Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 133392 dokumen yang sesuai dengan query
cover
Mega Fransiska
"Digitalisasi proses pengisian data Kartu Tanda Penduduk (KTP) memerlukan proses
otomatisasi dan otentikasi, yang dapat dilakukan dengan proses pembacaan teks pada gambar
KTP oleh komputer secara otomatis serta mengevaluasi kemiripan wajah pada foto KTP dan
swafoto pendaftar. Proses pembacaan data pada KTP secara otomatis disebut juga secagai proses
Optical Character Recognition (OCR), sedangkan pengevaluasian kemiripan wajah dapat
dilakukan dengan model Siamese Network. Baik Siamese Network maupun model untuk OCR
merupakan model yang pada dasarnya digunakan untuk mengolah gambar. Oleh karena itu
digunakan Convolutional Neural Network (CNN) sebagai model dasar pada penelitian ini. Pada
proses OCR dan evaluasi kemiripan wajah dibutuhkan model yang mampu mendeteksi lokasi teks
dan wajah yang akan diekstrak dari gambar, model tersebut merupakan model text detection dan
face detection. Model text detection dan face detection merupakan aplikasi dari model object
detection. Pada model object detection terbaru, dikembangkan model modifikasi CNN yang
mampu mendeteksi obek yang berukuran sangat kecil dan sangat besar, model tersebut dinamakan
Bidirectional Feature Pyramid Network (BiFPN). Setelah mengekstrak lokasi teks, langkah dari
proses OCR selanjutnya adalah mengenali setiap karakter dalam teks (text recognition), yang
dapat dilakukan dengan model Bidirectional Long Short-Term Memory (BiLSTM). Sedangkan
dari wajah yang diekstrak selanjutnya ditentukan apakah berasal dari orang yang sama atau tidak
oleh model Siamese Network. Pada penelitian ini akan dibangun arsitektur CNN Effiception, yang
digabungkan menjadi CNN-BiFPN untuk proses object detection, CNN-BiLSTM, untuk proses
text recognition, dan CNN dalam bentuk Siamese Network untuk mengevaluasi kemiripan wajah

Digitization of ID card applications requires automation and an authentication process,
which can be done by computerized ID card information reading and face's similarity evaluating
on ID card's photo and applicant selfie. The computerized ID card information reading is named
Optical Character Recognition (OCR). While the face's similarity authentication is done by the
Siamese Network model. Both the Siamese Network and OCR model basically used to process
images. Therefore, the Convolutional Neural Network (CNN) became the base model for this
study. Each of OCR and face's similarity authentication required a model that can detect the
location of text and face to be extracted from the image. They are text detection and face detection
model, which are the applications of object detection. The latest object detection model,
EfficientDet, used CNN modification that capable to detect a tiny and huge object at the same
time, is called Bidirectional Feature Pyramid Network (BiFPN). After extracting the location of
the text, the next step of the OCR process is to recognize each character in the text (text
recognition), which can be done with the Bidirectional Long Short-Term Memory (BiLSTM).
Meanwhile, the extracted face, from the selfie and ID card's photo, then be determined either from
the same person or not, by the Siamese Network. The product of this study is the CNN
architecture, Effiception, which is combined into CNN-BiFPN for object detection process, CNNBiLSTM,
for text recognition process, and its modification into Siamese Network architecture to
evaluate the face's similarity
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Taqiyuddin
"Penggunaan analisis sentimen semakin umum digunakan. Dalam pengembangan analisis sentimen ini banyak tantangan yang perlu dihadapi. Karena analisis ini termasuk Natural Language Processing NLP, hal yang perlu dimengerti adalah kompleksitas bahasa. Dengan berkembangnya teknologi Artificial Neural Network, ANN semakin banyak permasalahan yang bisa diselesaikan.
Ada banyak contoh struktur ANN dan untuk penelitian ini yang digunakan adalah Convolutional Neural Network CNN dan Recurrent Neural Network RNN. Kedua jenis ANN tersebut sudah menunjukkan performa yang baik untuk beberapa tugas NLP. Maka akan dilakukan analisis sentimen dengan menggunakan kedua jenis ANN tersebut dan dibandingkan kedua performa ANN tersebut. Untuk data yang akan digunakan diambil dari publikasi stanford dan untuk mengubah data tersebut bisa digunakan pada ANN digunakan word2vec.
Hasil dari analisis menunjukkan bahwa RNN menunjukkan hasil yang lebih baik dari CNN. Walaupun akurasi tidak terlalu terlihat perbedaan yaitu pada RNN yang mencapai 88.35 0.07 dan CNN 87.11 0.50, tetapi waktu pelatihan RNN hanya membutuhkan waktu 8.256 detik sedangkan CNN membutuhkan waktu 544.366 detik.

Term of sentiment analysis become popular lately. There are many challenges developing sentiment analysis that need to be addressed. Because this kind analysis is including Natural Language Processing, the thing need to understand is the complexity of the language. With the current development of Artificial Neural Network ANN, more problems can be solved.
There are many type of ANN and for this research Convolutional Neural Network CNN and Recurrent Neural Network will be used. Both already showing great result for several NLP tasks. Data taken from stanford publication and transform it with word2vec so could be used for ANN.
The result shows that RNN is better than CNN. Even the difference of accuracy is not significant with 88.35 0.07 for RNN and 87.11 0.50 for CNN, the training time for RNN only need 8.256 secods while CNN need 544.366 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68746
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afifah Rofi Laeli
"Tuberkulosis (TB) merupakan suatu penyakit menular yang sebagian besar menyerang paru-paru manusia. Penularan penyakit ini terjadi ketika pasien tuberkulosis paru mengeluarkan percikan dahak yang mengandung kuman tuberkulosis ke udara. Penularannya yang mudah menjadikan tuberkulosis sebagai masalah kesehatan masyarakat, baik di Indonesia maupun internasional. Deteksi dini tuberkulosis paru dapat mencegah penularan serta menyembuhkan pasien. Namun, adanya pandemi COVID-19 saat ini dapat menurunkan angka kasus tuberkulosis yang berhasil terdeteksi. Hal ini menunjukkan perlu adanya kemajuan dalam metode pendeteksian penyakit tuberkulosis paru. Kini, perkembangan teknologi dapat dimanfaatkan untuk membantu bidang kesehatan, salah satunya dengan machine learning. Machine learning dapat digunakan untuk mendeteksi adanya suatu penyakit berdasarkan data citra. Dalam penelitian ini, model machine learning, Convolutional Neural Network–Random Forest (CNN– Random Forest) dan Convolutional Neural Network–XGBoost (CNN–XGBoost), diimplementasikan untuk mendeteksi tuberkulosis paru berdasarkan citra radiografi toraks. Selanjutnya, kedua model tersebut dievaluasi dan dibandingkan kinerjanya berdasarkan nilai akurasi dan nilai luas wilayah di bawah kurva ROC, atau biasa disebut dengan area under the curve (AUC). Data yang digunakan sebanyak 6000 yang terdiri dari 3000 citra radiografi toraks tuberkulosis paru dan 3000 citra radiografi toraks normal. Berdasarkan hasil yang diperoleh, model CNN-Random Forest dan CNN-XGBoost memberikan kinerja yang baik dan dapat diterapkan untuk mendeteksi tuberkulosis paru, dimana CNN digunakan untuk mengekstraksi fitur pada citra, kemudian hasil ekstraksi fitur tersebut menjadi input bagi pengklasifikasi Random Forest dan XGBoost. Evaluasi kinerja berdasarkan rata-rata nilai akurasi dan rata-rata nilai AUC pada model CNN- Random Forest memberikan hasil terbaik masing-masing sebesar 98.667% dan 99.933%, sementara pada model CNN-XGBoost memberikan hasil terbaik masing-masing sebesar 98.367% dan 99.866%. Kemudian berdasarkan perbandingan kinerja yang dilakukan, model CNN-Random Forest memberikan kinerja yang lebih baik dalam mendeteksi tuberkulosis paru dibandingkan dengan model CNN-XGBoost.

Tuberculosis (TB) is an infectious disease that in most cases attacks the human lungs. Transmission of this disease occurs when a patient with pulmonary tuberculosis expels phlegm containing tuberculosis germs into the air. Its easy transmission makes tuberculosis a public health problem, both in Indonesia and internationally. Early detection of pulmonary tuberculosis can prevent transmission and cure patients. However, the current COVID-19 pandemic can reduce the number of successfully detected tuberculosis cases. This shows the need for progress in the detection method of pulmonary tuberculosis. Now, technological developments can be used to help the health sector, one of which is machine learning. Machine learning can be used to detect the presence of a disease based on image data. In this study, machine learning models, Convolutional Neural Network–Random Forest (CNN–Random Forest) and Convolutional Neural Network–XGBoost (CNN–XGBoost), were implemented to detect pulmonary tuberculosis based on thorax radiography images. Furthermore, the performances of the two models were evaluated and compared based on the values of accuracy and area under the ROC curve, or commonly called the area under the curve (AUC). The data used were 6000 consisting of 3000 thorax radiography images of pulmonary tuberculosis and 3000 normal thorax radiography images. Based on the results obtained, the CNN-Random Forest and CNN-XGBoost models provided good performances and can be applied to detect pulmonary tuberculosis, where CNN was used to extract features in the image, then the results of the feature extraction became input for the Random Forest and XGBoost classifiers. Performance evaluation based on the average values of accuracy and AUC in the CNN-Random Forest model gave the best results of 98.667% and 99.933%, respectively, while the CNN-XGBoost model gave the best results of 98.367% and 99.866, respectively. Then based on the performance comparison, the CNN-Random Forest model provided a better performance in detecting pulmonary tuberculosis compared to the CNN-XGBoost model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afifah Rofi Laeli
"Tuberkulosis (TB) merupakan suatu penyakit menular yang sebagian besar menyerang paru-paru manusia. Penularan penyakit ini terjadi ketika pasien tuberkulosis paru mengeluarkan percikan dahak yang mengandung kuman tuberkulosis ke udara. Penularannya yang mudah menjadikan tuberkulosis sebagai masalah kesehatan masyarakat, baik di Indonesia maupun internasional. Deteksi dini tuberkulosis paru dapat mencegah penularan serta menyembuhkan pasien. Namun, adanya pandemi COVID-19 saat ini dapat menurunkan angka kasus tuberkulosis yang berhasil terdeteksi. Hal ini menunjukkan perlu adanya kemajuan dalam metode pendeteksian penyakit tuberkulosis paru. Kini, perkembangan teknologi dapat dimanfaatkan untuk membantu bidang kesehatan, salah satunya dengan machine learning. Machine learning dapat digunakan untuk mendeteksi adanya suatu penyakit berdasarkan data citra. Dalam penelitian ini, model machine learning, Convolutional Neural Network-Random Forest (CNN-Random Forest) dan Convolutional Neural Network-XGBoost (CNN-XGBoost), diimplementasikan untuk mendeteksi tuberkulosis paru berdasarkan citra radiografi toraks. Selanjutnya, kedua model tersebut dievaluasi dan dibandingkan kinerjanya berdasarkan nilai akurasi dan nilai luas wilayah di bawah kurva ROC, atau biasa disebut dengan area under the curve (AUC). Data yang digunakan sebanyak 6000 yang terdiri dari 3000 citra radiografi toraks tuberkulosis paru dan 3000 citra radiografi toraks normal. Berdasarkan hasil yang diperoleh, model CNN-Random Forest dan CNN-XGBoost memberikan kinerja yang baik dan dapat diterapkan untuk mendeteksi tuberkulosis paru, dimana CNN digunakan untuk mengekstraksi fitur pada citra, kemudian hasil ekstraksi fitur tersebut menjadi input bagi pengklasifikasi Random Forest dan XGBoost. Evaluasi kinerja berdasarkan rata-rata nilai akurasi dan rata-rata nilai AUC pada model CNN-Random Forest memberikan hasil terbaik masing-masing sebesar 98.667% dan 99.933%, sementara pada model CNN-XGBoost memberikan hasil terbaik masing-masing sebesar 98.367% dan 99.866%. Kemudian berdasarkan perbandingan kinerja yang dilakukan, model CNN-Random Forest memberikan kinerja yang lebih baik dalam mendeteksi tuberkulosis paru dibandingkan dengan model CNN-XGBoost.

Tuberculosis (TB) is an infectious disease that in most cases attacks the human lungs. Transmission of this disease occurs when a patient with pulmonary tuberculosis expels phlegm containing tuberculosis germs into the air. Its easy transmission makes tuberculosis a public health problem, both in Indonesia and internationally. Early detection of pulmonary tuberculosis can prevent transmission and cure patients. However, the current COVID-19 pandemic can reduce the number of successfully detected tuberculosis cases. This shows the need for progress in the detection method of pulmonary tuberculosis. Now, technological developments can be used to help the health sector, one of which is machine learning. Machine learning can be used to detect the presence of a disease based on image data. In this study, machine learning models, Convolutional Neural Network-Random Forest (CNN-Random Forest) and Convolutional Neural Network-XGBoost (CNN-XGBoost), were implemented to detect pulmonary tuberculosis based on thorax radiography images. Furthermore, the performances of the two models were evaluated and compared based on the values of accuracy and area under the ROC curve, or commonly called the area under the curve (AUC). The data used were 6000 consisting of 3000 thorax radiography images of pulmonary tuberculosis and 3000 normal thorax radiography images. Based on the results obtained, the CNN-Random Forest and CNN-XGBoost models provided good performances and can be applied to detect pulmonary tuberculosis, where CNN was used to extract features in the image, then the results of the feature extraction became input for the Random Forest and XGBoost classifiers. Performance evaluation based on the average values of accuracy and AUC in the CNN-Random Forest model gave the best results of 98.667% and 99.933%, respectively, while the CNN-XGBoost model gave the best results of 98.367% and 99.866, respectively. Then based on the performance comparison, the CNN-Random Forest model provided a better performance in detecting pulmonary tuberculosis compared to the CNN-XGBoost model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ida Bagus Krishna Yoga Utama
"Convolutional Neural Network (CNN) banyak digunakan untuk menyelesaikan masalah klasifikasi gambar karena kinerjanya yang baik, namun untuk masalah klasifikasi berbasis vektor yang menggunakan jaringan saraf convolutional jarang digunakan. Para peneliti cenderung menggunakan metode lain dari jaringan saraf tiruan, seperti jaringan saraf Backpropagation (BPNN), probabilitas jaringan saraf (PNN), sebagai pengklasifikasi untuk masalah klasifikasi berbasis vektor.
Dalam penelitian ini, digunakan Vector-based CNN untuk mengklasifikasi masalah 6 kelas, 12 kelas, dan 18 kelas dari tiga campuran aroma menggunakan 4, 6, 8, dan 16 buah sensor. Untuk membandingkan kinerja Vector-based CNN, Backpropagation Neural Network juga digunakan untuk mengklasifikasikan masalah klasifikasi aroma yang sama.
Hasil percobaan menunjukkan bahwa Vector-based CNN menghasilkan tingkat pengenalan yang cukup tinggi dibandingkan dengan Backpropagation neural network.

Convolutional Neural Network (CNN) is widely used in image classification problems because of its good performance, however, Vector-based classification using a convolutional neural network is rarely utilized. Researchers tend to use another method of artificial neural networks, such as Backpropagation neural network, probability neural networks, as the classifier for Vector-based classification problems.
In this paper, we would like to use a CNN classifier in the problems of 6,12, and 18 classes of three mixture of odor using 4, 6, 8, and 16 channels of sensors. In order to compare the performance of the Vector-based Convolutional Neural Network, Backpropagation Neural Network is also used to classify the same Vector-based odor classification problems.
The Experiment results show that Vector-based convolutional neural network yields a quite high recognition rate compare with that of Backpropagation neural network.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhiyar Waladi
"Dalam negara yang demokratis, Pemilihan Umum (Pemilu) adalah prosedur untuk memilih kepala daerah yang diatur dalam Pasal 1 ayat 3 UUD 1945. KPU (Komisi Pemilihan Umum) adalah lembaga negara yang menyelenggarakan dengan memprioritaskan transparansi dan akuntabilitas dalam setiap tahap pemilihan umum di Indonesia. Salah satu bentuk keterbukaan yang selalu menjadi sorotan media adalah proses penghitungan suara. Proses perhitungan manual yang dilakukan oleh Komisi Pemilihan Umum (KPU) pada formulir C1 memakan waktu dan banyak akal karena melibatkan sukarelawan berbayar. Dalam penelitian ini, penulis menggunakan metode yang diusulkan untuk membangun sistem pengenalan tulisan tangan numerik pada formulir C1 KPU. Metode yang diusulkan adalah aliran pengenalan termasuk deteksi tabel dengan teknik kontur kandidat, pencocokan fitur, segmentasi angka, dan klasifikasi digit dengan jaringan saraf convolutional (CNN). Kumpulan data yang digunakan berasal dari situs web resmi KPU pada 2014 dan 2019. Kami menggunakan capsnet untuk mengklasifikasikan setiap digit tersegmentasi dengan akurasi 95,65\%. Model yang dilatih diuji menggunakan formulir validasi dan mencapai 80,73\% akurasi dokumen menggunakan formulir pemilihan 2019.

In a democratic state, General Election (Pemilu) is a procedure for selecting regional heads regulated in Article 1 paragraph 3 of the 1945 Constitution. KPU (Komisi Pemilihan Umum) is a state institution that organizes by prioritize transparency and accountability in each stage of general elections in Indonesia. One form of openness that has always been in the media spotlight is the vote counting process. The manual calculation process carried out by the General Election Commissions (KPU) on form C1 is time-consuming and resourceful because it involves paid volunteers. In this study, the authors used the proposed method to build a numerical handwriting recognition system on the C1 KPU form. Method proposed is a recognition flow including table detection with candidate contour techniques, feature matching, number segmentation, and digit classification with the convolutional neural network (CNN). The datasets used are from the official KPU election websites in 2014 and 2019. We use capsnet to classify each segmented digit with 95.65\% accuracy. The trained model was tested using validation form and reach 80.73\% document accuracy using 2019 election form."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
I Gusti Agung Agastya Tarumawijaya
"

Berbagai metode pengembangan rekognisi citra wajah telah banyak dilakukan, berbagai metode seperti Deep Learning, Multilayer Perceptron sudah dilakukan. Metode Convolutional Neural Network juga sudah banyak dikembangkan untuk melakukan klasifikasi citra seperti rekognisi jenis bunga, hewan, hingga pendeteksian kecacatan sel. Convolutional Neural Network diharapkan mampu melakukan rekognisi citra wajah secara tiga dimensi. Operasi konvolusi sebagai bagian ekstraksi fitur pada Convolutional Neural Network, diharapkan dapat membantu bagian klasifikasi untuk melakukan tugasnya dengan lebih baik. Rekognisi citra wajah secara tiga dimensi ini sangat dibutuhkan, karena ketika kita ingin mendeteksi seseorang tanpa diketahui orang tersebut, maka dengan berbagai macam sudut hadap wajahnya sistem harus dapat mengidentifikasi orang tersebut. Untuk penelitian kali ini saya akan menggunakan dataset gambar wajah tiga dimensi yang akan digunakan sebagai klasifikasi parameter biometrik seseorang. Pada penelitian ini akan menganalisa tiap-tiap lapisan pada Convolutional Neural Network, serta melakukan perbandingan dengan Backpropagation Neural Network. Dan juga akan melakukan analisa dengan menggunakan citra wajah berderau.


Various methods of developing facial image recognition have been carried out, various methods such as Deep Learning and Radial Basis Function Neural Network have been carried out. Convolutional Neural Network methods have also been developed to carry out image classifications such as recognition of types of flowers, animals, and detection of cell defects. Convolutional Neural Network is expected to be able to recognize facial images in three dimensions. Convolution operations as a feature extraction part of the Convolutional Neural Network are expected to help the classification section to do their job better. Three-dimensional face image recognition is needed, because when we want to detect someone without knowing by the person, then with a variety of face angles, the system must be able to identify that person. For this research I will use a three-dimensional face image dataset that will be used as a classification of a persons biometric parameters. In this study, we will analyze each layer in the Convolutional Neural Network, do a comparison with Backpropagation Neural Network. And also will do the analysis by using a noisy face image.

"
Depok: Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nugi Asmara
"Susu merupakan makanan penyempurna gizi pada manusia. Tidak hanya berasal dari sumber hewani seperti sapi dan kambing, akan tetapi susu juga dapat diperoleh dari tumbuhan seperti kedelai dan kelapa. Karakteristik kandungan yang berbeda pada setiap jenis susu memiliki potensi identifikasi yang berbeda-beda, berdasarkan proses pengolahan, nutrisi, kemurnian, kualitas, dan lain-lain. Penelitian ini bertujuan untuk membuat sistem klasifikasi jenis susu dengan metode yang nondestruktif memanfaatkan citra hiperspektral dan algoritma Deep Learning. Penelitian ini memanfaatkan kamera hiperspektral pada rentang Visible and Near-Infrared (VNIR) yang berada pada rentang 400 - 1000 nm. Penelitian ini meggunakan Convolutional Neural Network (CNN) sebagai algoritma pengklasifikasian citra. Sampel susu yang digunakan berasal dari sapi, kambing, kedelai, dan kelapa (santan) dengan total data mencapai 1920. Semua data yang telah diperoleh kemudian dibuat datasetnya sesuai dengan tipe klasifikasi yang akan diuji. Klasifikasi mencakup jenis susu dengan kelas hewani dan nabati, organisme sumber dengan kelas santan, sapi, kambing, dan kedelai, dan proses pengolahannya dengan kelas segar dan (Ultra High Temperature) UHT. Algoritma CNN yang diuji adalah sebanyak 3 arsitektur, yaitu GoogleNet, AlexNet, dan Proposed CNN. Akurasi tertinggi dengan jumlah data 480 terjadi pada klasifikasi proses pengolahan susu kedelai yang mencapai 100% untuk ketiga arsitektur, dengan waktu komputasi 20 detik. Akurasi tertinggi dengan jumlah data 1920 diperoleh pada kelas jenis susu yang mencapai 99,9% untuk arsitektur Proposed CNN dengan waktu komputasi 78 detik. Hasil ini menunjukkan bahwa citra hiperspektral dan algoritma CNN mampu menjadi kombinasi baik untuk mengklasifikasikan jenis susu.

Milk is a beverage that completes human nutrition. It is not only produced by animal such as cow and goat, but also can be obtained by plant such as soy and coconut. The nutrition composition contained on milks are different one another. The differences of nutrition composition have their identification potential, such as the processing, nutrition differences, purity, quality, etc. Hence, it is necessary to build a system that able to identify milk types with a nondestructive method utilizing hyperspectral image and Deep Learning algorithm. This research utilized hyperspectral camera at Visible and Near-Infrared (VNIR) range of light (400 – 1000 nm). We used Convolutional Neural Network (CNN) as its image classification algorithm. Milk sample was collected from cow, goat, soy, and coconut and obtained exactly 1920 datas. After the data collected, we created datasets based on type of classification it would be tested. The classification includes milk types with classes of animal-based and plant-based milk, the organisms that produce the milk with classes of coconut, cow, goat, and soy, and the processing method with classes of fresh and Ultra High Temperature (UHT). The tested algorithms of CNN architecture are GoogleNet, AlexNet, and Proposed CNN. The highest accuracy for 480 data was 100% reached by processing method classification of soy milk and the computation took only 20 seconds. Meanwhile, the highest accuracy for 1920 data was 99,9% reached by Proposed CNN architecture and the computation took only 78 seconds. These results showed that hyperspectral imaging and CNN algorithm are suitable for classifying types of milk. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rusnanda Farhan
"Penilaian citra embrio manusia memiliki peran yang penting dalam proses Fertilisasi In Vitro (FIV) atau yang dikenal juga sebagai proses bayi tabung. Penilaian citra embrio ini dilakukan secara manual oleh ahli embriologi. Hal ini tentunya membutuhkan waktu yang lama dan konsentrasi yang tinggi dari ahli embriologi sehingga perlu ada sistem yang dapat membantu ahli embriologi dalam melakukan penilaian dengan lebih efisien. Salah satu waktu penilaian embrio yang paling penting yaitu ketika embrio berusia lima hari, dimana ini merupakan tahap penilaian akhir sebelum proses implantasi ke rahim. Penilaian embrio pada hari kelima didasarkan pada tiga aspek yaitu derajat ekspansi, Inner Cell Mass, dan Trophoectoderm, yang menjadi tantangan tersendiri dalam penelitian di bidang ini. Permasalahan lain yang muncul yaitu ketersediaan data yang terbatas dan ketidakseimbangan proporsi kelas atau target pada dataset. Penelitian ini mengusulkan penggunaan augmentasi data berbasis Generative Adversarial Network seperti VanillaGAN, InfoGAN, DCGAN, dan Adversarial Autoencoder sehagai solusi permasalahan ketidakseimbangan data. Penelitian ini juga mengembangkan model klasifikasi berbasis Convolutional Neural Network sebagai klasifikator untuk menilai citra embrio. Penelititan ini menggunakan 10-fold cross validation untuk mengukur kinerja model. Untuk kategori derajat ekspansi, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Untuk kategori Inner Cell Mass, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan VanillaGAN sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Serta untuk kategori Trophoectoderm, model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder memperoleh hasil terbaik dengan nilai f1-score sebesar 0.89.

Assessment of human embryo images has an important role in the process of In Vitro Fertilization (IVF). Evaluation of this embryo image is done manually by the embryologist. This requires a long time and high concentration of embryologists, so it is necessary to create a system that can assist embryologists in making assessments more efficiently. One of the most important parts of human embryo assessment is the embryo on the fifth day after fertilization. Evaluation of embryos on the fifth day is based on three aspects, namely the degree of expansion, Inner Cell Mass, and Trophoectoderm, which is a particular challenge in research in this field. Another problem for this case is the limited availability of data and an imbalanced dataset. This study proposes the use of Generative Adversarial Network-based for data augmentation such as VanillaGAN, InfoGAN, DCGAN, and Adversarial Autoencoder as a solution to imbalanced data problems. This study also developed a classification model based on the Convolutional Neural Network as a classifier for assessing embryo images. This research uses 10-fold cross validation to measure model performance. This study obtained the best results for the degree of expansion category with the Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.92. This study obtained the best results for the Inner Cell Mass category with the Convolutional Neural Network model combined with VanillaGAN as a data augmentation with an f1-score of 0.92. The best result for Trophoectoderm category is Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.89."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sayyidah Hanifah Putri
"Kolesterol merupakan zat lilin mengandung lemak yang dibutuhkan untuk memproduksi hormon dan substansi lainnya dalam tubuh. Apabila jumlahnya berlebih, maka akan tercampur dengan subtansi lain dan membentuk plak pada dinding pembuluh darah. Kolesterol yang tertimbun pada pembuluh darah biasanya disebut kolesterol jahat atau Low Density Liporpotein (LDL) yang merupakan penyebab timbulnya risiko penyakit jantug koroner dan stroke. Untuk mengukur kadar LDL biasanya dilakukan dengan pengambilan sampel darah (invasif) dengan metode lipid profile test. Selain itu metode secara non-invasif berbasis iridologi saat ini juga dikembangkan. Penelitian ini dilakukan untuk membentuk suatu sistem deteksi kadar LDL secara non-invasif berbasis iridologi yaitu dengan citra mata serta menggunakan deep learning sebagai model klasifikasi. Salah satu indikator berlebihnya kadar LDL dalam tubuh ialah adanya cincin yang berwarna putih keabuan yang mengelilingi bagian iris atau biasa disebut corneal arcus. Sistem yang dirancang terdiri dari instrumen akuisisi citra, algoritma pemrosesan citra dan model klasifikasi deep learning. Pemrosesan yang dilakukan ialah menggunakan algoritma Circular Hough Transform (CHT) untuk proses lokalisasi dan Rubber-Sheet Normalization untuk menormalisasi bagian iris. Untuk mendapatkan bagian corneal arcus maka dilakukan segmentasi pada citra iris mata kanan dan kiri. Model CNN digunakan sebagai model klasifikasi kelas LDL tinggi dan normal sehingga menghasilkan akurasi sebesar 97%. Sehingga sistem dapat dikatakan bekerja dengan baik dalam prediksi status kadar LDL dalam tubuh.

Cholesterol is a waxy substance contains fat that required to produce hormones and other substances in the body. If the amount of cholesterol is excessive, it can be mixed with other substances and formed plaque on blood vessels. Cholesterol that builds up in blood vessels is usually called bad cholesterol or Low Density Liporpotein (LDL) which is the cause of the risk of coronary heart disease and stroke. Measuring LDL levels is usually done by taking blood samples (invasive) with the lipid profile test method. Other than that, a non-invasive method based on iridology was also developed. This research was focus to develop a non-invasive detection system for LDL levels status prediction based on eye image (iridology) using Convolutional Neural Network (CNN) as a classification model. One indicator of excess LDL levels in the body is the presence of a grayish white ring that surrounds the iris which is called corneal arcus. The system designed consists of image acquisition instruments, image processing algorithms and deep learning classification models which is CNN. The image processing is done using Circular Hough Transform (CHT) algorithm for the localization process and Rubber-Sheet Normalization for normalize the iris region. Segmentation is conducted to get the corneal arcus located at the outer of the iris region. This LDL levels status prediction system that used CNN as a classification model  with 5-fold cross validation results an accuracy of 97%. Those result show that the system worked in LDL levels prediction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>