Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2629 dokumen yang sesuai dengan query
cover
Ramzy Mohammad
"Distribusi Generalized Exponential diperkenalkan oleh Rameshwar D. Gupta dan Debasis Kundu pada tahun 2007. Distribusi Generalized Exponential tersebut merupakan hasil transformasi generalized dari distribusi Exponential. Skripsi ini menjelaskan distribusi Generalized Exponential Marshall Olkin yang merupakan hasil dari perluasan distribusi Generalized Exponential menggunakan metode Marshall Olkin. Distribusi Generalized Exponential Marshall Olkin lebih fleksibel dari distribusi sebelumnya terutama pada fungsi hazardnya yang memiliki berbagai bentuk, baik monoton (naik atau turun) maupun non monoton (bathub atau upside down bathup) sehingga dapat memodelkan data survival dengan lebih baik. Sifat fleksibelitas ini disebabkan karena penambahan parameter baru ke dalam distribusi Generalized Exponential. Selanjutnya dijelaskan beberapa karakteristik dari distribusi Generalized Exponential Marshall Olkin antara lain fungsi kepadatan peluang (fkp), fungsi distribusi kumulatif, fungsi survival, fungsi hazard, momen ke-n, mean, dan variansi. Penaksiran parameter dilakukan dengan metode maximum likelihood. Pada bagian aplikasi ditunjukkan data survival yang berasal dari data Aarset (1987) berdistribusi Generalized Exponential Marshall Olkin. Selanjutnya distribusi Generalized Exponential Marshall Olkin dibandingkan dengan distribusi Alpha Power Weibull untuk mencari distribusi mana yang lebih cocok dalam memodelkan data Aarset (1987). Dengan menggunakan AIC dan BIC distribusi Generalized Exponential Marshall Olkin lebih cocok dalam memodelkan data Aarset (1987).

Generalized Exponential distribution was introduced by Rameshwar D. Gupta and Debasis Kundu in 2007. Generalized Exponential distribution was generated by generalized transformation of the Exponential distribution. This thesis explained the Generalized Exponential Marshall-Olkin distribution which is the result of the expansion of the Generalized Exponential distribution using the Marshall-Olkin method. The Generalized Exponential Marshall Olkin distribution has a more flexible form than the previous distribution, especially in its hazard function which has various forms that it can represent survival data better. The flexibility characteristic is due to the addition of new parameters to the Generalized Exponential distribution. Futhermore, some characteristics of the Generalized Exponential Marshall Olkin distribution was explained such as, the probability density function (PDF), cumulative distribution function, survival function, hazard function, moment, mean, and variance. Parameter estimation was conducted by using the maximum likelihood method. In the application section was shown survival data from Aarset data (1987) which distributed Generalized Exponential Marshall-Olkin distribution. Futhermore, Generalized Exponential Marshall Olkin distribution was compared with Alpha Power Weibull distribution to decided the prominent distribution in modeling Aarset data (1987). Using AIC and BIC, Generalized Exponential Marshall Olkin distribution more suitable in modeling Aarset data (1987)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramzy Mohammad
"

Distribusi Generalized Exponential diperkenalkan oleh Rameshwar D. Gupta dan Debasis Kundu pada tahun 2007. Distribusi  Generalized Exponential tersebut merupakan hasil generalized distribusi Exponential. Skripsi ini menjelaskan distribusi  Generalized Exponential Marshall Olkin yang merupakan hasil dari perluasan distribusi Generalized Exponential menggunakan metode Marshall Olkin. Distribusi Generalized Exponential Marshall Olkin lebih fleksibel dari distribusi sebelumnya terutama pada fungsi hazardnya yang memiliki berbagai bentuk baik monoton (naik atau turun) maupun non monoton (bathub atau upside down bathup) sehingga dapat memodelkan data survival dengan lebih baik. Sifat fleksibelitas ini disebabkan karena penambahan parameter baru ke dalam distribusi Generalized Exponential. Selanjutnya dijelaskan beberapa karakteristik dari distribusi Generalized Exponential Marshall Olkin antara lain fungsi kepadatan peluang (fkp), fungsi distribusi kumulatif, fungsi hazard, momen ke-n, mean, dan variansi. Penaksiran parameter dilakukan dengan metode maximum likehood. Pada bagian aplikasi ditunjukkan data survival yang berasal dari data Aarset (1987) berdistribusi Generalized Exponential Marshall Olkin. Selanjutnya distribusi Generalized Exponential Marshall Olkin dibandingkan dengan distribusi Alpha Power Weibull untuk mencari distribusi mana yang lebih cocok dalam memodelkan data Aarset (1987). Dengan menggunakan AIC dan BIC distribusi Generalized Exponential Marshall Olkin lebih cocok dalam memodelkan data Aarset (1987).

 


Generalized Exponential distribution was introduced by Rameshwar D. Gupta and Debasis Kundu in 2007. Generalized Exponential distribution was generated by generalized transformation of the Exponential distribution. This thesis explained the Generalized Exponential Marshall-Olkin distribution which is the result of the expansion of the Generalized Exponential distribution using the Marshall-Olkin method. The Generalized Exponential Marshall-Olkin distribution has a more flexible form than the previous distribution, especially in its hazard function which has various forms that it can represent survival data better. The flexibility characteristic is due to the addition of new parameters to the Generalized Exponential distribution. Futhermore, some characteristics of the Generalized Exponential Marshall-Olkin distribution was explained such as, the probability density function(PDF), cumulative distribution function, survival function, hazard function, moment, mean, and variance. Parameter estimation was conducted by using the maximum likelihood method. In the application section was shown survival data from Aarset data (1987) which distributed Generalized Exponential Marshall-Olkin distribution. Futhermore, Generalized Exponential Marshall-Olkin distribution was compared with Alpha Power Weibull disstribution to decided theprominent distribution in modeling Aarset data (1987). Using AIC and BIC, Generalized Exponential Marshall-Olkin distribution more suitable in modeling Aarset data (1987).

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratu Mutiara Pakungwati
"Tugas akhir ini berisi pembahasan mengenai distribusi Invers Weibull Marshall-Olkin IWMO yang merupakan distribusi probabilitas untuk peubah acak kontinu. Distribusi IWMO dibentuk dari distribusi Invers Weibull IW dengan metode Marshall-Olkin, metode ini adalah metode penambahan parameter yang diperkenalkan oleh Albert W Marshall dan Ingram Olkin pada tahun 1997. Distribusi IW sendiri diperoleh dari distribusi Weibull dengan melakukan tranformasi terhadap peubah acak. Distribusi IWMO mampu menggambarkan bentuk data seperti distribusi asalnya dalam hal ini distribusi IW dan bentuk data dari distribusi invers Eksponensial selain itu distribusi IWMO dapat menjelaskan data outlier lebih baik dibandingkan distribusi IW disebabkan oleh penambahan parameter Marshall-Olkin. Selanjutnya akan dibahas mengenai fungsi kepadatan probabilitas, fungsi distribusi, Moment Generating Function MGF, momen ke-r, mean, variansi, koefisien skewness, koefisien kutrosis, kuantil dan median dari IWMO. Penaksiran parameter menggunakan metode maksimum likelihood. Distribusi Weibull, IW dan IWMO akan diterapkan pada data yang memiliki outlier. Perbandingan model menggunakan log likelihood, AIC, BIC menunjukan distribusi IWMO sesuai dengan data lebih baik dibandingkan Weibull dan IW.

This final project contains a discussion of the distribution of Inverse Weibull Marshall Olkin IWMO which is the probability distribution for continuous random variables. The IWMO distribution is formed from the Inverse Weibull IW distribution by Marshall Olkin method, this method is the parameter addition method introduced by Albert W Marshall and Ingram Olkin in 1997. IWull distribution itself is obtained from the Weibull distribution by transforming the random variables. IWMO distribution able to describe data form like its original distribution that is IW distribution and data form from Exponential inverse distribution beside that IWMO distribution can explain data outlier better than IW distribution caused by addition of Marshall Olkin parameter. The next will be discussed about probability density function, distribution function, Moment Generating Function MGF, rth moment, mean, variance, skewness coefficient, coefficient kutrosis, quantitative and median from IWMO. Parameter estimation using likelihood maximum method. Weibull, IW and IWMO distributions will be applied to data that has an outlier. Comparison of models using log likelihood, AIC, BIC shows IWMO distribution in accordance with better data than Weibull and IW. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Junifsa Afly Prameswari
"Distribusi Negative Binomial-Generalized Exponential (NB-GE) merupakan distribusi yang mampu memodelkan data overdispersi dengan extreme excess zeros yaitu lebih dari 80% angka nol dalam data. Distribusi Negative Binomial-Generalized Exponential (NB-GE) merupakan distribusi campuran hasil dari mixing antara distribusi Negative Binomial (NB) dengan distribusi Generalized Exponential (GE). Pembentukan distribusi Negative Binomial-Generalized Exponential (NB-GE) serta karakteristik-karakteristik distribusi Negative Binomial-Generalized Exponential (NB-GE) seperti fungsi kepadatan peluang, momen ke-, mean, variansi, koefisien skewness dan koefisien kurtosis dibahas pada pada skripsi ini. Penaksiran parameter-parameter dari distribusi Negative Binomial-Generalized Exponential (NB-GE) menggunakan metode maximum likelihood. Sebagai ilustrasi, digunakan data kecelakaan fatal yang memiliki lebih dari 80% angka nol yang dimodelkan dengan distribusi Negative Binomial-Generalized Exponential (NB-GE).

Negative Binomial-Generalized Exponential (NB-GE) distribution is a distribution that capable for modeling overdispersion data with extreme excess zeros, which is more than 80% zeros in a data. The distribution is a mixture distribution that obtained by mixing the Negative Binomial (NB) distribution with the Generalized Exponential (GE) distribution. The formation of the Negative Binomial-Generalized Exponential (NB-GE) distribution and the characteristics of the Negative Binomial-Generalized Exponential (NB-GE) distribution such as the probability density function, kth moment, mean, variance, skewness and kurtosis are discussed in this paper. Estimation of the parameters from the Negative Binomial-Generalized Exponential (NB-GE) distribution using the maximum likelihood method. As an illustration, Negative Binomial-Generalized Exponential (NB-GE) distribution used to model the data of fatal crash that has more than 80% zeros."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Fachrezi Az
"

Penelitian ini membahas konstruksi distribusi Marshall-Olkin-Kumaraswamy-Eksponensial (MOKw-E), yang merupakan kombinasi distribusi Marshall-Olkin (MO) dan Kumarawasmy-Eksponensial (Kw-E). Distribusi ini dikenal sebagai model fleksibel yang dapat diaplikasikan untuk data dengan berbagai bentuk distribusi. Estimasi parameter dilakukan menggunakan Maximum Likelihood Estimation (MLE) dengan bantuan dua metode numerik, yaitu metode Nelder-Mead dan metode Gradien Konjugat Fletcher Reeves. Kedua metode ini banyak digunakan dalam penyelesaian permasalahan optimasi karena memiliki tingkat efisiensi yang tinggi dengan komputasi yang sederhana tetapi memberikan hasil yang akurat. Kedua metode ini akan dibandingkan dengan melihat nilai Mean Squared Error (MSE) yang merupakan suatu metrik untuk melihat seberapa cocok model dengan data yang digunakan. Terakhir, model yang dikembangkan diaplikasikan pada data severitas klaim asuransi pengangguran untuk menunjukkan kemampuan model dalam memodelkan data severitas klaim. Model tersebut akan dibandingkan dengan model yang dibangun dari distribusi Kw-E dengan melihat nilai Akaike Information Criteria (AIC) dan Bayessian information criteria (BIC) untuk menunjukan bahwa model yang dikembangkan lebih baik dibandingkan model asalnya.


This research discusses the construction of the Marshall-Olkin-Kumaraswamy-Exponential (MOKw-E) distribution, which is a combination of the Marshall-Olkin (MO) and Kumaraswamy-Exponential (Kw-E) distributions. This distribution is known as a flexible model applicable to data with various distribution shapes. Parameter estimation is performed using Maximum Likelihood Estimation (MLE) with the assistance of two numerical methods the Nelder-Mead method and the Conjugate Gradient Fletcher Reeves method. Both methods are widely used in solving optimization problems due to their high efficiency with simple computations yet accurate results. These methods will be compared by examining the Mean Squared Error (MSE) values, which is a metric to assess how well the model fits the data. Finally, the developed model is applied to unemployment insurance claim severity data to demonstrate the model's capability in representing severity claim data. The model will be compared with a model built from the Kw-E distribution by evaluating the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values to show that the developed model is superior to the original model.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ridho Okta Pawarestu
"Distribusi Transmuted Exponentiated Exponential merupakan generalisasi dari distribusi Exponentiated Exponential yang dibentuk dengan menggunakan metode quadratic rank transmutation maps (QRTM). Distribusi Transmuted Exponentiated Exponential merupakan salah satu distribusi kontinu yang mampu memodelkan data dengan hazard rate naik, turun, bathtub, dan non-monoton. Pada tugas akhir ini akan dibahas konstruksi dari distribusi Transmuted Exponentiated Exponential. Karakteristik-karakteristik distribusi yang meliputi fungsi kepadatan probabilitas, fungsi distribusi, dan hazard rate dari distribusi Transmuted Exponentiated Exponential juga dijelaskan lebih lanjut. Pada bagian akhir, diberikan suatu aplikasi dari distribusi Transmuted Exponentiated Exponential pada suatu data lifetime.

Transmuted Exponentiated Exponential distribution is a generalization of Exponentiated Exponential distribution which formed using a method called quadratic rank transmutation maps (QRTM). Transmuted Exponentiated Exponential distribution is a continued distribution which can model increasing, decreasing, bathtub, and non-monotone hazard rate. In this paper, it will be explained how to form Transmuted Exponentiated Exponential distribution. Characteristics of distribution such as, probability density function, distribution function, and hazard rate of Transmuted Exponentiated Exponential distribution will be explained further. Finally, a set of lifetime data will be analyzed using Transmuted Exponentiated Exponential distribution as an illustration.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S61730
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafif Hibatullah
"Distribusi Lindley diperkenalkan oleh Lindley 1958 dalam konteks inferensi Bayes. Baru-baru ini, perluasan dari distribusi Lindley diusulkan oleh Ghitany 2013 dan disebut distribusi yang dihasilkan disebut distribusi power Lindley. Skripsi ini akan memperkenalkan perluasan dari distribusi power Lindley menggunakan metode Marshall-Olkin dan akan menghasilkan distribusi power Lindley Marshall-Olkin PLMO. Distribusi PLMO dapat lebih fleksibel dalam merepresentasikan data dengan berbagai bentuk. Sifat fleksibilitas ini disebabkan oleh penambahan parameter ke distribusi power Lindley.
Beberapa sifat PLMO akan dijelaskan dalam skripsi ini, seperti probability density function pdf, cumulative distribution function cdf, fungsi survival, fungsi hazard, kuantil, dan momen ke-r. Estimasi parameter PLMO dilakukan dengan menggunakan metode maksimum likelihood. Distribusi PLMO diterapkan pada data dan akan dibandingkan dengan distribusi Lindley, power Lindley, Lindley Marshall-Olkin LMO , gamma, dan Weibull. Perbandingan model akan menggunakan nilai log likelihood, AIC, dan BIC.

Lindley distribution was introduced by Lindley 1958 in the context of Bayes inference. Recently, a new generalization of the Lindley distribution was proposed by Ghitany et al. 2013 , called power Lindley distribution. This paper will introduce an extension of the power Lindley distribution using the Marshall Olkin method, resulting in Marshall Olkin Extended power Lindley MOEPL distribution. The MOEPL distribution offers a flexibility in representing data with various shapes. This flexibility is due to the addition of a tilt parameter to the power Lindley distribution.
Some properties of the MOEPL were explored, such as probability density function pdf, cumulative distribution function cdd, hazard rate, survival function, and quantiles. Estimation of the MOEPL parameters was conducted using maximum likelihood method. The proposed distribution was applied to data. The results were given which illustrate the MOEPL distribution and were compared to Lindley, power Lindley, Marshall Olkin Extended Lindley MOEL, gamma, and Weibull. Models comparison using the log likelihood, AIC, and BIC showed that MOEPL fit the data better than the other distributions.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeremia Henry Pniel
"Fungsi hazard dapat dikategorikan menjadi dua, yaitu monoton (naik atau turun) dan non monoton (bathtub shape dan upside down bathtub shape). Untuk memodelkan data
dengan fungsi hazard monoton, naik atau turun, dan non monoton bathtub shape umumnya digunakan distribusi Gamma atau Weibull. Pada skripsi ini, akan diperkenalkan sebuah distribusi yang dapat memodelkan data dengan fungsi hazard berbentuk upside down bathtub shape. Distribusi ini diturunkan dari distribusi Lindley dengan melakukan transformasi yang disebut distribusi generalized inverse Lindley. Distribusi ini lebih fleksibel dalam memodelkan data dengan fungsi hazard non-monoton upside down bathtub. Hal ini dikarenakan parameter shape pada distribusi tersebut menyebabkan fungsi hazard memiliki banyak variasi bentuk namun tetap mempertahankan bentuk upside down bathtub. Beberapa karakteristik dari distribusi seperti fungsi kepadatan peluang, fungsi distribusi, fungsi survival, fungsi hazard,dan momen ke-r akan dicari. Untuk mengestimasi parameter distribusinya akan digunakan metode maximum likelihood. Di akhir skripsi ini, akan dibangun data untuk mengestimasi parameter dari distribusi yang bersangkutan

Hazard rate are categorized by their shape, either its monotone (decreasing or increasing) or non-monotone (upside down bathtub shaped and bathtub shaped). Modelling data from monotone hazard rate, either decreasing or increasing, and bathtub shaped hazard rate are possible with common distribution such as Gamma distribution or Weibull distribution. For data which has upside down bathtub shaped hazard rate is usually done by using inverse transformation of exponential distribution such as inverse Gamma, inverse Weibull, and inverse Lindley. In this paper, a distribution that can model a data with upside down bathtub shaped hazard rate is introduced. The distribution is derived from Lindley distribution with transformation and is called generalized inverse Lindley distribution. The distribution is more flexible because shape parameter which make wide variety of shape without changing its hazard rate from upside down bathtub shaped. Some
statistic properties of the distribution such as density function, cumulative function, survival function, hazard function, and moment will be discussed. For estimating
parameter of the distribution, maximum likelihood method will be used. In the end, simulation data will be generated to see the estimation of the distributions parameter."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitria Rahmawati
"Data lifetime biasanya digunakan peneliti untuk mengetahui tingkat survival atau tingkat kegagalan suatu objek. Distribusi Weibull merupakan distribusi probabilitas yang sering digunakan untuk memodelkan data lifetime. Namun, distribusi Weibull hanya dapat memodelkan data lifetime dengan tingkat kegagalan atau hazard rate yang monoton. Sehingga dibutuhkan distribusi baru yang dapat memodelkan data lifetime dengan karakteristik tingkat kegagalan atau hazard rate yang beragam. Distribusi inverse Weibull adalah distribusi hasil transformasi inverse dari distribusi Weibull. Distribusi inverse Weibull merupakan distribusi yang dapat memodelkan data lifetime dengan hazard rate monoton (turun) maupun  non-monoton (upside-down bathtub shaped). Namun, untuk membuat kepadatan fleksibel dengan berbagai macam bentuk diperlukan generalisasi dari distribusi ini dengan menambahkan suatu parameter shape. Distribusi generalized inverse Weibull merupakan generalisasi dari distribusi inverse Weibull yaitu yang dibentuk dengan memangkatkan fungsi distribusi inverse Weibull dengan suatu parameter baru. Distribusi generalized inverse Weibull memiliki 2 parameter shape dan 1 parameter scale sehingga distribusi ini dapat menggambarkan shape dari fungsi hazard yang lebih beragam. Pada  skripsi ini, akan dibahas mengenai pembentukan distribusi inverse Weibull dan pembentukan distribusi generalized inverse Weibull, serta fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, fungsi hazard, dan karakteristik-karakteristik dari kedua distribusi tersebut. Penaksiran parameter dari distribusi generalized inverse Weibull menggunakan metode maksimum likelihood.

Lifetime data is usually used by researchers to determine the level of survival or failure rate of an object. Weibull distribution is a probability distribution that is often used to model the lifetime data. However, the Weibull distribution is only used to model the lifetime data with monotone failure rate or monotone hazard rate. So that, a new distribution is needed to model the lifetime data with varying characteristics of failure rates or hazard rates. Inverse Weibull distribution is a distribution that is formed from the inverse transformation of the Weibull distribution. Inverse Weibull distribution is a continued distribution which can model lifetime data with a monotone hazard rate (constant, increase, and decrease) or non-monotone hazard rate (upside-down bathtub shaped). However, to make a density flexible with wide variety of shapes the generalizations from this distribution are needed by adding a shape parameter. Generalized inverse Weibull distribution is derived from generalization of inverse Weibull distribution that is formed by raising the inverse Weibull distribution function with a new parameter. Generalized inverse Weibull distribution has two shape parameters and one scale parameter. So, this distribution can describe a more diverse shapes of hazard function. In this skripsi, we will discuss how to construct inverse Weibull distribution and Generalized inverse Weibull distribution, and probability distribution function, cumulative distribution function, survival function, hazard function, and characteristics of these distributions. Parameter estimation of the generalized inverse Weibull distribution is using the maximum likelihood method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Firly Tamara
"[ABSTRAK
Pada sistem tenaga listrik memiliki bagian yang saling berkaitan antara satu dengan yang lainnya yaitu sistem pembangkitan, sistem transmisi dan sistem distribusi. Untuk menyalurkan listrik ke konsumen dari sistem distribusi digunakan transformator. Apabila transformator terkena gangguan, maka konsumen dapat langsung merasakan dampaknya. Gangguan-gangguan ini dapat merusak transformator. Sehingga memprediksikan waktu kegagalan transformator sangat penting untuk dilakukan. Terdapat beberapa cara untuk memprediksikan waktu kegagalan transformator yaitu dengan menggunakan distribusi weibull dan distribusi eksponensial. Dengan membuat program aplikasi berbasis Microsoft Excel untuk kedua distribusi ini, dapat langsung memprediksikan waktu kegagalan transformator. Hasil dari program ini adalah kapan transformator akan mengalami waktu kegagalan. Apabila kedua distribusi ini dapat digunakan, program ini dapat menentukan distribusi yang paling akurat untuk digunakan. Sehingga waktu kegagalan yang didapat akan lebih akurat.

ABSTRACT
On an electric power system there are three parts interconnected between one and another and that is generation system, transmission system and distribution system. To distribute electricity to consumer from distribution system used transformer. When a transformer affected by disruption, the consumers can feel the impact. This disruption can damage the transformer. So, predicting the time of the failure of a transformer is very important to do. There are several ways to predict the time of the failure of a transformer is to use and distribution of the exponential and weibull distribution. By making an application program based on Microsoft excel for this distribution, a transformer failure can be directly predicted time. The result of this program will have the time when the transformer is going to failure. If both the distribution can be used, this program can determine the most accurate distribution to use. Therefore the time failure which were found would be more accurate., On an electric power system there are three parts interconnected between one and another and that is generation system, transmission system and distribution system. To distribute electricity to consumer from distribution system used transformer. When a transformer affected by disruption, the consumers can feel the impact. This disruption can damage the transformer. So, predicting the time of the failure of a transformer is very important to do. There are several ways to predict the time of the failure of a transformer is to use and distribution of the exponential and weibull distribution. By making an application program based on Microsoft excel for this distribution, a transformer failure can be directly predicted time. The result of this program will have the time when the transformer is going to failure. If both the distribution can be used, this program can determine the most accurate distribution to use. Therefore the time failure which were found would be more accurate.
]"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57852
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>