otomatis. Untuk membangun model pendeteksian hate speech yang baik, dibutuhkan data beranotasi dengan jumlah yang besar untuk melatih model. Selain itu perlu juga diperhatikan target dan kategori dari hate speech tersebut. Namun, saat ini hanya ada satu multi-label hate speech dataset Bahasa Indonesia yang tersedia dan memiliki kekurangan proposi data dari setiap label yang tidak seimbang. Untuk mengatasi masalah kekurangan data ini, penulis mengusulkan sebuah metode yaitu Forward-Backward Translation untuk menghasilkan data secara otomatis. Metode ini merupakan gabungan dari forward translation dan back-translation. Forward translation dilakukan pada dataset dari high-resource language dan back-translation dilakukan pada dataset dari low-resource language. Dengan digabungkannya kedua proses ini dataset yang dihasilkan akan memiliki jumlah yang besar dan memiliki kualitas terjemahan yang baik. Metode ini digunakan untuk menambahkan data pada deteksi multi-label hate speech Bahasa Indonesia dengan tambahan data dari Bahasa Inggris. Performa pendeteksian multi-label hate speech pada dataset baru hasil penelitian ini berhasil meningkat bila dibandingkan dengan pada dataset hate speech Bahasa Indonesia yang sudah ada. Dataset ini mendapatkan F1-score sebesar 0.76 saat melakukan multi-label classification dan F1-score sebesar 0.78 saat melakukan hierarchical classification.

The growth and development of social media platforms make communication easier. However, this can be misused. For example, the spread of hate speech via social media is increasing. Freedom of speech is everyone's right in Indonesia, but malicious content must be eliminated due to its negative impact. One solution is to build a model that can automatically detect hate speech. Building a good hate speech detection model requires a large amount of annotated data to train the model. It is also necessary to pay attention to the target, category, and level of hate speech. However, there is currently only one multi-label hate speech dataset in Bahasa Indonesia available and the proportion of data for each label is unequal. To overcome this data scarcity problem, we propose a forward-backward translation method to generate data automatically. This method combines forward and backward translation. A forward translation is performed for dataset in high-resource languages and a backward translation is performed for dataset in low-resource languages. By combining these two processes, the resulting dataset will have a large amount of data and good translation quality. This method will be used to add data on multi-label hate speech detection in Bahasa Indonesia with additional data from English. As a result of this study, the performance of multi-label hate speech detection in the new dataset improved compared to the existing Bahasa Indonesia hate speech dataset. This dataset gets an F1-score of 0.76 for multi-label classification and an F1-score of 0.78 for hierarchical classification."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hadi Nursalim
"Salah satu organ tubuh yang paling penting adalah jantung. Darah dapat didistribusikan dengan baik ke seluruh tubuh jika terdapat jantung. Organ lain akan berhenti bekerja dan orang tersebut akan meninggal jika jantung di dalam tubuh tidak berfungsi dengan baik. Salah satu jenis penyakit jantung adalah terjadinya gejala arrhythmia, yaitu suatu bentuk kondisi jantung yang ditandai dengan laju atau irama detak jantung. Detak jantung bisa lebih cepat dari biasanya, atau terlalu lambat, atau bahkan memiliki pola yang tidak teratur. Metode yang paling umum dan banyak digunakan oleh ahli jantung dan praktisi medis untuk memantau dan mendeteksi penyakit atau kelainan pada jantung adalah dengan menggunakan elektrokardiogram (EKG) yang dianalisis secara manual, sehingga dapat memakan waktu yang lama dan rentan terhadap kesalahan. Penerapan Artificial Intelligence diharapkan mampu memberikan peranan penting dalam mempercepat kinerja kardiologi. Dalam penelitian ini digunakan Model CNN dengan Arsitektur ResNet-50 untuk mengklasifikasikan detak jantung normal dan detak jantung beberapa jenis arrhythmia yang akan divisualisasikan dengan algoritma Grad-CAM. Dari hasil eksperimen pengklasifikasian, didapatkan tingkat akurasi rata-rata sebesar 94% dan meningkat menjadi 99% untuk setiap kelas setelah dilakukan visualisasi dengan menggunakan algoritma Grad-CAM.

One of the most important organs of the body is the heart. Blood can be well distributed throughout the body if there is a heart. Other organs will stop working and the person will die if the heart in the body is not functioning properly. One type of heart disease is the occurrence of symptoms of arrhythmia, which is a condition in which the heartbeat rate is too fast, to slow, or irregular. Currently, the most common and widely used method by cardiologists and other medical practitioners to monitor and detect diseases or abnormalities in the heart is to use an electrocardiogram (ECG), which is analyzed manually. where the task can take a long time and is prone to errors. The application of Artificial Intelligence is expected to play an important role in accelerating the performance of cardiologists. In this study, a CNN model with ResNet-50 architecture was used to classify normal heart rates and heart rates of several types of arrhythmia that would be visualized with the Grad-CAM algorithm. From the results of the classification experiment, an average accuracy rate of 94% was obtained and increased to 99% for each class after visualization using the Grad-CAM algorithm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Maulana Nurhendronoto
"Emosi adalah perasaan yang muncul dalam diri seseorang sebagai respon dari situasi tertentu. Perasan ini dapat memengaruhi pikiran, perilaku, dan persepsi seseorang terhadap suatu peristiwa. Klasifikasi emosi adalah bagian dari analisis sentimen yang bertujuan untuk menganalisis dan memperoleh emosi dari suatu data. Penelitian klasifikasi emosi berbasis teks perlu dilakukan karena dapat diimplementasikan pada berbagai bidang, seperti kesehatan dan pendidikan. Bahasa Indonesia menduduki peringkat 11 bahasa dengan penutur terbanyak di dunia dengan 200 juta penutur. Namun, penelitian klasifikasi emosi berbasis teks bahasa Indonesia masih sedikit dilakukan. Algoritma machine learning dapat digunakan untuk mengatasi berbagai tantangan dalam penelitian klasifikasi emosi seperti memahami emosi dan menganalisis emosi dari data yang tidak terstruktur. Penelitian ini berfokus pada pengembangan model machine learning dengan teknik convolutional neural network (CNN), long short-term memory (LSTM), dan bidirectional encoder representation from transformer (BERT). Berdasarkan pengujian yang dilakukan, metode convolutional neural network (CNN) mendapatkan F1 score sebesar 84,2%, metode long short term memory mendapatkan F1 score sebesar 82%, metode BERT en uncased mendapatkan F1 score sebesar 22%, dan metode BERT multi cased mendapatkan F1 score sebesar 32%. Hasil pengujian ini menandakan metode CNN merupakan metode dengan hasil pengujian terbaik dan BERT en uncased merupakan metode dengan hasil pengujian terburuk dibanding ketiga metode lainnya.

Emotions are feelings that arise within a person in response to a particular situation. These feelings can affect a person's thoughts, behavior, and perception of an event. Emotion classification is a part of sentiment analysis that aims to analyze and derive emotions from data. Text-based emotion classification research needs to be done because it can be implemented in various fields, such as health and education. Indonesian is ranked the 11th most spoken language in the world with 200 million speakers. However, there is still little research on Indonesian text-based emotion classification. Machine learning algorithms can be used to overcome various challenges in emotion classification research such as understanding emotions and analyzing emotions from unstructured data. This research focuses on developing machine learning models with convolutional neural network (CNN), long short-term memory (LSTM), and bidirectional encoder representation from transformer (BERT) techniques. Based on the tests conducted, the convolutional neural network (CNN) method gets an F1 score of 84,2%, the long short term memroy method gets an F1 score of 82%, the BERT en uncased method gets an F1 score of 22%, and the BERT multi cased method gets an F1 score of 32%. These results indicate that the CNN is the bets method while the BERT en uncased is the worst method compared to the three other methods."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eko Ihsanto
"Terkait klasifikasi detak elektrokardiogram (EKG), telah dikembangkan banyak algoritma, baik yang terkait dengan biomedik, maupun biometrik. Karena sifat non-stasioner dari sinyal EKG, agak sulit untuk menggunakan metode tradisional yang dioptimasi secara manual, misalnya ekstraksi fitur dan klasifikasi yang berbasis waktu. Hal ini membuka peluang untuk implementasi mesin cerdas. 
Penelitian ini menyajikan metode baru, yaitu Residual Depthwise Separable Convolutional Neural Network (RDS-CNN) untuk klasifikasi detak elektrokardiogram, baik yang terkait dengan biomedik, maupun biometrik. Dengan menggunakan metode ini, hanya diperlukan dua tahap proses saja, yaitu deteksi detak dan klasifikasi. Pemrosesan awal dilakukan bersamaan dengan deteksi detak, sedangkan ekstraksi fitur dilakukan sekaligus dengan klasifikasi. Selain itu, untuk meminimalkan beban komputasi dan tetap menjaga kualitas klasifikasi, beberapa teknik telah diterapkan, antara lain Residual Network, All Convolutional Network (ACN), Depthwise Separable Convolution (DSC), dan Batch Normalization (BN). Kinerja RDS-CNN ini telah dievaluasi menggunakan database aritmia Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) dan database ECG-ID. 
Untuk implementasi biomedik, dalam fase pelatihan model Depthwise Separable CNN ini, digunakan sekitar 22% dari 110.057 detak yang diekstraksi dari 48 file dalam database MIT-BIH. Dengan hanya menggunakan 22% data latih ini, algoritma yang kami usulkan dapat mengklasifikasi 78% detak lainnya menjadi 16 kelas. Adapun, sensitifitas, spesifisitas, prediksi positif dan akurasi masing-masing adalah 99,03%, 99,94%, 99,03%, dan 99,88%. Hasil klasifikasi biomedik ini menunjukkan bahwa metode yang disajikan ini mengungguli metode terdepan lainnya. 
Sedangkan untuk implementasi biometrik, model RDS-CNN telah terbukti dapat digunakan untuk otentifikasi identitas EKG (ID) 90 orang sehat dan 48 pasien dengan akurasi hingga 100%, melalui klasifikasi 8 detak otentifikasi untuk ID 90 orang sehat, dan 6 detak otentifikasi untuk ID 48 pasien. Hasil otentifikasi biometrik ini juga mengungguli metode terdepan lainnya yang menggunakan database yang sama.

Regarding the classification of electrocardiogram (ECG) beats, many algorithms have been developed, both related to biomedical, and biometrics. Due to the non-stationary nature of ECG signals, it is complicated to use traditional methods that are manually optimized, for example, time-based feature extraction and classification. This computation problem opens up opportunities for machine learning implementation.
This research proposes a new method, namely Residual Depthwise Separable Convolutional Neural Network (RDS-CNN) for the classification of ECG beats, both related to biomedical, and biometrics. By using this method, only two stages of the process are needed, namely beat detection and classification. Preprocessing is done simultaneously within beat detection, while feature extraction is done simultaneously within the classification stage. Also, to minimize computational cost and to maintain classification quality, several techniques have been applied, including Residual Networks, All Convolutional Networks (ACN), Depthwise Separable Convolution (DSC), and Batch Normalization (BN). The performance of the RDS-CNN has been evaluated using the Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) arrhythmia database and the ECG-ID database.
For biomedical implementation, 110,057 beats were extracted from 48 files in the MIT-BIH database. And approximately 22% of them used for latih the Depthwise Separable CNN model. With only 22% of this latih data, our algorithm can classify 78% of the rest ECG beats into 16 classes. Meanwhile, sensitivity, specificity, positive prediction, and accuracy are 99.03%, 99.94%, 99.03%, and 99.88%, respectively. The results of this biomedical classification show that this proposed method outperforms the other state-of-the-art methods.
As for the biometric implementation, the RDS-CNN model has been proven to be able to authenticate ECG ID of 90 healthy people and 48 patients with up to 100% accuracy, through the classification of eight authentication beats for ID 90 healthy people, and six authentication beats for ID 48 patient. The results of this biometric authentication also outperform other state-of-the-art methods that use the same database.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Nisrina Alifah Sauda
"Beras merupakan bahan pangan pokok dengan tingkat kebutuhan tinggi di kawasan Asia Tenggara, termasuk Indonesia yang menjadi produsen padi terbesar di kawasan ini. Sektor pertanian, khususnya produksi padi, berperan penting dalam mendukung misi Sustainable Development Goals (SDGs) untuk mencapai ketahanan pangan. Namun, tantangan seperti alih fungsi lahan dan perubahan iklim mengancam keberlanjutan produksi padi, termasuk di Kabupaten Indramayu, salah satu lumbung padi utama di Jawa Barat. Untuk mendukung pengelolaan lahan pertanian yang berkelanjutan, pemetaan padi berbasis pengindraan jauh menjadi solusi yang efisien, memanfaatkan teknologi satelit seperti Sentinel-2 dan Landsat-8. Penelitian ini bertujuan untuk memetakan distribusi padi di Kabupaten Indramayu dengan mengintegrasikan metode Convolutional Neural Network (CNN) untuk ekstraksi fitur spektral-temporal dan algoritma Extreme Gradient Boosting (XGBoost) untuk klasifikasi. Hasil penelitian menunjukkan bahwa skema fitur terbaik, yaitu kombinasi data Raw Spectral Bands dengan NDVI, menghasilkan tingkat Overall Accuracy tertinggi sebesar 98,90%. Selain itu, metrik evaluasi lainnya seperti Recall, Precision, dan F1-Score juga menunjukkan hasil tertinggi, masing-masing sebesar 98,90%, yang mencerminkan kemampuan model yang konsisten dalam membedakan area padi dan non-padi. Model CNN-XGBoost menunjukkan kinerja yang lebih baik dibandingkan model CNN murni, dengan akurasi yang lebih tinggi dan hasil evaluasi yang lebih optimal. Dengan memanfaatkan data multispektral dan multitemporal dari kedua satelit, penelitian ini memberikan kontribusi signifikan dalam mendukung pengambilan keputusan berbasis data untuk pengelolaan pertanian yang berkelanjutan, sekaligus memperkuat upaya ketahanan pangan nasional.

Rice is a staple food with high demand in Southeast Asia, including Indonesia, which is the largest rice producer in the region. The agricultural sector, particularly rice production, plays a crucial role in supporting the Sustainable Development Goals (SDGs) for achieving food security. However, challenges such as land conversion and climate change threaten the sustainability of rice production, including in Indramayu Regency, one of the main rice granaries in West Java. To support sustainable agricultural land management, rice mapping based on remote sensing provides an efficient solution, utilizing satellite technologies such as Sentinel-2 and Landsat-8. This study aims to map the distribution of rice in Indramayu Regency by integrating the Convolutional Neural Network (CNN) method for spectral-temporal feature extraction and the Extreme Gradient Boosting (XGBoost) algorithm for classification. The results show that the best feature scheme, a combination of Raw Spectral Bands and NDVI, achieves the highest Overall Accuracy of 98.90%. Additionally, other evaluation metrics such as Recall, Precision, and F1-Score also show the highest values, each at 98.90%, reflecting the model's consistent ability to distinguish between rice and non-rice areas. The CNN-XGBoost model outperforms the pure CNN model, with higher accuracy and better evaluation results. By utilizing multispectral and multitemporal data from both satellites, this study significantly contributes to data-driven decision-making for sustainable agricultural management, while strengthening national food security efforts."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thania Farahsifah Isni
"Coronavirus Disease 2019 (COVID-19)adalah sebuah penyakit yang menyerang sistem pernafasan dan merupakan penyakit menular yang menyebar secara cepat keseluruh dunia. Penyebaran COVID-19 di Indonesia khusus nya Provinsi DKI Jakarta terus mengalami peningkatan yang cukup signifikan, kasus terkonfirmasi positif maupun meninggal terus bertambah setiap harinya. Informasi mengenai prediksi angka kasus harian COVID-19 dapat membantu pihak-pihak terkait dalam melakukan tindakan preventif penyebaran COVID-19. Dalam memprediksi kasus harian COVID-19, pendekatan machine learning dapat digunakan untuk menyelesaikan permasalahan ini. Salah satu algoritma di dalam machine learning yang dapat digunakan dalam memprediksi kasus harian COVID-19 yaitu Bidirectional LSTM (Bi-LSTM). Data yang digunakan diambil dari Website Jakarta Tanggap COVID-19 yang tercatat mulai 03 Maret 2020 hingga 15 Mei 2021. Bi-LSTM cocok digunakan untuk prediksi data yang bersifat time-series. Dalam implementasinya, data kasus harian COVID-19 dinormalisasi terlebih dahulu dan kemudian diimplementasikan pada metode Bi-LSTM untuk memprediksi kasus positif harian, sembuh harian, dan meninggal harian COVID-19 di DKI Jakarta. Fungsi aktivasi ReLU dan fungsi optimasi Adam digunakan dalam proses prediksi kemudian untuk evaluasi model digunakan Root Mean Squared Error (RMSE). Nilai RMSE terkecil yang diperoleh untuk prediksi kasus positif harian sebesar 203,193 dengan menggunakan perbandingan 95% data training:5% data testing; sembuh harian sebesar 211,068 dengan menggunakan perbandingan 95% data training:5% data testing; dan meninggal harian sebesar 6,758 dengan menggunakan perbandingan 80% data training:20% data testing. Hasil RMSE yang didapat lebih baik dibandingkan dengan penelitian sebelumnya.

Coronavirus Disease 2019 (COVID-19) is an infectious disease that attacks respiratory system and it spreads rapidly throughout the world. The spread of COVID-19 in Indonesia, especially in DKI Jakarta, the confirmed positive cases and deaths continue to increase every day. Information regarding the prediction of the daily number of COVID-19 cases can assist related parties in taking preventive actions against the spread of COVID-19. To predict the daily cases of COVID-19, a machine learning algorithm approach can be used to solve this problem. One of the algorithms in machine learning that can be used to predict daily cases of COVID-19 is Bidirectional LSTM (Bi-LSTM). The data used is taken from Jakarta Tanggap COVID-19 which was recorded from March 3, 2020 to May 15, 2021. Bi-LSTM is suitable for predicting time-series data. In its implementation, the daily cases data of COVID-19 is normalized first and then implemented on the Bi-LSTM method to predict daily positive cases, daily recovery cases, and daily death cases of COVID-19 in DKI Jakarta. ReLU activation function and Adam optimization are used for the prediction process, while Root Mean Squared Error (RMSE) is used for the model evaluation. The smallest RMSE value for daily positive cases prediction is 203,193 using comparison 95% data training:5% data testing; daily recovery cases 211,068 using comparison 95% data training:5% data testing; and daily death cases 6,758 using comparison 80% data training:20% data testing. The RMSE value obtained is better than previous studies. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutagalung, Dwight J.O.
"Penyakit kardiovaskular, khususnya aritmia, merupakan salah satu penyebab utama kematian di dunia. Aritmia terjadi akibat gangguan irama jantung yang dapat dideteksi menggunakan Elektrokardiogram (EKG), yang dideteksi dengan menganalisa perubahan atau kejanggalan dari sinyal EKG yang dilihat oleh pengamat. Namun, sinyal EKG seringkali tidak akurat karena bersifat non-linear dan memiliki amplitudo rendah, sehingga perubahan kecil mungkin dilalaikan oleh mata telanjang manusia. Oleh karena itu, diperlukan metode yang lebih efektif dalam mengklasifikasikan aritmia. Penelitian ini mengusulkan penggunaan metode Bidirectional Recurrent Convolutional Neural Network (BiRCNN) untuk klasifikasi sinyal EKG. Metode BiRCNN menggabungkan Convolutional Neural Network (CNN) yang mengekstraksi fitur morfologi sinyal EKG dan Recurrent Neural Network (RNN) yang menangkap informasi temporal dari detak jantung. Gabungan kedua metode ini diharapkan dapat memberikan hasil yang akurat dan konsisten. Data yang digunakan dalam penelitian ini berasal dari Basis Data MIT-BIH Arrhythmia, yang terdiri dari ribuan rekaman detak jantung normal dan aritmia. Data yang digunakan melalui tahap praproses dengan memilih segmen sinyal EKG dengan 187 titik waktu, dengan normalisasi pada semua data agar berada dalam rentang amplitudo yang sama. Untuk mengatasi ketidakseimbangan kelas dalam dataset, metode SMOTE digunakan untuk meningkatkan jumlah sampel kelas minoritas hingga mencapai 100% dari jumlah sampel kelas mayoritas, sehingga memastikan distribusi data yang lebih seimbang. Evaluasi kinerja model dilakukan menggunakan metrik akurasi, sensitivitas, spesifisitas, dan nilai AUC-ROC. Hasil penelitian dari lima simulasi pembangunan model menunjukkan bahwa metode BiRCNN memiliki kinerja yang baik dalam klasifikasi aritmia, dengan rata-rata nilai akurasi sebesar 98.25%, sensitivitas sebesar 94.67%, spesifisitas sebesar 98.70%, dan AUC-ROC sebesar 99.44%. Berdasarkan hasil penelitian tersebut, metode ini mampu mengidentifikasi aritmia secara konsisten dengan ketepatan yang cukup baik.

Cardiovascular disease, particularly arrhythmia, is one of the leading causes of death in the world. Arrhythmias occur due to heart rhythm disturbances that can be detected using an Electrocardiogram (ECG), detected by analyzing the changes or irregularities in the ECG signal seen by the observer. However, ECG signals are often inaccurate because they are non-linear and have low amplitude, so small changes may be overlooked by the naked human eye. Therefore, a more effective method of classifying arrhythmias is needed. This research proposes the use of Bidirectional Recurrent Convolutional Neural Network (BiRCNN) method for ECG signal classification. The BiRCNN method combines a Convolutional Neural Network (CNN) that extracts morphological features of ECG signals and a Recurrent Neural Network (RNN) that captures temporal information of the heartbeat. The combination of these two methods is expected to provide accurate and consistent results. The data used in this study comes from the MIT-BIH Arrhythmia Database, which consists of thousands of normal and arrhythmic heartbeat recordings. The data used went through a preprocessing stage by selecting ECG signal segments with 187 time points, with normalization on all data to be in the same amplitude range. To overcome the class imbalance in the dataset, the SMOTE method was applied to increase the number of minority class samples to 100% of the number of majority class samples, thus ensuring a more balanced data distribution. Model performance evaluation was performed using accuracy, sensitivity, specificity, and AUC-ROC value metrics. The results of five model fitting simulations showed that the BiRCNN method performed well in arrhythmia classification, with an average accuracy value of 98.25%, sensitivity of 94.67%, specificity of 98.70%, and AUC-ROC of 99.44%. Based on the results, this method is able to identify arrhythmias consistently with fairly good accuracy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>