Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 66526 dokumen yang sesuai dengan query
cover
Andrew Nilsen
"Investasi di saham bukanlah tanpa risiko. Harga saham selalu mengalami fluktuasi, dapat naik dan dapat turun. Ketidakpastian tersebut tidak dapat diabaikan, karena dapat menyebabkan kerugian jika salah dalam memprediksi arah pergerakan dari harga saham. Prediksi arah pergerakan harga saham yang lebih akurat dapat mengurangi risiko kerugian. Pada penelitian ini, prediksi arah pergerakan harga saham menggunakan faktor yang mempengaruhi arah pergerakan saham itu sendiri, yaitu harga saham sebagai variabel prediktor. Penelitian dilakukan dengan memanfaatkan salah satu metode dalam jaringan syaraf tiruan, yaitu gated recurrent unit dalam membangun model prediksi arah pergerakan harga saham tersebut. Data harga saham yang digunakan pada penelitian ini adalah data harga saham PT. Bank Central Asia Tbk (kode saham: BBCA) dan PT. Pabrik Kertas Tjiwi Kimia Tbk (kode saham: TKIM). Performa model yang digunakan dievaluasi dengan Root Mean Squared Error dan Mean Absolute Error. Pada penelitian ini didapatkan hasil bahwa hyperparameter prediksi harga saham BBCA terbaik diperoleh dengan menggunakan {epoch=500, batch size=32, dan units=24} dan hyperparameter prediksi harga saham TKIM terbaik diperoleh dengan menggunakan {epoch=250, batch size=128, dan unit=24}. Kemudian, dari RMSE dan MAE yang dihasilkan dari kedua saham disimpulkan bahwa model GRU merupakan model yang mampu memprediksi saham dengan baik.

Investing in stocks is not without risk. The stock price always fluctuates, can go up and can go down. This uncertainty cannot be ignored, because it can cause losses if it is wrong in predicting the direction of movement of the stock price. A more accurate prediction of the direction of stock price movements can reduce the risk of loss. In this study, the prediction of the direction of stock price movements uses factor that influence the direction of stock movement itself, namely the stock price as a predictor variable. The research was conducted by utilizing one of the methods in artificial neural networks, namely the gated recurrent unit in building a predictive model for the direction of the stock price movement. The share price data used in this research is the share price data of PT Bank Central Asia (stock code: BBCA) and PT. Pabrik Kertas Tjiwi Kimia Tbk (stock code: TKIM). The model performance is evaluated by using Root Mean Squared Error and Mean Absolute Error. The results of this study indicate that the best prediction of the direction of BBCA's stock price movement is obtained by using {epoch=500, batch size=32, and units=24} and the best prediction of the direction of TKIM's stock price movement, is obtained by using {epoch=250, batch size=128, and units=24}. Then, from the RMSE and MAE generated from the two stocks, it can be concluded that the GRU model is a model capable of predicting stocks."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Purba, Jusup Roni Pardamean
"Demam Berdarah Dengue (DBD) merupakan salah satu virus yang menginfeksi
manusia melalui gigitan nyamuk Aedes aegypti dan Aedes albopictus. Menurut laporan
CDC, Indonesia yang masuk dalam level 1 dari 3 yaitu level tertinggi, frequent or
continuous kasus DBD. Perkiraan lebih awal dan akurat dari persebaran insiden DBD
dapat meminimalkan ancaman dan membantu pihak yang berwenang untuk menerapkan
langkah-langkah pengendalian yang efektif. Pada penelitian ini, prediksi angka insiden
DBD menggunakan faktor-faktor cuaca yang mempengaruhi perkembangan nyamuk itu
sendiri, yaitu temperatur, kelembapan, dan curah hujan sebagai variabel prediktor.
Variabel prediktor ditentukan berdasarkan nilai korelasi silang dari time lag variabel
prediktor terhadap jumlah insiden DBD. Penelitian dilakukan dengan memanfaatkan
salah satu metode dalam machine learning, yaitu gated recurrent unit dalam
membangun model prediksi insiden DBD tersebut. Performa model yang digunakan
dievaluasi dengan Root Mean Squared Error dan Mean Absolute Error. Hasil penelitian
ini menunjukkan bahwa prediksi angka insiden DBD terbaik, diperoleh dengan
menggunakan proporsi data training-test: 90%-10%.

Dengue Fever (DF) is a virus that infects humans through the bite of Aedes aegypti and
Aedes albopictus mosquitoes. According to the CDC report, Indonesia is included in
level 1 of 3, namely the highest level, frequent or continuous cases of DF. Early and
accurate estimates of the spread of dengue incidents can minimize threats and help the
authorities to implement effective control measures. In this study, the prediction of DF
incidence uses weather factors that influence the development of mosquitoes
themselves, namely temperature, humidity, and rainfall as predictor variables. Predictor
variables are determined based on the value of the cross correlation of the time lag
predictor variable to the number of DF incidents. The study was conducted by utilizing
one method in machine learning, namely the gated recurrent unit in building the DF
incident prediction model. The performance of the model are evaluated by Root Mean
Squared Error and Mean Absolute Error. The results of this study shows that the best
prediction model of DF incidence rate, obtained using the proportion of training-test
data: 90% -10%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Savira Amalia
"Pemantauan harga komoditas strategis merupakan pekerjaan yang penting karena kontribusi signifikan yang dimiliki oleh komoditas strategis terhadap perhitungan laju inflasi. Untuk membantu menyelesaikan pekerjaan ini, dibutuhkan metode prediksi terbaik yang mampu memprediksi pergerakan harga komoditas pangan strategis. Penelitian ini memiliki tujuan untuk menemukan model prediksi terbaik di antara Long-Short-Term Memory (LSTM) dan Gated Recurrent Unit (GRU), dalam memprediksi harga harian sepuluh komoditas pangan strategis: bawang merah, bawang putih, beras, cabai merah, cabai rawit, daging ayam, daging sapi, gula pasir, minyak goreng, dan telur ayam. Model ARIMA digunakan sebagai standar model klasik dalam penelitian kali ini. Mean Absolute Error (MAE) dan Mean Absolute Percentage Error (MAPE), GRU memberikan hasil prediksi harga harian paling baik pada enam dari total sepuluh komoditas dan LSTM memberikan hasil prediksi terbaik pada empat komoditas sisanya. Model terbaik pada tiap komoditas berhasil mengurangi angka MAE dari ARIMA sekitar 3% hingga 43%. Ketika model mempelajari data, GRU berhasil menyelesaikan prosesnya lebih cepat daripada LSTM pada delapan komoditas. Model peramalan terbaik yang ditemukan pada penelitian kali ini dapat digunakan untuk memperbaiki metode peramalan klasik yang telah digunakan dalam memprediksi harga harian pangan Indonesia, sehingga dapat membantu pemerintah dalam memformulasikan kebijakan dan peraturan terkait manajemen stabilitas harga pangan.

Managing strategic commodities prices in the market is considered an important task since they have a significant contribution to the calculation of the inflation rate. To aid this task, it is necessary to find the best forecasting model that can predict commodities daily price. This paper aims to find the best prediction model between Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) in forecasting the daily price of ten Indonesia’s strategic commodities: shallot, garlic, rice, chili pepper, cayenne pepper, broiler meat, topside beef, granulated sugar, cooking oil, chicken egg. This research used ARIMA as a benchmark model. Based on Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), GRU gave the best result in predicting the daily price of six out of ten commodities. It is found that the best model for each commodity managed to reduce the MAE score from ARIMA by around 3% until 43%. GRU managed to finish faster than LSTM in training eight commodities data. The best forecasting method found in this research can be used to improve the classic method to forecast the daily price of Indonesia’s food commodities in assisting the government in formulating policies and regulations related to food price management."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Azizah Zuhriya Nurmadina
"Model deep learning adalah model dengan banyak lapisan jaringan saraf tiruan. Model Bidirectional Gated Recurrent Unit (BiGRU) adalah salah satu jenis model deep learning yang memproses urutan data dalam dua arah, yaitu arah maju dan arah mundur. Hal tersebut memungkinkan model BiGRU untuk mengakses informasi masa depan dan masa lalu dari setiap titik dalam urutan data untuk pemahaman konteks yang lebih baik. Model BiGRU dapat digunakan untuk analisis sentimen, yaitu proses mengategorikan sentimen opini dalam teks menjadi negatif, netral, atau positif. Representasi teks yang digunakan pada penelitian ini adalah Bidirectional Encoder Representations from Transformers (BERT) karena kemampuannya memahami kata secara kontekstual sehingga meningkatkan akurasi. Salah satu masalah umum pada analisis sentimen adalah ketidakseimbangan data Penggunaan data tidak seimbang mempengaruhi kinerja model dalam melakukan klasifikasi sentimen karena bias terhadap kelas mayoritas. Oleh karena itu, penggunaan Synthetic Minority Oversampling Technique (SMOTE) dalam mengatasi ketidakseimbangan kelas pada data dilakukan pada penelitian ini. SMOTE digunakan untuk melakukan oversampling pada data kelas minoritas dan dipasangkan dengan model BiGRU yang menggunakan fungsi kerugian categorical cross entropy menghasilkan kinerja dengan nilai akurasi sebesar 85,52% yang merupakan akurasi tertinggi dibandingkan dengan daripadamodel BiGRU dengan fungsi kerugian categorical cross entropy tanpa penanganan SMOTE (model standar dalam penelitian ini) dan model BiGRU dengan fungsi kerugian weighted cross entropy yang dibangun untuk memperkuat bukti bahwa model yang diajukan adalah model terbaik.

Deep learning models are models with multiple layers of artificial neural networks. The Bidirectional Gated Recurrent Unit (BiGRU) model is one type of deep learning model that processes data sequences in two directions, the forward direction and the backward direction. This allows the BiGRU model to access future and past information from each point in the data sequence for better context understanding. The BiGRU model can be used for sentiment analysis, which is the process of categorizing the sentiment of opinions in text into negative, neutral, or positive. The text representation used in this research is Bidirectional Encoder Representations from Transformers (BERT) because of its ability to understand words contextually to increase accuracy. One of the common problems in sentiment analysis is data imbalance. The use of unbalanced data affects the performance of the model in performing sentiment classification due to bias towards the majority class. Therefore, the use of Synthetic Minority Oversampling Technique (SMOTE) in overcoming class imbalance in the data is done in this study. SMOTE is used to perform oversampling on minority class data and paired with the BiGRU model using the categorical cross entropy loss function results in performance with an accuracy value of 85.52% which is the highest accuracy compared to the BiGRU model with the categorical cross entropy loss function without SMOTE handling (the standard model in this study) and the BiGRU model with the weighted cross entropy loss function built to strengthen the evidence that the proposed model is the best model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Yuni Safira
"Analisis sentimen adalah studi komputasi yang bertugas mengelompokkan sentimen atau opini dari teks yang ada dalam dokumen, kalimat, atau pendapat ke kelas sentimen positif, negatif, atau netral. Terdapat banyak model deep learning yang terkenal untuk analisis sentimen, dua di antaranya adalah Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU), yang termasuk dalam Recurrent Neural Network (RNN). Bidirectional Gated Recurrent Unit (BiGRU) merupakan bagian dari Bidirectional Recurrent Neural Network (BiRNN) yang dapat bekerja secara dua arah dan memungkinkan untuk menangkap pola yang mungkin diabaikan oleh GRU. Untuk meningkatkan kinerja model menjadi lebih baik, beberapa peneliti mencoba menerapkan model hybrid dengan menggabungkan dua atau lebih model deep learning dasar. CNN memiliki keunggulan dalam mendapatkan fitur terpenting, sedangkan BiGRU dapat merepresentasikan kata dengan memperhatikan urutan dengan dua arah. Kedua model tersebut dapat digabungkan menjadi model CNN-BiGRU dan BiGRU-CNN. Implementasi kedua model dilakukan untuk data opini yang diambil dari Twitter mengenai tiga dompet digital, yaitu Gopay, OVO, dan ShopeePay. Hasil penelitian didapat bahwa kedua model memiliki kinerja yang berbeda untuk setiap dataset. Kemudian, didapat bahwa kedua model tersebut memiliki nilai akurasi dan f1 score yang tidak lebih tinggi dibandingkan model dasarnya.

Sentiment analysis is a computational study that is used to classify sentiments or opinions from texts in documents, sentences, or opinions into positive, negative, or neutral sentiment classes. There are many well-known deep learning models for sentiment analysis, two of which are the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU), which are included in the Recurrent Neural Network (RNN). The Bidirectional Gated Recurrent Unit (BiGRU) is part of the Bidirectional Recurrent Neural Network (BiRNN) which can work in both directions and allows for capturing patterns that the GRU might ignore. To improve model performance, some researchers are trying to implement a hybrid model by combining two or more basic deep learning models. CNN has the advantage of getting the most important features, while BiGRU can represent words by paying attention to the order in two directions. The two models can be combined into CNNBiGRU and BiGRU-CNN models. The implementation of the two models is used for opinion data taken from Twitter regarding three digital wallets, namely Gopay, OVO, and ShopeePay. The results showed that the two models have different performances for each dataset. Then, it was found that both models have an accuracy value and an f1 score that is not higher than the basic model.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ilsya Wirasati
"Hati adalah salah satu organ yang paling aktif secara metabolik di dalam tubuh dan berfungsi dalam proses homeostatis dan sintetik yang penting untuk kelangsungan hidup manusia. Kanker hati diperkirakan menjadi kanker keenam yang paling sering didiagnosis dan penyebab utama kematian keempat akibat kanker di seluruh dunia pada tahun 2018. Dalam mendeteksi kanker hati, terdapat metode magnetic resonance imaging (MRI) atau computed tomography (CT) yang digunakan. Namun, kurang dari 40% pasien didiagnosis pada tahap awal dan pada kanker hati lanjut hanya pilihan pengobatan paliatif yang tersedia dengan kelangsungan hidup yang buruk. Oleh karena itu, diperlukannya riset-riset terkait metode yang tepat untuk mengklasifikasi kanker hati. Salah satu metode yang dapat digunakan adalah machine learning yang menemukan pola melalui pembelajaran historis dan tren pelatihan data untuk memprediksi karakteristik data baru. Pada tugas akhir ini, dua metode machine learning yang digunakan adalah Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU). Keutamaan dari CNN adalah adanya konvolusi yang bertugas untuk mengubah input menjadi sekumpulan fitur melalui filter atau kernel. Sedangkan keutamaan metode GRU adalah adanya update gate dan reset gate yang dapat mengingat informasi penting sebelumnya. Pada tugas akhir ini, CNN digunakan dalam mengekstraksi data citra dan GRU digunakan untuk klasifikasi data citra. Penggabungan metode CNN dan GRU menjadi CNN-GRU bertujuan untuk meningkatkan performa dari CNN dalam mengklasifikasi data citra kanker hati. CNN-GRU menghasilkan nilai akurasi terbesar 81,25% sedangkan CNN menghasilkan nilai akurasi terbesar 77,78% dari lima kali percobaan.

The liver is one of the most metabolically active organs in the body and functions in the homeostatic and synthetic processes essential for human survival. Liver cancer is estimated to be the sixth most frequently diagnosed cancer and the fourth leading cause of cancer death worldwide in 2018. In detecting liver cancer, magnetic resonance imaging (MRI) or computed tomography (CT) methods are used. However, less than 40% of patients are diagnosed at an early stage, and in advanced liver cancer, only palliative treatment options are available with poor survival. Therefore, research is needed regarding the right method to classify liver cancer. One method that can be used is machine learning which finds patterns through historical learning and data training trends to predict the characteristics of new data. In this final project, the two machine learning methods used are Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU). The advantage of CNN is a convolution whose task is to convert the input into a set of features through a filter or kernel. Meanwhile, the advantage of GRU method is that can remember important previous information because GRU has reset and update gate. In this final project, CNN is used in extracting image data and GRU is used for image data classification. The combination of the CNN and GRU methods into CNN-GRU aims to improve the performance of CNN in classifying liver cancer image data. CNN-GRU produced the greatest accuracy value of 81.25% while CNN produced the greatest accuracy value of 77.78% from five experiments."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stanley Pratama
"Parafrasa merupakan suatu cara untuk menuliskan kalimat dengan kata-kata lain dengan maksud atau tujuan yang sama. Pendeteksian parafrasa otomatis dapat dilakukan dengan menggunakan Natural Language Sentence Matching (NLSM) yang merupakan bagian dari Natural Language Processing (NLP). NLP merupakan teknik komputasi untuk memproses teks secara umum, sedangkan NLSM dikhususkan untuk mencari hubungan antar dua kalimat. Dengan adanya perkembangan neural network (NN), maka saat ini NLP dapat lebih mudah dilakukan oleh komputer.Model untuk mendeteksi maupun membuat parafrasa Bahasa Inggris sudah banyak dikembangkan dibandingkan dengan Bahasa Indonesia yang data pelatihannya lebih sedikit. Penelitian ini mengusulkan Model SPratama yang memodelkan deteksi parafrasa untuk Bahasa Indonesia menggunakan recurrent neural network (RNN) yaitu bidirectional long short-term memory (BiLSTM) dan bidirectional gated recurrent unit (BiGRU). Data yang digunakan adalah “Quora Question Pairs” yang diambil dari Kaggle dan diterjemahkan ke Bahasa Indonesia menggunakan Google Translate. Hasil penelitian ini menunjukkan bahwa model-model yang diusulkan mendapatkan akurasi sekitar 80% untuk pendeteksian kalimat parafrasa.

Paraphrasing is a way to write sentences with other words with the same intent or purpose. Automatic paraphrase detection can be done using Natural Language Sentence Matching (NLSM) which is part of Natural Language Processing (NLP). NLP is a computational technique for processing text in general, while NLSM is used specifically to find the relationship between two sentences. With the development neural network (NN), nowadays NLP can be done more easily by computers. Many models for detecting and paraphrasing in English have been developed compared to Indonesian, which has less training data. This study proposes SPratamaModel, which models paraphrase detection for Indonesian using a recurrent neural network (RNN), namely bidirectional long short-term memory (BiLSTM) and bidirectional gated recurrent unit (BiGRU). The data used is "Quora Question Pairs" taken from Kaggle and translated into Indonesian using Google Translate. The results of this study indicate that the proposed models have the accuracy of around 80% for the detection of paraphrased sentences."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Ahmad Faisal
"Grammatical Error Correction (GEC) merupakan salah satu topik yang menarik dalam penelitian Natural Language Processing (NLP). Sudah banyak penelitian mengenai GEC untuk bahasa universal seperti Inggris dan Cina, namun sedikit penelitian mengenai GEC untuk bahasa Indonesia. Pada penelitian ini penulis mengembangkan framework GEC untuk memperbaiki kesalahan 10 jenis Part of Speech (POS) bahasa Indonesia dengan arsitektur Gated Recurrent Unit (GRU). Dataset yang digunakan adalah Indonesian POS Tagged Corpus yang disusun oleh Ruli Manurung dari Universitas Indonesia. Hasil penelitian ini berhasil memberikan rata-rata Macro-Average F0.5 Score sebesar 0.4882 dan meningkatkan kecepatan prediksi sebesar 30.1%.

Grammatical Error Correction (GEC) is one of the exciting topics in Natural Language Processing (NLP) research. There have been many studies on GEC for universal languages such as English and Chinese, but little research on GEC for indonesian. In this study, the authors developed a GEC framework to correct ten Indonesian Part of Speech (POS) errors with the Gated Recurrent Unit (GRU) architecture. The dataset used is the Indonesian POS Tagged Corpus compiled by Ruli Manurung from the University of Indonesia. The results of this study succeeded in providing an average Macro-Average F0.5 Score of 0.4882 and increase prediction time by 30.1% "
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhio Makarim Utomo
"Sistem Penilaian Esai Otomatis (SIMPLE-O) dikembangkan oleh Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia untuk ujian bahasa Indonesia. Skripsi ini akan membahas mengenai pengembangan SIMPLE-O untuk penilaian ujian bahasa Indonesia menggunakan metode Gated Recurrent Unit (GRU) dan bahasa pemrograman Python. Terdapat dua dokumen yang akan menjadi input, yaitu jawaban esai dari peserta ujian dan jawaban referensi dari penguji. Kedua jawaban diproses dengan layer GRU yang sama. Selanjutnya, kemiripan antara keduanya dihitung dengan fungsi persamaan. Rata-rata nilai akurasi yang didapatkan adalah 98.84 untuk fase training dan 86.82 untuk validasi

The Automatic Essay Assessment System (SIMPLE-O) was developed by the Department of Electrical Engineering, Faculty of Engineering, University of Indonesia for the Indonesian language test. This thesis will discuss the development of SIMPLE-O for the assessment of Indonesian language tests using the Gated Recurrent Unit (GRU) method and the Python programming language. There are two documents that will be input, essay answers from examinees and answer answers from examiners. Both answers are processed with the same GRU layer. Next, the similarity between the two is calculated by the similarity function. The average accuracy value obtained was 98.84 for the training phase and 86.82 for validation"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>