Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 175860 dokumen yang sesuai dengan query
cover
Indra Kurniawan
"Lapangan geotermal “x” merupakan salah satu lapangan geotermal di Indonesia yang sedang dalam proses pengembangan. Tahap eksplorasi merupakan tahapan yang paling mempunyai resiko yang besar. Untuk mengurangi resiko tersebut, diperlukan data – data yang saling terintegrasi untuk menggambarkan sistem geotermal bawah permukaan secara representatif. Data magnetotellurik dan gravitasi merupakan data utama dalam pembuatan model konseptual sistem geotermal lapangan “x”. Selain itu juga didukung dengan data geokimia dan data sumur landaian suhu. Dari metode magnetotellurik yaitu berupa analisis fasa tensor dan induction arrow didapatkan arah struktur utama atau bisa disebut dengan geoelectrical strike yaitu berarah Timurlaut – Baratdaya atau lebih tepatnya mempunyai arah N80oE. Hal ini juga diperkuat dari metode gravitasi berupa analisis derivatif dan data geologi regional dimana struktur yang teridentifikasi juga dominan berarah Timurlaut – Baratdaya. Dari hasil pengolahan data gravitasi berupa data complete bouger anomaly mempunyai nilai 53 – 82 mgal dimana daerah yang mempunyai anomali tinggi berada pada daerah sekitar manifestasi hingga ke Timur daerah penelitian. Hasil pemodelan inversi 3D dari data magnetotellurik didapatkan batuan claycap mempunyai ketebalan berkisar antara 400 – 500 m. Batuan yang berperan sebagai heatsource merupakan batuan intrusi yang mempunyai nilai resistivitas hingga mencapai 400 ohm-m. Dari analisis data geokimia menunjukkan daerah outflow pada sistem geotermal yaitu daerah dimana terdapatnya manifestasi yang muncul ke permukaan. Dari semua data tersebut dapat diintegrasikan menjadi model konseptual sistem geotermal dimana dapat digunakan sebagai acuan dalam melakukan pemboran geotermal.

The geothermal field "x" is one of the geothermal fields in Indonesia which is in the process of being developed. The exploration stage is the stage that has the greatest risk. To reduce this risk, integrated data is needed to describe the subsurface geothermal system in a representative manner. Magnetotelluric and gravity data are the main data in making a conceptual model of the field "x" geothermal system. Also besides supported by geochemical data and temperature sloping well data. From the magnetotelluric method, namely in the form of phase tensor analysis and induction arrow, the direction of the main structure is obtained or it can be called a geoelectrical strike, which is in the Northeast - Southwest direction or more precisely has a direction of N80oE. This is also reinforced by the gravity method in the form of derivative analysis and regional geological data where the identified structures are also predominantly northeast-southwest trending. From the results of processing gravity data in the form of complete bouge anomaly data has a value of 53 - 82 mgal where areas that have high anomalies are in the area around the manifestation to the east of the study area. The results of 3D inversion modeling from the magnetotelluric data show that clay cap rocks have a thickness ranging from 400 - 500 m. Rocks that act as heat sources are intrusive rocks that have a resistivity value of up to 400 ohm-m. The geochemical data analysis shows the outflow area in the geothermal system, namely the area where there are manifestations that appear to the surface. From all these data, it can be integrated into a conceptual model of the geothermal system which can be used as a reference in carrying out geothermal drilling."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arvi Perwira
"Kesuksesan suatu lapangan geotermal sangat ditentukan dari kegiatan eksplorasi untuk menentukan model konseptual geotermal, sehingga dapat diketahui lokasi sumur pemboran yang tepat. Studi pendahuluan dan pemboran pada tahap eksplorasi di lapangan panasbumi “X” telah dilakukan oleh PT. PLN Geothermal. Sumur WE-1 dibor pada tahun 2010-2011 sampai kedalaman 932.67 m namun temperatur stabil sumur sampai saat ini belum diketahui secara pasti. Permasalahan tersebut kemungkinan dikarenakan suhu dibawah permukaan yang telah "mendingin" atau tidak ada permeabilitas, dimana permeabilitas berhubungan dengan struktur geologi. Oleh karena itu penelitian ini dilakukan untuk memastikan keberadaan struktur bawah-permukaan dan zona reservoir dengan menggunakan teknologi remote sensing dan data magnetotellurik.
Dalam penelitian ini, dilakukan penarikan kelurusan berdasarkan remote sensing untuk mengetahui struktur geologi permukaan, sedangkan pencitraan struktur di bawah-permukaan didapatkan melalui analisis pola splitting kurva, serta dengan melihat hasil inversi 3-dimensi magnetotellurik, daerah reservoir diketahui dari batas Base of Conductor. Hasil analisis geokimia digunakan untuk menentukan perkiraan temperatur reservoir, sehingga dapat membantu dalam pembuatan model konseptual dan deliniasi daerah prospek. Konseptual model daerah penelitian menggambarkan sumber panas berasal dari Gunung Eriwakang yang menjadi zona upflow yang dikontrol oleh sesar Banda dan Sesar Banda- Hatuasa. Direkomendasikan 1 sumur eksplorasi sebagai rekomendasi awal pemboran yang ditempatkan diantara sesar Banda dan sesar Banda-Hatuasa yang kemungkinan menjadi prospek permeabilitas.

The success of a geothermal field is determined by exploration activities, to establish the geothermal conceptual model. Therefore, the exact location of drilling wells could be provided. Preliminary survey and drilling in the exploration stage at the geothermal field “X” had been done by PT. PLN Geothermal. WE-1 well was drilled in 2010-2011 to 932.67 m of depth. Unfortunately, the stable well’s temperature has not confirmed for certain until now. The issue is likely due to the subsurface temperature has been cooled down or no permeability, the permeability most likely associated with the structural geology. Therefore, this study was conducted to confirm the presence of subsurface structures and reservoir zone using remote sensing technology and magnetotelluric data.
In this study, the lineament was drawn based on remote sensing data to determine the surface geological structure. While the image of the subsurface structure is obtained by analyzing the pattern of the splitting curve, as well as to see the results of the 3-dimensional magnetotelluric inversion, the reservoir was interpreted by the boundary of BOC (Base of Conductor). Geochemical analysis results are used to determine the approximate temperature of the reservoir, to make the conceptual model and the delineation of the prospect area. The conceptual model of the study area illustrates the heat sources comes from Mt. Eriwakang, as the upflow zone which controlled by Banda fault and Banda-Hatuasa fault. As the initial drilling, one well is recommended to be drilled which is locate between Banda fault and Banda-Hatuasa fault. It is likely to have the prospect of permeability.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T45328
UI - Tesis Membership  Universitas Indonesia Library
cover
Wambra Aswo Nuqramdha
"Tahapan eksplorasi masih menyimpan tantangan terbesar dan memiliki resiko yang tinggi bagi para pelaku industri bidang geothermal. Oleh karena itu, diperlukan pemahaman yang baik mengenai kondisi bawah-permukaan dengan mengintegrasikan data geosains yang memiliki kualitas yang bagus. Target utama dari eksplorasi yaitu penentuan lokasi pemboran dengan tingkat kepastian yang lebih tinggi. Pemboran diarahkan pada area yang memiliki temperatur dan permeabilitas yang tinggi. Distribusi temperatur bawah permukaan dapat didekati dari nilai resistivitas yang diperoleh dari data MT. Sementara zona dengan permeabilitas yang tinggi, berasosiasi dengan struktur geologi. Pemetaan geologi hanya dapat menggambarkan struktur geologi di permukaan, sementara kemenerusannya di bawah-permukaan menjadi kesulitan tersendiri untuk dideteksi. Penelitian ini difokuskan pada identifikasi struktur geologi bawah-permukaan menggunakan data Magnetotellurik (MT) dan Gravitasi. Analisis pola spliting kurva, arah elongasi polar diagram, serta pencitraan struktur di bawah-permukaan dengan melihat hasil inversi 3-dimensi, yang diperoleh dari data MT, serta didukung oleh hasil pemodelan data Gravitasi, merupakan metodologi yang digunakan dalam penelitian ini. Data geologi dan geokimia, dilibatkan sebagai data pendukung untuk membuat analisis keberadaan struktur geologi bawah-permukaan ini menjadi lebih komprehensif. Tahap akhir dari penelitian ini adalah memberikan rekomendasi dalam menentukan lokasi pemboran, dengan sebelumnya membuat model konseptual dan mendelineasi daerah prospek. Hasil analisis struktur, model konseptual, dan delineasi daerah prospek, menghasilkan rekomendasi tiga buah sumur eksplorasi. Dua sumur mengarah pada upflow di Gunung ?X?, dan satu sumur mengarah pada upflow di scoria cone.

Exploration stage still holds the biggest challenges and have a high risk for the geothermal industry. Therefore, required a good understanding of subsurface conditions by integrating the geoscientific data that has a high quality. The main target of exploration is the determination of drilling trajectory. The subsurface drilling target is actually directed to high temperature and high permeability zone. Subsurface temperature distribution can be approximated from the resistivity values obtained from the data MT. While the zones with high permeability, associated with geological structures. Geological mapping could only figure out geological structures indicated at the surface. However, continuation of the geological structure into the subsurface is difficult to detect. This study focused on the identification of subsurface geological structure using Magnetotelluric (MT) and gravity data. Splitting pattern analysis from MT curve, the elongation of orientation of polar diagrams, as well as imaging of subsurface structures by looking at the results of 3-dimensional inversion, the data obtained from MT, and supported by the results of Gravity data modeling, a methodology used in this study. Geological and geochemical data, were included as supporting data to make the analysis of the presence of subsurface geological structure has become more comprehensive. And the final stage of this research is to provide recommendations in determining the location of drilling, by first making a conceptual model of the geothermal system and delineating the prospect area. The result of structure analysis, conceptual model, and prospect delineation, provide three exploration wells for recommendation. The first two will be directed to upflow at Mount ?X?, and the other one to upflow at scoria cone."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43414
UI - Tesis Membership  Universitas Indonesia Library
cover
Sabrina Hikmah Ramadianti
"ABSTRAK
Salah satu target eksplorasi panas bumi adalah zona permeabilitas tinggi, yang mana zona ini biasanya berhubungan dengan banyak struktur. Pemetaan struktur pada geologi hanya mampu menunjukkan struktur permukaan saja. Kemenerusan struktur ke bawah permukaan sulit dideteksi. Hal ini dapat dilakukan dengan analisis struktur menggunakan metode Magnetotelurik (MT), yaitu induction arrows, kurva splitting dan diagram polar. Dengan menggunakan induction arrow dan diagram polar kita dapat memetakan keberadaan anomali konduktif. Spliting pada data kurva MT pada range frekuensi tinggi biasanya terjadi karena struktur di bawah permukaan. Forward modeling 3-D pun dilakukan guna memastikan struktur pada daerah tersebut, dengan model sintetik yang lebih simple dibuat berdasarkan acuan dari hasil inversi 3-D sehingga dapat mempermudah dalam melihat respon analisis induction arrows, kurva splitting dan diagram polar data MT riil lapangan. Hasil penelitian dari penelitian Lapangan ?S? ini menunjukan adanya korelasi antara struktur geologi dengan data MT baik analisis kurva splitting, induction arrows, dan diagram polar. Korelasi tersebut memperlihatkan adanya kontrol struktur yakni Sesar Sm dan Cg terhadap hadirnya zona main conductor. Zona pemboran diorientasikan sebelah Selatan Sesar Sm berarah NW-SE, dimana berdasarkan kemiringan struktur Sm ini mengarah NE-SW.

ABSTRAK
One of the geothermal exploration target is a zone of high permeability, which is usually associated with a lot of structure. Geological mapping of the structure is only able to show the structure of the surface. Continuity of structures beneath the surface difficult to detect. However, to look for structure, can be done by using the methods of structural analysis magnetotellurics (MT), such as, the induction arrows, splitting curves and polar diagram. By using induction arrow and diagram polar we can map the presence of anomalous conductive. Spliting the MT curve data at high frequency range usually occurs because of the structure below the surface. Forward 3-D modeling was done to ensure the structure of the region, with a more simple synthetic models are based on 3-D inversion results. The results of the Field "S" shows a correlation between the geological structure of the data is good MT splitting curve analysis, Induction Arrows, and a polar diagram. The correlation shows that the control structure of the Sm and Cg Fault zone to the presence of the main conductor. Zone drilling is oriented southern Sm Fault trending NW-SE, which is based on the slope of the structure of Sm leads NE-SW."
2016
S64171
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faruk Afero
"Metode magnetotelurik merupakan metode yang menggunakan sumber gelombang elektromagnetik natural untuk mencitrakan struktur resistivitas bawah permukaan. Tetapi salah satu tantangan yang dihadapi dalam interpretasi adalah adanya distorsi data yang disebabkan efek galvanik dari heterogenitas konduktivitas dekat permukaan maupun topografi. Salah satu teknik yang dikembangkan untuk mengekstrak data yang tidak terdistorsi adalah analisis tensor fasa. Selain itu digunakan juga data induction arrow sebagai informasi tambahan dalam analisis tensor fasa. Analisis tensor fasa diterapkan ke data lapangan panas bumi ?FH?. Dari analisis tensor fasa dapat dilakukan analisis dimensionalitas serta resistivitas data. Dari analisis dimensionalitas diketahui bahwa data dapat didekati oleh kondisi 2-D pada rentang frekuensi antara 320 Hz sampai 0.5-0.01 Hz dan bersifat 3-D untuk frekuensi lebih rendah.
Hasil analisis menyatakan arah geoelectrical strike dari area pengukuran adalah N0°E-N10°E, dengan ambiguitas sebesar 90°, atau N90°E-N100°E. Hasil analisis tensor fasa diimplementasikan dalam pemodelan resistivitas. Pemodelan 1-D dan 2-D telah menghasilkan model resistivitas sistem panas bumi lapangan ?FH?. Model ini terdiri dari lapisan dengan resistivitas bervariasi yang diinterpretasikan sebagai overburden, merupakan intrusi batuan dioritik sampai granodioritik komplek dengan ketebalan berkisar antara 500-1000 meter. Konduktor kuat dengan ketebalan sekitar 1000-3000 meter yang bervariasi yang diinterpretasikan sebagai geothermal clay cap, lapisan dengan nilai sekitar 15-40 Ohm meter hingga ke kedalaman 3000 meter di bawah permukaan laut yang diinterpretasikan sebagai reservoir panas bumi, dan lapisan dengan nilai lebih dari 500 Ohm meter yang diinterpretasikan sebagai batuan dasar yang merupakan bagian dari sumber panas bumi.

Magnetotelluric is a method using natural electromagnetic wave source to delineate subsurface resistivity structure. However, one of the challenge in data interpretation is galvanic effects produced by heterogeneities in near-surface conductivity distort the regional MT response. One of technique being developed to extract undistorted data is phase tensor analysis. In the other hand, induction arrow data can be applied as additional information for phase tensor analysis. Phase tensor analysis has been applied to ?FH? geothermal field data. Dimensionality and resistivity analysis can be obtained from phase tensor analysis. From dimensionality analysis, it was shown that the dimensionality of the data are 2-D in between frequency of 320 Hz till 0.5-0.01 Hz and 3-D for the lower frequency.
The results of the resistivity analysis has shown that the geoelectrical strike direction of the measurement area is N0°E-N10°E, with 90° ambiguity, or N90°E-N100°E. The results from phase tensor analysis are then applied to 1-D and 2-D resistivity modeling of ?FH? geothermal system. This model consists of layers with varying resistivity which were interpreted as the overburden, derived from the complex of dioritic to granodioritic intrusion with the thickness of 500-1000 meter, strong conductor which was interpreted as geothermal clay cap with the thickness of 1000-3000 meter, a layer with resistivity value of 15-40 Ohm meters up to a depth of 3000 meters which was interpreted as geothermal reservoir, and layer with resistivity values more than 500 Ohm m which was interpreted as a basement which was part of geothermal heat source.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64657
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syifa Fauziah
"Temperatur bawah permukaan merupakan parameter penting dalam dalam eksplorasi energi panas bumi. Persebaran temperatur bawah berkaitan erat dengan sistem geothermal yang ada. Sejauh ini, informasi temperatur bawah permukaan hanya bisa didapatkan dari data lubang bor berupa log temperatur. Namun, log temperatur sendiri memiliki data temperature dan kedalaman yang terbatas. Selain itu, biaya untuk menghasilkan log temperatur terbilang cukup mahal sehingga upaya estimasi temperatur dengan presisi yang baik dan efisien menjadi tantangan saat ini. Pada penelitian ini, estimasi temperature berdasarkan data magnetotellurik (MT) dilakukan dengan menerapkan metode neural network (NN). Teknik estimasi ini memanfaatkan hubungan antara temperature dan resistivitas. Temperatur yang diestimasi adalah temperature secara vertikal dibawah stasiun MT dengan data temperature dari lubang bor di dekatnya. Temperatur hasil estimasi dari resistivitas akan dibandingkan dengan temperature dari data lubang bor. Penelitian dilakukan pada 6 buah titik MT dan 6 buah log temperature pada area survey Lapangan Geothermal X. Hasil estimasi temperatur dari data resistivitas yang diteliti telah dilatih dan diuji menggunakan backpropagation neural network menunjukkan hasil yang cukup memuaskan karena sesuai dengan data temperature dari lubang bor yang tersedia. Kemudian dilakukan interpretasi dengan model penampang resistivitas tiga dimensi (3D) untuk mengetahui sistem geothermal pada Lapangan X. Teknik ini akan menjadi teknik yang cukup efisien untuk mengetahui persebaran temperature bawah permukaan dengan strategi pelatihan (training) yang tepat.

Subsurface temperature is an important parameter in the exploration of geothermal energy. Temperature is closely related to the existing geothermal system. So far, subsurface temperature information can only be obtained from hole data consisting of temperature logs. However, the log temperature itself has limited in data temperature and depths. In addition, the cost of making temperature logs is quite expensive so that producing temperature estimates with high precision and efficiency is a challenge today. In this study, temperature estimation based on magnetotelluric (MT) data was carried out using the neural network (NN) method. This estimation technique utilizes a ratio between temperature and resistivity. The estimated temperature is the temperature below the MT station with the temperature of the data from the nearest borehole data. The estimated temperature of the resistivity will be compared with the temperature from the borehole data. The study was conducted at 6 MT points and 6 temperature logs at the Geothermal Field X field survey. The estimated temperature results from resistivity data that has been trained and tested using backpropagation neural networks produce results that are quite in accordance with the temperature data from available boreholes. Then the interpretation is done with a three dimensional resistivity cross section model to find out the geothermal system in Field X. This technique will be an efficient enough technique to determine the subsurface temperature with an appropriate training strategy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mufidatul Khoiroh
"ABSTRAK
Daerah di sekitar kawasan X merupakan kawasan yang berupa dataran tinggi yang berada di kawasan kompleks vulkanik. Di kawasan ini terdapat kawah panas yang menunjukkan aktivitas hidrotermal, dimana manifestasi utamanya muncul di kawasan X berupa fumarol Cd. Salah satu sasaran dalam eksplorasi panas bumi adalah menemukan titik-titik pemboran yang berkorelasi dengan zona suhu tinggi dan zona yang memiliki kriteria permeabilitas tinggi, dimana zona tersebut berkorelasi dengan struktur geologi. Berdasarkan analisis kurva pemisahan dan diagram kutub, terdapat sesar Wp 1, Ga, Wp 2, Pk, Dg, Cd, dan Jm yang umumnya berarah barat laut-tenggara. Sistem panas bumi wilayah X terutama dikendalikan oleh sesar Cd. Adanya struktur sesar memungkinkan fluida dari kawasan timur Jm, Kaipohan Wp, dan sekitar kawasan Pk mengalir sebagai imbuhan. Selain itu, berdasarkan hasil inversi 3 dimensi, data magnetotelurik menunjukkan bahwa zona alterasi sebagian besar terkonsentrasi pada kedalaman sekitar 1500 m hingga 1000 m dengan indikasi bahwa batas zona konduktor (BOC) sudah mulai terlihat. pada ketinggian sekitar 1000 m dan zona reservoir berada pada kedalaman dibawah 1000. m yang ditunjukkan dengan nilai resistivitas sedang antara 20 - 63 Ωm. Zona resistif basement pada kedalaman -3000 m ditunjukkan dengan sebaran nilai resistivitas yang tinggi, dengan sumber utama didominasi oleh pegunungan Dm, Al, dan Jm dengan satuan litologi dominan berupa lahar andesit. Zona upflow kemungkinan terletak di sekitar prospek zona Cd atau di sekitar titik MT-37, dengan arah outflow ke barat daya. Berdasarkan pengukuran panas bumi, temperatur prospek utama diperkirakan 270 0C. Lokasi sasaran pemboran dapat ditarik di sekitar geothermal Cd dengan kedalaman pemboran yang dapat ditarik sekitar 1000 m sampai 1500 m di bawah permukaan.
ABSTRACT
The area around area X is an area in the form of a plateau located in a volcanic complex area. In this area there are hot craters showing hydrothermal activity, where the main manifestation appears in region X in the form of fumarole Cd. One of the targets in geothermal exploration is to find drilling points that are correlated with zones of high temperature and zones that have high permeability criteria, where these zones are correlated with geological structures. Based on the analysis of the separation curve and polar diagram, there are faults Wp 1, Ga, Wp 2, Pk, Dg, Cd, and Jm which generally run northwest-southeast. The X region geothermal system is mainly controlled by the Cd fault. The existence of a fault structure allows fluid from the eastern region of Jm, Kaipohan Wp, and around the Pk area to flow as a recharge. In addition, based on the results of the 3-dimensional inversion, the magnetotelluric data shows that the alteration zone is mostly concentrated at a depth of about 1500 m to 1000 m with an indication that the conductor zone boundary (BOC) is already visible. at an altitude of about 1000 m and the reservoir zone is at a depth below 1000. m which is indicated by a moderate resistivity value between 20 - 63 Ωm. The basement resistive zone at a depth of -3000 m is indicated by the distribution of high resistivity values, with the main source being dominated by mountains Dm, Al, and Jm with the dominant lithological unit in the form of andesite lava. The upflow zone is likely located in the vicinity of the prospect zone Cd or around the point MT-37, with the outflow direction to the southwest. Based on geothermal measurements, the temperature of the main prospect is estimated to be 270 0C. The drilling target location can be drawn around the geothermal Cd with a drilling depth that can be drawn from about 1000 m to 1500 m below the surface."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bimo Ramadhan
"Indonesia merupakan negara dengan potensi energi geotermal yang besar. Salah satu wilayah di Indonesia dengan potensi energi geotermal adalah Wilayah Z. Sebelumnya, beberapa penelitian dalam bidang geosains mengenai Wilayah Z telah dilakukan untuk mengetahui struktur geologi, keberadaan manifestasi geotermal, geokimia fluida hidrotermal, resistivitas batuan, dan anomali gravitasi. Metode geofisika yang digunakan dalam penelitian ini adalah metode geofisika gravitasi dengan data yang diperoleh dari GGMPlus 2013. Anomali gravitasi regional dan residual diperoleh menggunakan dua metode, yaitu bandpass dan polynomial trend surface analysis. Analisis FHD dan SVD digunakan dalam menentukan keberadaan patahan. Terdapat sepuluh patahan yang teridentifikasi melalui analisis tersebut dengan rincian delapan patahan normal dan dua patahan naik. Model 2-D dan 3-D digunakan dalam memperkiraan nilai densitas batuan bawah permukaan. Densitas batuan tertinggi berada pada luar pull-apart basin dan densitas batuan terendah berada pada bagian tengah pull-apart basin. Berdasarkan analisis data gravitasi GGMPlus 2013 beserta data-data pendukung seperti data geologi, data geokimia, dan data geofisika, teridentifikasi beberapa struktur patahan yang sesuai dengan persebaran struktur patahan pada peta geologi.

Indonesia is a country with great geothermal energy potential. One of the regions in the country with geothermal energy potential is Region Z. Previously, several studies in the field of geosciences regarding Region Z have been carried out to determine the geological structure, the presence of geothermal manifestations, the geochemistry of hydrothermal fluids, rock resistivity, and gravitational anomalies. The geophysical method used in this study is the gravitational geophysical method with data obtained from GGMPlus 2013. Regional and residual gravity anomalies are obtained using two methods, namely bandpass and polynomial trend surface analysis. FHD and SVD analysis are used in determining the presence of faults. There were ten faults identified through the analysis with details of eight normal faults and two ascending faults. 2-D and 3-D models are used in estimating the density values of subsurface rocks. The highest rock density is outside the pull-apart basin and the lowest rock density is in the central pull-apart basin. Based on the analysis of GGMPlus 2013 gravity data along with supporting data such as geological data, geochemical data, and geophysical data, several fault structures that correspond to the distribution of fault structures on the geological map were identified."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Balqis Al Sausan Suwargono
"Daerah penelitian berada pada Provinsi Sulawesi Tengah dengan sistem geotermal temperatur sedang tipe zona rekahan dan sesar Palu Koro. Penelitian ini bertujuan untuk mengetahui persebaran struktur patahan dan nilai densitas bawah permukaan daerah penelitian serta menghasilkan pemodelan tiga dimensi struktur bawah permukaan. Metode yang digunakan adalah metode gravitasi guna memberikan informasi tentang densitas batuan bawah permukaan dan lokasi sesar. Hasil penelitian menunjukkan adanya persebaran struktur patahan bawah permukaan yang berada pada bagian tengah dengan jenis patahan sinistral, barat laut patahan naik dan normal, serta bagian tenggara dengan jenis patahan naik. Hasil pemodelan tiga dimensi menunjukkan adanya anomali rendah dengan densitas 1.8-2.2 gr/cm3 yang berada pada bagian tengah daerah penelitian dan memanjang dari utara hingga selatan, yang diduga merupakan zona depresi Palu berupa graben. Anomali tinggi ditemukan pada bagian barat laut dengan densitas 2.8-3 gr/cm3 diduga disebabkan karena keberadaan Formasi Latimojong yang berumur Kapur-Eosen.

The research area is in Central Sulawesi Province with a medium temperature geothermal system with a fracture zone type and the Palu Koro fault. This study aims to determine the distribution of the fault structure and the subsurface density value of the research area and to produce a three-dimensional modeling of the subsurface structure. The method used is the gravity method to provide information about the density of subsurface rocks and the location of faults. The results showed that there was a distribution of subsurface fault structures in the middle with sinistral fault types, northwest up and normal faults, and southeast with rising fault types. The results of the three-dimensional modeling show that there is a low anomaly with a density of 1.8-2.2 gr/cm3 which is located in the center of the study area and extends from north to south, which is thought to be a depression zone in Palu in the form of a graben. The high anomaly found in the northwest with a density of 2.8-3 gr/cm3 is thought to be due to the presence of the Cretaceous-Eocene Latimojong Formation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Ahmad Syafii
"Keberadaan sistem panas bumi dapat diperkirakan dengan melihat manifestasi yang muncul di permukaan tanah akibat adanya struktur geologi, seperti sesar/patahan pada daerah potensi panas bumi. Untuk mengetahui keberadaan struktur patahan di lapangan ?DAS? digunakan metode gravitasi. Dalam metode gravitasi terdapat metode lanjutan untuk mengidentifikasi patahan, yaitu FHD (First Horizontal Derivative) dan SVD (Second Vertical Derivative). Metode tersebut memanfaatkan turunan dari nilai anomali gravitasi. Output dari metode tersebut adalah peta kontur yang menunjukkan keberadaan suatu patahan.
Terdapat delapan patahan yang teridentifikasi oleh metode FHD dan SVD, tujuh patahan merupakan patahan normal dan satu patahan merupakan petahan naik. Hasil tersebut diintegrasikan dengan data pendukung, seperti data MT, geologi, geokimia, data sumur dan model sintetik. Dari data-data tersebut dapat dibuat model densitas dan model konseptual sistem panas bumi daerah ?DAS?. Model densitas menunjukkan densitas clay cap sebesar 2,25 gr/cm3, densitas reservoir sebesar 2,41 gr/cm3, dan densitas heat source sebesar 2,81 gr/cm3. Berdasarkan model konseptual, fumarol dan mata air panas SPG merupakan zona upflow, sedangkan mata air panas BB 1 dan BB 2 merupakan zona outflow.

The existence of geothermal system can be assessed by identifying distribution of manifestations that appears on the surface. The manifestations appear because of geology structure, like fault structure on geothermal potention area. Gravity method is used to knowing the exsistence of fault structure on ?DAS field. In gravity method, there are the advanced methods to identify fault. They are FHD (First Horizontal Derivative) and SVD (Second Vertical Derivative). Those methods use derivative of gravity anomaly value. The output of FHD and SVD is contour map that indicates the exsistence of fault.
There are eight faults identified by FHD and SVD, they are seven normal faults and a reverse fault. The FHD and SVD contour map will be integrated with other support data, such as resistivity section of MT, geology data, geochemistry data, thermal gradient data, and sintetic model. Those data result density model and conseptual model of ?DAS? field geothermal system. Density model show the density of clay cap is 2,25 gr/cm3, reservoir is 2,41 gr/cm3, and heat source is 2,81 gr/cm3. Base on conseptual model, fumarole and hot spring SPG are upflow zone, while hot springs BB 1 and BB 2 are outflow zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63686
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>