Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 122510 dokumen yang sesuai dengan query
cover
Mutiara Nurul Sakinah
"Glukosa adalah salah satu indikator kesehatan tubuh yang dapat dideteksi oleh urin yang dapat membantu pendeteksian dini penyakit diabetes dan glikosuria. Glukosa dapat dideteksi oleh urine analyzer menggunakan metode pembacaan perubahan warna pada strip uji urin. Namun sayangnya, akses terhadap urine analyzer masih sangat terbatas dikarenakan ukurannya yang terlalu besar dan harganya yang terlalu mahal. Dalam penelitian ini sistem pengukuran kadar gula urin yang lebih murah dan lebih portabel dibuat menggunakan analisis citra berbasis ponsel pintar yang dipadukan dengan pemrosesan melalui komputer. Ponsel pintar yang digunakan pada penelitian ini adalah Huawei Nova 5T dan Samsung Galaxy A51 dengan bantuan aplikasi kamera OpenCamera. Citra strip uji diambil dengan menggunakan kotak khusus yang ditambahkan papan warna sebagai alat bantu untuk mengoreksi warna. Papan warna tersebut telah diuji menggunakan standar papan warna X-Rite ColorChecker. Citra yang telah diambil akan dikoreksi warnanya menggunakan metode Root-Polynomial Color Correction (RPCC) -yang telah diuji kemampuan koreksi warnanya pada variasi suhu warna lampu 2500K-8500K. Citra yang telah dikoreksi kemudian diprediksi kadar gulanya dengan model regresi Decision Tree menggunakan LSBoost. Hasil penelitian menunjukkan, Metode RPCC menunjukkan performa yang baik dengan nilai evaluasi koreksi warna (delta e) sebesar 1,8 – 2,6 ΔE. Hasil koreksi warna terbaik dimiliki oleh citra dengan suhu warna 4500K-7000K. Model regresi menghasilkan nilai evaluasi sebesar 0,21 – 0,01 RRMSE. Hasil ini menunjukkan bahwa sistem pengukuran kadar gula urin dengan metode pembacaan strip uji berbasis ponsel pintar yang menggunakan model Decision Tree-LSBoost dapat digunakan untuk mendeteksi nilai kadar gula.

Glucose is one of the health indicators that can be detected from urine and it can be an early detection for diabetes and glycosuria. Glucose can be detected using a urine analyzer that uses the method of reading the color change on a urine test strip. However, access to urine analyzers is still very limited due to their large size and expensive price. In this study, a cheaper and more portable urine sugar measurement system was created using smartphone-based image analysis combined with computer processing. The smartphones that were used in this study are Huawei Nova 5T and Samsung Galaxy A51 who used the OpenCamera application. The image of the test strip is taken by using a special box with a color board inside as a tool for correcting colors. The color boards have been tested using the X-Rite ColorChecker standard. The image that has been taken will be color corrected using the Root-Polynomial Color Correction (RPCC) method, which has been tested for its color correction ability at the color temperature variation of the 2500K-8500K lamp. The corrected image then used to predict the sugar content using Decision Tree-LSBoost regression model. The results showed the RPCC method has a good performance with a color correction evaluation value (delta e) of 1.8 - 2.6 ΔE. The best color correction result is an image with a color temperature of 4500K-7000K. The regression model produces an evaluation value of 0,21 - 0,01 RRMSE. These results indicate that the urine sugar level measurement system with a smartphone-based test strip reading method using the Decision Tree-LSBoost model can be used to detect the value of sugar levels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Aulia Zhafira
"Kesehatan merupakan kebutuhan dasar setiap manusia untuk menjalani kehidupan sehari hari. Urinalisa merupakan pemeriksaan kesehatan tubuh berdasarkan cairan urin. Protein merupakan salah satu parameter yang dapat digunakan untuk mengetahui kondisi kesehatan tubuh. Keadaan protein yang tidak normal dalam tubuh dapat mengindikasikan adanya penyakit gangguan ginjal, gagal jantung dan proteinuria. Urine analyzer merupakan alat yang dapat mendeteksi adanya protein dalam urin. Keterbatasan akses menggunakan alat Urine Analyzer menjadi latar belakang dilakukan pengukuran protein dalam urin berbasis ponsel pintar. Ponsel pintar mempunyai kamera ponsel yang memungkinkan digunakan dalam pemrosesan gambar. Ponsel pintar yang digunakan untuk pengukuran protein pada urin dalam penelitian ini adalah Huawei Nova 5T dan Samsung Galaxy A51 dengan menggunakan aplikasi Opencamera untuk mengambil citra sampel strip uji dan papan warna. Pada penelitian ini dilakukan pula pengujian ukuran resolusi kamera terhadap algoritma koreksi warna dan segmentasi pada citra. Data citra kemudian dilakukan koreksi warna untuk menghasilkan warna citra yang optimal. Metode koreksi warna yang digunakan adalah metode Root-Polynomial Color Correction (RPCC). Citra hasil koreksi warna selanjutnya digunakan sebagai data masukan untuk pengukuran kadar protein pada urin menggunakan model regresi Artificial Neural Network dengan metode fungsi pelatihan Lavenberg-Marquardt. Hasil penelitian menunjukan bahwa, algortima koreksi warna bekerja optimal pada ukuran resolusi minimum sampai resolusi maksimum. Algortima koreksi warna yang digunakan menghasilkan performa yang baik dengan hasil evaluasi koreksi warna sebesar 1,13 – 1,83 ΔE. Model regresi menggunakan ANN menghasikan nilai evaluasi sebesar 0,05 – 0,04 RRMSE atau 95% - 96%. Hasil ini menyimpulkan bahwa algortima model regresi Artificial Neural Network dengan fungsi pelatihan Lavenberg-Marquardt dapat digunakan untuk pengukuran kadar protein pada urin berbasis ponsel pintar.

Health is a basic need of every human being. Urinalysis is an examination of the body's health based on urine. Protein is one of the parameters that can be used to determine the health condition of the body. The state of abnormal protein in the body can indicate kidney disorders, heart failure and proteinuria. Urine analyzer is a tool that can detect the presence of protein in urine. Limited access using Urine Analyzer is the background for measuring protein in urine based on smart phones. Smartphones have cell phone cameras that allow them to be used in image processing. The smart phones used for measuring protein in urine in this study were Huawei Nova 5T and Samsung Galaxy A51 using the application Opencamera to take sample images of test strips and color boards. In this study, the size of the camera resolution was also tested against color correction algorithms and image segmentation. The image data is then color corrected to produce the optimal color image. The color correction method use the Root-Polynomial Color Correction (RPCC) method. The color-corrected image then used as input data for measuring protein levels in urine using regression model Artificial Neural Network with training function method Lavenberg-Marquardt. The results show that the color correction algorithm works optimally at the minimum resolution to the maximum resolution. The color correction algorithm used produces good performance with the results of the color correction evaluation being 1,13 – 1,83 ΔE. The regression model using ANN produces an evaluation value of 0.05 – 0.04 RRMSE or 95% – 96%. These results conclude that the regression model algorithm Artificial Neural Network with training function Lavenberg-Marquardt can be used for smartphone-based urine protein measurement."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moch Abdul Majid
"ABSTRAK
Pengukuran konsentrasi larutan dapat dilakukan dengan mengukur nilai absorbsi pada panjang gelombang tertentu. Proses pengukuran konsentrasi dengan melihat nilai absorbsi memiliki kelemahan, terutama pada larutan dengan konsentrasi tinggi. Oleh sebab itu, perlu dilakukan penelitian berupa pengukuran konsentrasi larutan dengan mengukur variabel selain nilai absorbsi. Beberapa jenis larutan tampak sebagai larutan berwarna, salah satunya adalah logam kromium Cr yang termasuk jenis logam transisi. Karakteristik warna larutan kromium dipengaruhi oleh besar konsentrasinya. Untuk mengkaji lebih lanjut, dilakukan karakterisasi warna dengan mengambil citra larutan kromium menggunakan kamera. Penggunaan 9 macam variasi konsentrasi larutan kromium memberikan informasi perilaku perubahan nilai RGB dari larutan kromium yang mengalami perubahan konsentrasi. Dengan menggunakan metode regresi multivariabel, didapatkan model matematis yang menunjukan hubungan perubahan warna dengan konsentrasinya. Penghitungan nilai error dilakukan dengan cara menghitung perbedaan nilai hasil pengukuran dengan nilai sebenarnya. Persentase nilai error rata-rata pada penelitian ini sebesar 9,19 . Peningkatan akurasi pengukuran dapat dilakukan dengan memilih larutan standar dengan tingkat akurasi nilai konsentrasi larutan yang tinggi.

ABSTRACT
Molarity of the solution can be estimate by measuring the absorption value at specific wavelength, but this technique has weakness, especially in high molarity solutions. Therefore, it is necessary to conduct a research in the molarity measurement of the solution by measuring the other variable. Some types of solutions appear as colored solutions, one of which is the chromium metal Cr . The color characteristics of chromium solution are influenced by the molarity value. To examine further, we identify color characteristic by taking image of chromium solution using the camera. The use of 9 different variations of chromium solution molarity provides information on behavioral change of RGB values from chromium solution which undergo molarity change. By using multivariable regression method, we get a mathematical model showing the relationship of color change with its molarity. Error value defined as difference of value of measurement result with actual value. The percentage of mean error value in this research is 9,19 . Measurement accuracy can be optimized by choosing a standard solution with a high accuracy value of the solution molarity."
2017
S67907
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dina Akmalia
"ABSTRAK
Kadar gula total merupakan salah satu parameter internal untuk kualitas buah. Pada penelitian ini diperkenalkan sistem pengukuran kadar gula total tanpa merusak buah menggunakan hyperspectral imaging dalam rentang panjang gelombang V-NIR 400-1000 nm . Komponen utama pada sistem hyperspectral imaging adalah lampu halogen dan kamera hiperspektral. Hyperspectral imaging bekerja dengan memanfaatkan data reflektansi dari permukaan buah pisang dan menggunakan Partial Least Square Regression PLSR dan Support Vector Machine SVM untuk analisis spektral dan spasial yang menghasilkan model yang dapat memprediksi nilai kadar gula total dan klasifikasi tingkat kematangan pada buah pisang. Nilai kadar gula total pada buah pisang sebagai data pembanding diuji menggunakan refraktometer. Pada penelitian ini digunakan 15 pisang raja dan 15 pisang ambon yang terdiri dari 5 pisang mentah, 5 pisang matang dan 5 pisang terlalu matang. Dari PLSR dan SVM model didapatkan nilai RMSE 0,4091 , koefisien korelasi R2 sebesar 0,997 dan kesalahan klasifikasi 0 untuk pisang raja dan didapatkan nilai RMSE 0,4802 , koefisien korelasi R2 sebesar 0,996 dan kesalahan klasifikasi 0 untuk pisang ambon. Hasil penelitian menunjukkan bahwa sistem hyperspectral imaging dapat digunakan sebagai instrumen untuk pengukuran kadar gula total pada buah pisang.

ABSTRACT
Sugar content is one of the internal parameters for fruit quality. In this study, a non destruction measurement system for sugar content is introduced using hyperspectral imaging in the V NIR spectral range 400 1000 nm . The main components of the hyperspectral imaging system are halogen lamps and hyperspectral cameras. Hyperspectral imaging works by utilizing reflectance data from banana surfaces and using Partial Least Square Regression PLSR and Support Vector Machine SVM for spectral and spatial analysis that create a model that can predict total sugar content and banana maturity stage classification. The value of sugar content in banana was tested using refractometer as comparison data. In this study used 15 raja bananas and 15 ambon bananas consisting of 5 raw bananas, 5 ripe bananas and 5 overripe bananas. PLSR and SVM model provided RMSE of 0,4091 , correlation coefficient R2 of 0,997 and classification error of 0 for raja bananas and provided RMSE of 0,4802 , correlation coefficient R2 of 0,996 and classification error of 0 for ambon bananas. The results showed that the hyperspectral imaging system can be used as an instrument for measuring total sugar content in bananas."
2017
S67036
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Wulan Hastuti
"Prediksi konsentrasi analit urin telah berhasil dikembangkan menggunakan kertas kolorimetri berbasis ponsel pintar Android dengan metode regresi ensemble learning. Beberapa pengembangan yang dilakukan pada penelitian ini meliputi segmentasi citra secara otomatis, koreksi citra menggunakan metode RPCC, dan pengembangan model regresi untuk prediksi 3 (tiga) analit urin, yaitu glukosa, pH dan protein. Model regresi tersebut selanjutnya divalidasi dengan performa terbaik pada sampel urin responden yang rentan terhadap perubahan warna. Pada penelitian ini, persiapan urin buatan dilakukan dengan membuat konsentrasi 0-2.000 mg/dl untuk analit glukosa dan protein. Selain itu, larutan pH buffer 5–9 juga digunakan untuk kepentingan analisa pH. Model regresi yang dikembangkan berbasis mesin pembelajaran ensemble dengan optimasi boosting. Selain itu, aplikasi berbasis server juga dikembangkan menggunakan aristektur RESTful API dengan 2 (dua) server, yaitu server unggah menggunakan Node.js dan server komputasi menggunakan MATLAB Production Server. Hasil yang diperoleh adalah performa R2 sebesar 0,98, 0,99 dan 0,98 serta nilai RMSRE sebesar 0,04, 0,03 dan 0,07 untuk masing-masing analit glukosa, pH dan protein. Tingkat keberhasilan aplikasi adalah 100% pada Samsung Galaxy A51 dan Huawei Nova 5T. Penelitian ini mampu memprediksi konsentrasi glukosa, pH dan protein dengan baik sehingga dapat dijadikan alternatif aplikasi pemantauan kesehatan.

Prediction of urine analyte concentration has been successfully developed based on an Android smartphone using colorimetric paper with the ensemble learning regression method. Some of the developments in our study include automatic image segmentation, image correction using the RPCC method, and the development of a regression model for the prediction of 3 (three) urine analytes, namely glucose, pH, and protein. Furthermore, the model was successfully validated for best performance in the respondent's urine susceptible to color change. We used artificial urine at a concentration of 0-2.000 mg/dl for glucose and protein samples for this study. In addition, pH buffer solutions 5–9 are also used for urine pH analysis. The regression model developed is based on ensemble learning with boosting optimization method. In addition, server-based applications are also developed using RESTful API architecture with (2) two servers, the upload server using Node.js and the computing server using the MATLAB Production Server. As a result, the R2 performance for glucose, pH and protein analytes were 0,98, 0,99 and 0,98 and RMSRE were 0,04, 0,03 dan 0,07, respectively. The Android application success rate was 100% on Samsung Galaxy A51 and Huawei Nova 5T. This study estimates that glucose, pH, and protein levels are good enough for health monitoring applications."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dina Syafitri Cayadewi
"Glikosuria merupakan suatu kondisi ketika terdapat kandungan gula di dalam urine. Umumnya, penderita glikosuria adalah pasien diabetes. Kandungan gula diatas 11,10 mmol/L mengindikasikan pasien tersebut menderita diabetes. Menurut data dari International Diabetes Federation, sekitar 537 juta orang dewasa mengidap penyakit diabetes. Ibu hamil pengidap diabetes berpeluang untuk melahirkan anak dengan diabetes, hal tersebut dapat memengaruhi tumbuh kembang anak sehingga berpotensi mengidap stunting. Pada penelitian ini, dibangun sistem estimasi berbasis kolorimetri dan arsitektur CNN-AlexNet dari citra strip uji. Sistem akuisisi citra dilakukan di dalam kotak uji dengan sumber pencahayaan LED, barcode uji, dan papan warna referensi. Citra barcode uji diakuisisi dengan menggunakan kamera ponsel pintar Huawei Nova 5T, Samsung Galaxy A72, dan Vivo Y12. Citra dikoreksi menggunakan model Polynomial Color Correction (PCC) orde 9. Warna referensi yang digunakan untuk mengoreksi citra dilakukan evaluasi terhadap warna-warna yang berpengaruh dalam proses koreksi warna. 16 warna referensi dipilih dengan warna yang digunakan adalah warna grayscale, warna primer RGB, dan beberapa warna natural. Validasi dengan urine asli menggunakan arsitektur CNN-AlexNet menghasilkan performa pada model klasifikasi adalah 0,96 dan pada model regresi adalah 0,93. Hasil tersebut menunjukkan bahwa sistem estimasi berbasis citra ponsel pintar dengan prinsip kolorimetri dapat digunakan untuk menentukan kelas dan mengukur kadar gula urine.

Glycosuria is a condition characterized by the presence of sugar in the urine. Diabetic patients are more likely to have glycosuria. Diabetes is indicated by a sugar content greater than 11.10 mmol/L. According to the International Diabetes Federation, approximately 537 million adults have diabetes. Pregnant women with diabetes have the potential to have children with diabetes, which can affect their growth and development, potentially leading to stunting. In this study, an estimation system based on colorimetry and CNN-AlexNet architecture was built from test strip images. The image acquisition system is performed in a test box with LED lighting source, test barcode and reference color board. The Huawei Nova 5T, Samsung Galaxy A72, and Vivo Y12 smartphone cameras were used to capture the test barcode image. The image is corrected using a 9th order Polynomial Color Correction (PCC) model. The reference color used to correct the image is evaluated for the colors that affect the color correction process. Grayscale colors, RGB primary colors, and a few natural colors are used as the 16 reference colors that were chosen. Validation with urine using the CNN-AlexNet architecture resulted in a classification model performance of 0.96 and a regression model performance of 0.93. These results indicate that an estimation system based on smartphone imagery with colorimetric principles can be used to determine the class of sugar content and measure urine sugar levels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitria Indah Astari
"Kadar gula merupakan salah satu karakter kualitas buah pisang yang memengaruhi rasa. Berdasarkan kesamaan karakteristik spektral pada varietas pisang ambon, pisang mas, dan pisang cavendish, yang didapat dari hasil akuisisi citra menggunakan kamera hiperspektral VNIR (400 - 1000 nm), telah berhasil dirancang sebuah universal prediction model yang tidak memerlukan perlakuan destruktif untuk memprediksi nilai kadar gula pada 3 varietas pisang Musa acuminata: pisang ambon, pisang mas, dan pisang cavendish. Filter Savitzky - Golay mengurangi noise pada hasil spektral dan juga memperkuat sinyal yang berisi informasi penting. Pada model regresi Random Forest dengan fitur panjang gelombang optimal berjumlah 20 menghasilkan nilai RMSE pelatihan (train) dan RMSE pengujian (test) yang kecil dengan masing-masing sebesar 0,67 dan 1,08 serta nilai koefisien korelasi pelatihan (R2 Train) dan koefisien korelasi pelatihan (R2 Test) yang besar masing-masing sebesar 0,98, dan 0,94. Hal menunjukan penggunaan algoritma Random Forest untuk pembuatan universal prediction model memiliki hasil yang baik.

Sugar content is one of the quality attribute that affects the taste of bananas. A non-destructive universal prediction model has been successfully designed based on the similarity of the spectral characteristics of the Ambon bananas, Mas bananas and Cavendish bananas, which were obtained from the results of image acquisition using a VNIR hyperspectral camera (400 - 1000 nm) to predict the value of sugar content on 3 banana Musa acuminata varieties: Ambon bananas, Mas bananas and Cavendish bananas. The Savitzky - Golay filter reduces noises in the spectral results and also amplifies the signal that contains some important information. Random Forest regression model with 20 features give a small error value with RMSE Train value is 0.67 and RMSE Test value is 1.08, also give a large correlation coefficient value with R2 Train value is 0.98 and R2 Test value is 0.94, it shows that the use of the Random Forest algorithm for designing the universal prediction model has good results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desan Rafsanjani
"Pisang (Musa sp.) merupakan salah satu buah dengan keberagaman yang banyak di Indonesia. Terdapat sekitar 6 sampai 9 subspesies atau varietas pisang Musa acuminata. Pemodelan multi-varieties untuk pengukuran kadar gula total pada suatu buah bertujuan untuk memudahkan proses perhitungan untuk satu kelompok varietas sehingga hanya didapatkan satu model saja yang disebut universal model. Dalam penelitian ini, penulis mencoba membuat universal model untuk pengukuran kadar gula total pada 3 varietas pisang Musa acuminata menggunakan citra hiperspektral berbasis Visible-Near Infrared (VNIR). Universal model utama yang akan digunakan berbasis Convolution Neural Network (CNN). Convolution Neural Networks (CNN) merupakan kumpulan suatu layer (neural) 3 dimensi yang membentuk suatu jaringan (network) yang berfungsi untuk pengolahan data berdimensi tiga melalui proses konvolusi. 3 komponen utama dalam perancangan perangkat keras untuk akuisisi data citra hyperspectral, di antaranya kamera hiperspektral, lampu halogen, dan slider. Pada penelitian ini digunakan 3 jenis buah pisang berbeda, yaitu pisang ambon kuning, pisang cavendish, dan pisang mas. Model universal atau model untuk memprediksi kadar gula total pada pisang cavendish, pisang mas, dan pisang ambon pada penelitian ini didapatkan parameter regresi sebesar 1,1285 untuk RMSEP; 0,2338 untuk RMSEC; 0,8747 untuk RP2; dan 0,9946 untuk RC2. Implementasi deep learning CNN sebagai regresi untuk sistem pengukuran kadar gula total pada varietas pisang Musa acuminata dapat digunakan pada penelitian ini karena didapatkan nilai parameter regresi yang hampir sama dengan parameter hasil regresi pada algoritma PLSR.

Banana (Musa sp.) is one of the most diverse fruits in Indonesia. There are about 6 to 9 subspecies or varieties of Musa acuminata banana. Multi-varieties modeling for measuring the total sugar content in a fruit aims to facilitate the calculation process for one varieties group so that only one model is obtained which is called the universal model. In this study, the authors tried to obtain a universal model for measuring total sugar content in 3 Banana Varieties Musa acuminata using hyperspectral imaging based on Visible-Near Infrared (VNIR). The main universal model to be used is based on Convolution Neural Network (CNN). Convolution Neural Networks (CNN) is a set of 3-dimensional (neural) layers that form a network that used for three-dimensional data processing through a convolutional. 3 main hardware components used for hyperspectral image data acquisition, including a hyperspectral camera, halogen lights, and sliders. In this study, three different types of banana were used, there is yellow ambon banana, cavendish banana, and mas banana. Universal model or a model to predict total sugar content in cavendish banana, cas banana, and ambon banana in this study obtained a regression parameter of 1.1285 for RMSEP; 0.2338 for RMSEC; 0.8747 for RP2; and 0,9946 for RC2. The implementation of deep learning CNN as a regression for the total sugar content measurement system in Musa acuminata banana variety can be used in this study due to the regression parameter values are almost the same as the regression parameters in the PLSR algorithm"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Giri Yudho Prakoso
"ABSTRAK
Saat ini, pengukuran dimensi zona inhibisi masih menggunakan alat pengukur manual seperti penggaris atau jangka sorong. Kini dengan perkembangan teknologi memungkinkan pengukuran dilakukan dengan berbasis kamera digital dan pengolahan citra. Adanya perangkat penunjang lain seperti sumber cahaya, dapat menyebabkan posisi kamera tidak tegak lurus terhadap objek pengukuran. Pada penelitian ini diperkenalkan sistem koreksi tilting pada pengukuran zona inhibisi berbasis kamera. Sistem yang dikembangkan terdiri dari perangkat keras (instrumen pengukuran dan kamera) dan perangkat lunak. Teknik pengolahan citra seperti transformasi, deteksi tepi, dan deteksi garis yang digunakan untuk membangun sistem koreksi tilting secara otomatis ini. Pengujian telah dilakukan dengan menggunakan objek kalibrator checkerboard standar dan objek zona inhibisi, pada berbagai variasi orientasi sudut kemiringan dan rotasi objek. Secara umum, berdasarkan hasil pengujian, sistem yang dibangun telah berhasil diimplementasikan untuk pengukuran dimensi zona inhibisi secara tidak tegak lurus. Koreksi tilting mampu memperbaiki performa sistem pengukuran dengan penurunan kesalahan hingga 39,6%. Sudut maksimal dengan tingkat toleransi yang masih dapat diterima adalah 40°.

ABSTRAK
Currently, the measurements of the Zone of Inhibition are still using manual measurement tools such as a ruler or caliper. Now with the development of technology enables this measurement based on digital cameras and image processing. The presence of another supporting devices such as light sources, causing the camera position not perpendicular to the object. This study introduces the tilt correction system on camera-based measurement of the inhibition zones, which consists of hardware (measuring instruments and cameras) and software. Image processing techniques such as geometrical transformations, edge detection, and line detection is used to build the automated tilt correction system. The experiments have been conducted using standard checkerboard calibrator objects and Zone of Inhibition objects at various orientations and the angle of rotation of the object. In general, based on experiment results, the system has been successfully implemented for not perpendicular dimensional measurements of zone of inhibition. Tilt correction system improves the measurement system performance with a reduction in estimated errors up to 39,6%. The maximum angle with a tolerance level that is acceptable is 40°.
"
2016
S64979
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fairuz Zahira
"Dengan berkembangnya teknologi, sensor telah menjadi sebuah alat untuk membantu manusia dalam hal apapun, mulai dari kesehatan hingga teknologi. Perkembangan teknologi yang ada saat ini membuat sebuah ponsel cerdas memiliki berbagai macam sensor. Hal ini tentu saja lebih praktis dan nyaman dibandingkan alat sensor yang biasanya tidak nyaman untuk digunakan. Sensor-sensor tersebut nantinya dapat dimanfaatkan dengan mengolah datanya untuk menjadi sebuah Human Activity Recognition.
Penelitian ini akan mengevaluasi sebuah aplikasi untuk menyimpan data sensor dengan menggunakan Android Studio dengan menggunakan Support Vector Machine untuk menentukan keakuratan data. Melalui aplikasi pendeteksi sensor, data akan dikumpulkan dari relawan yang melakukan empat macam gerakan. Gerakan itu terdiri dari berjalan, duduk, berdiri, dan berbaring. Data inilah yang kemudian diolah menggunakan metode SVM yang keluarannya menunjukkan tingkat akurasi pengklasifikasian tiap data sensor.

With the development of technology today, sensors have long been a tool to help humans in everything from health to technology. Fortunately, the current technological developments make a smartphone have a variety of sensors. This is, of course, more practical and comfortable than sensor devices which are usually not comfortable to use. These sensors can later be utilized by processing the data to become an Activity Recognition.
This study will evaluate an application to store sensor data using Android Studio by using Support Vector Machine to determine the accuracy of the data. Through the sensor detection application, data will be collected from volunteers who carry out four types of movements. The movement consists of walking, sitting, standing, and lying down. This data is then processed using the SVM method.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>