Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 92928 dokumen yang sesuai dengan query
cover
Nur Muchamad Arifin
Fakultas Teknik Universitas Indonesia, 2011
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Sigit Hargiyanto
"Pemanfaatan PEMFC masih memiliki kendala, yakni degradasi penyangga katalis berupa carbon black. Carbon black dapat diganti dengan carbon nanotube (CNT) yang terorientasi tegak karena menghasilkan kinerja lebih tinggi. Pada penelitian ini CNT ditumbuhkan diatas carbon paper menggunakan metode floating catalyst-CVD dengan variasi temperatur 700oC-900oC, sumber karbon berupa metana, dan katalis ferrocene yang dipanaskan 200oC pada bubbler. Konversi metana meningkat dengan meningkatnya suhu reaktor. Carbon loss pada 700oC, 800oC, dan 900oC sebesar 98,31%, 95.01% dan 96.69%, tingginya carbon loss dikarenakan sedikitnya katalis yang terdeposisi pada carbon paper. Hasil SEM menunjukan CNT terorientasi tegak pada suhu penumbuhan 800oC dan 900oC dengan OD dan panjang sebesar 36 nm dan 10 μm. Hasil yang didapatkan kurang efektif untuk aplikasi fuel cell, karena densitas CNT yang terbentuk rendah dan besarnya rasio diameter dan panjang CNT.

Abstract
Utilization of PEMFC still have constraints, wich is degradation of catalyst support carbon black. Carbon black can be replaced with vertically aligned carbon nanotube as it results in higher performance. In this study CNT directly grown on carbon paper using floating catalyst-CVD method with temperature variation 700oC-900oC, using methane as carbon source, and catalyst ferrocene heated at 200oC in bubbler. Methane conversion increases with increasing temperature of reactor. Carbon loss at 700oC, 800oC, and 900oC are 98.31 %, 95.01%, and 96.69% respectively, the high carbon loss due to slightly catalyst deposited on carbon paper. SEM results showed vertically aligned CNT growth at 800 oC and 900oC with OD and length are 36 nm and 10 μm respectively. The results obtained are less effective for fuel cell applications, because of the low density of CNT formed and the higher ratio of diameter and length of the CNT."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43772
UI - Skripsi Open  Universitas Indonesia Library
cover
Nur Muchamad Arifin
"Penggunaan carbon nanotube (CNT) terorientasi tegak sebagai penyangga katalis menjanjikan peningkatan kinerja proton exchange membrane fuel cell (PEMFC) yang disebabkan oleh keunggulan konduktivitas elektrik, efisiensi transpor gas reaktan dan luas permukaan spesifik dari katalis dibandingkan CNT terorientasi acak maupun karbon amorf. Metode filtrasi menggunakan filter hidrofilik diharapkan dapat membuat orientasi CNT yang bersifat hidrofobik menjadi tegak akibat interaksi antar CNT dengan filter. Pada penelitian ini didapatkan kesimpulan bahwa CNT dengan diameter 10-20 nm dan panjang 30-100 μm tetap mengalami aglomerasi sehingga diperlukan evaluasi lebih lanjut mengenai dimensi (panjang dan diameter) CNT yang cocok untuk digunakan pada metode filtrasi.

Vertically aligned carbon nanotubes (CNT) as a catalyst support promise enhancing proton exchange membrane fuel cell (PEMFC) performance caused by superiority of electrical conductivity, reactant gas transport and specific surface area of the catalyst than randomly oriented CNTs and amorphous carbon. Filtration method using hydrophilic filter is expected to make vertical orientation of hydrophobic CNT due to interactions between CNT with the filter. In this study, lead to the conclusion that the CNTs with diameters of 10-20 nm and length 30-100 μm still agglomerate after deagglomerazion treatment. It make further reseacrh to evaluate the types of CNT that suitable for the filtration method still needed."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43714
UI - Skripsi Open  Universitas Indonesia Library
cover
Dhanar Dwi Kuncoro
"Saat ini, Teknologi bahan bakar sel (fuel cell) telah berkembang dan diimplentasikan. Teknologi baru ini dapat memberikan daya listrik untuk perumahan, komersial dan pelanggan industri. Karena nilai efisiensi konversinya yang tinggi, kemudahan bahan bakar yang didapat, fleksibilitas untuk mengkombinasikan panas dan pembangkitnya, ramah lingkungan karena emisi gas buang yang rendah maka bahan bakar sel telah menjadi teknologi maju yang memiliki berbagai aplikasi pembangkit listrik yang variatif.
Tiap jenis fuel cell memiliki segmentasi pasar tersendiri sesuai karakater yang dimilikinya. Hal ini berdasarkan berdaya yang mampu dihasilkan, konstruksi desain, kecepatan daya yang dihasilkan (start-up) dan suhu opersionalnya. Pada umumnya jenis fuel yang beroperasi pada suhu rendah (AFC,PEMFC) telah digunakan sumber energi listrik pada peralatan portabel, perumahan dan aplikasi transportasi. Sedangkan pada carbonate dan SOFC yang beroperasi temperature tinggi banyak digunakan pada pembangkit yang cukup besar yang stasiooner (10-50 MW).
Jenis bahan bakar sel yang paling matang dan berpotensi untuk pembangkit listrik perumahan (gedung) ialah Proton Exchange Membrane (PEM). Proses teknologinya baik dengan bahan bakar fosil atau nonfosil tetap masih mahal, meski demikian teknologi ini telah banyak digunakan dan terus berkembang.
Pada skripsi ini, karakteristik PEM disimulasikan menggunakan MATLAB versi 7.04. Program dirancang untuk melakukan simulasi pengiriman daya dengan berbagai variasi (3KW, 5KW dan 8KW) ke beban perumahan. Dan Hasil simulasi ini akan dianalisis karakteristiknya seperti penggunaan gas metan dan hidrogen, polarisasi, panas dan air yang dihasilkan, efisiensi dan daya yang dihasilkan dalam kondisi temperatur dan suhu yang berbeda-beda.

Nowadays, Fuel Cell Technology has become largely developed and implemented. This new technology is suitable for producing electrical power for residential, commercial, and industrial customers. Because of high fuel conversion efficiency, fuel flexibility, combined heat and power generation flexibility, friendly siting characteristics, negligible environmental emissions and lower carbon dioxide emissions, fuel cells are considered at the top of the desirable technologies for a broad spectrum of power generation applications.
Each of the various fuel cell types can be configured in a system focusing on the market segments that match its characteristics most favorably. Because of their lightweight construction, compactness, and quick start-uppotential, the lowtemperature fuel cells are being considered for portable, residential power, and transportation applications (AFC, PEMFC). Whereas, the higher temperature carbonate and solid oxide fuel cells which offer simpler and higher efficiency plants are focusing on the stationary power generation applications in the near term and large (10?50MW) power plants in the long range.
The most mature and potential candidate for resendential and stationary applications among types of fuel cell is the Proton Exchange Membrane (PEM) Fuel Cell. The processing this technology either from fosil or non-fossil resources itself still expensive, however, it is became largely known and developed.
In this bachelor?s thesis, characteristic PEMFC is simulated using MATLAB 7.04 version. The program is designed to deliver in many option power (3KW, 5KW and 8 KW) to resindetial load. it?s characteristic such as mathane and hydrogen consumption, polarization, heat and water production, efficiency and output power on different temperature and pressure.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40470
UI - Skripsi Open  Universitas Indonesia Library
cover
Dharma Aryani
"Dalam thesis ini dirancang sebuah algoritma pengendali Model Predictive Control (MPC) Constrained dan diimplementasikan pada sistem Proton Exchange Membrane Fuel Cell. Model yang digunakan adalah model linier yang didapatkan dari Identifikasi sistem dengan metode Least Square. Constraint di berikan pada perubahan masing-masing sinyal kendali serta perbandingan antara sinyal kendali pertama dan kedua.
Dari hasil simulasi terlihat bahwa pengendali MPC menghasilkan respon keluaran yang mengikuti sinyal acuan yang diberikan, serta mampu mengatasi gangguan yang berupa perubahan beban yang terjadi pada sistem PEMFC. Dengan pemberian constraint pada pengendali MPC, sinyal kendali yang dihasilkan dapat dibatasi sesuai dengan karakteristik fisik dari sistem PEMFC.

This theses presents a Constrained Model Predictive Control design . The controller is implemented in the Proton Exchange Membrane Fuel Cell. The MPC algorithm based on the Linear model generated from identification system using Least Square Method. The controller consist of control signal constraints including the comparison of each
control signal amplitude.
The simulation result show that the MPC resulting a very good transient behaviour, the output from PEMFC can follow the trajectory and did not effected by load change disturbances. With some constraint additional in MPC, the control signals can be bounded refer to the real characteristic of PEMFC."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25908
UI - Tesis Open  Universitas Indonesia Library
cover
Bono Pranoto
"Penelitian tentang Fuel Cell juga didorong oleh kemajuan dalam pembuatan nanomaterials dan aplikasinya sebagai bahan fuel cell dalam beberapa tahun terakhir. Pengembangan teknik fabrikasi terus ditingkatkan untuk mengatasi hambatan masalah daya tahan Membrane Electrode Assembly (MEA) pada PEM Fuel Cell pada periode tertentu. Salah satu faktor yang menyebabkan menurunkan kualitas MEA adalah manajemen air yang buruk pada lapisan elektroda. Selain masalah manajemen air, kendala lain yang berhubungan dengan daya tahan fuel cell adalah degradasi katalis Pt berpenyangga karbon (carbon supported Pt, Pt/C) yang disebabkan oleh korosi karbon penyangga.
Tujuan penelitian ini adalah untuk meningkatkan kinerja Membrane Electrode Assembly (MEA) dari fuel cell bertipe membran penukar proton (PEMFC) melalui dua pendekatan. Pendekatan pertama adalah perbaikan manajemen air dengan memanfaatkan teflon sebagai material hidrofobik pada MPL. Pendekatan kedua adalah penggunaan karbon nanotube sebagai lapisan Microporous (MPL) yang bertujuan untuk meningkatkan sifat konduktifitas dan masalah degradasi katalis Pt dari elektroda MEA.
Dari sebuah perbandingan antara pemanfaatan teflon berjenis Polytetrafluoroethylene (PTFE) dengan Fluorinated ethylene propylene (FEP) didapatkan bahwa FEP memberikan kontribusi lebih terhadap peningkatan kualitas dalam hal ketahananannya terhadap masalah air dalam elektroda sehingga mampu bertahan hingga lebih dari 40 jam operasional dibandingkan dengan PTFE.
Dalam pemanfaatan Multi-Walled Carbon Nanotubes (MWCNT) dalam MPL didapatkan komposisi yang optimal yang mampu meningkatkan konduktivitas dari elektroda, pemakaian 50% MWCNT terhadap total karbon dalam MPL meningkatkan 43,7% konduktitas dibanding jika hanya Vulcan saja. Dan pemakaian 50% Single-Walled Carbon Nanotubes (SWCNT) mampu meningkatkan 44,3% konduktifitasnya. Kualitas daya yang dihasilkan dari pemanfaatan 50%MWCNT adalah 110mW/cm2, sedangkan kualitas daya yang dihasilkan dari pemanfaatan 50% SWCNT adalah 134mW/cm2.

Research on Fuel Cell is also encouraged by progress in the manufacture of nanomaterials and their application as fuel cell materials in recent years. Development of fabrication techniques continue to be improved to overcome barriers to durability problems Membrane Electrode Assembly (MEA) in PEM Fuel Cell at a certain period. One of the factors that lead to lower quality of MEA is poor water management on the electrode layer. In addition to water management problems, other constraints related to fuel cell durability is the degradation of Pt catalysts carbon supported (Pt/C) caused by corrosion.
The purpose of this research is to improve the performance of Membrane Electrode Assembly (MEA) of fuel cell proton exchange membrane type (PEMFC) through two approaches. The first approach is to improve water management by using Teflon as a hydrophobic material on the MPL. The second approach is to use carbon nanotubes as Microporous Layer (MPL) which aims to increase the conductivity properties of Pt catalyst and the problem of degradation of the MEA electrodes.
From a comparison between the utilization of Polytetrafluoroethylene (PTFE) with Fluorinated ethylene propylene (FEP) Teflon manifold was found that FEP contribute more to improving the quality in terms of durability to the problem of water in the electrodes, that can operated more than 40 hours compared with PTFE.
In the use of Multi-Walled Carbon Nanotubes (MWCNT) in MPL obtained the optimal composition that is able to increase the conductivity of the electrode, the use of 50% of MWCNT from total carbon in the MPL can increase 43.7% than if only used Vulcan only. And use 50% of Single-Walled Carbon Nanotubes (SWCNT) can increase 44.3% conductivity. The quality of power generated from the utilization of 50% MWCNT is 110mW/cm2, while the quality of power generated from the utilization of 50% SWCNT is 134mW/cm2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29345
UI - Tesis Open  Universitas Indonesia Library
cover
Khalif Ahadi
"Tesis ini bertujuan untuk melakukan pengembangan metode perlakuan terhadap tegangan keluaran sistem fuel cell yang cenderung berubah seiring perubahan beban agar mampu bertahan pada nilai yang relatif konstan. Hal ini dilakukan dengan menambahkan suatu DC-DC converter berupa buck converter pada keluaran fuel cell sebelum diubah menjadi tegangan AC oleh inverter. Hasil uji coba menunjukkan tegangan keluaran sistem menjadi relatif tetap pada tegangan 12,4 volt +2,5% saat diberi beban yang berfluktuasi jika dibandingkan dengan tegangan keluaran fuel cell itu sendiri.

The purpose of this thesis is to conduct method development treatment of output voltage of fuel cell system, which is tend to change along with load fluctuation, to be able to withstands on relatively constant value. It?s done by adding a buck converter as a DC-DC converter on fuel cell's output before it's changed as AC voltage by inverter. The experiment result shows that output voltage of the system is relatively constant on 12.4 volt +2,5% under fluctuated load in comparison with output voltage from fuel cell it self.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31603
UI - Tesis Open  Universitas Indonesia Library
cover
Habibullah
"ABSTRAK
Tesis ini bertujuan untuk mengujikan persamaan yang diperoleh dari grafik karakteristik hubungan tegangan masukan optimum driver valve terhadap perubahan daya beban pada bukaan valve proporsional pada masukan sistem PEMFC sehingga bukaan valve akan bekerja secara otomatis sesuai dengan perubahan daya beban. Persamaan yang diambil ada dua yaitu persamaan polinomial dan linier. Masukan persamaan adalah daya beban dan keluarannya dijadikan tegangan masukan driver valve.
Hasil pengujian dengan kedua persamaan menunjukkan karakteristik tegangan dan arus keluaran sistem yang hampir sama dengan karakteristik pada bukaan valve optimum dan maksimum. Pemakaian gas H2 pada pengujian dengan kedua persamaan menunjukkan nilai yang hampir sama dengan bukaan valve optimum, sehingga lebih hemat dalam konsumsi gas H2 dibandingkan dengan bukaan valve maksimum.

ABSTRACT
This thesis aims to testing the equation which obtained from the graph characteristics relationships of the optimum input voltage driver valve to change the power load on the valve opening proportional to the input PEMFC system so that the valve opening will work automatically according to changes in load power. Equations are taken there are two linear equations and polynomials. Enter the equation is used as the power load and input voltage output driver valves.
Test results show similarities with both voltage and output current characteristics are almost the same system with the characteristics of the optimum and maximum valve opening. H2 gas usage on testing with both equations show similar values with optimum valve opening, making it more efficient than the maximum valve opening.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29528
UI - Tesis Open  Universitas Indonesia Library
cover
Dewi Anggraini
"Saat ini, dunia sedang mengalami krisis energi dan lingkungan akibat menipisnya cadangan bahan bakar fosil dunia dan polutan yang dihasilkan pembakaran bahan bakar fosil. Salah satu solusi yang potensial untuk mengatasi masalah-masalah tersebut adalah penerapan teknologi polymer electrolyte membrane fuel cell (PEMFC). Namun, pemanfaatan PEMFC secara massal masih mengalami banyak kendala, antara lain harga katalis Pt yang mahal dan usia pemakaian PEMFC yang masih rendah. Salah satu faktor penyebab rendahnya usia PEMFC adalah terjadinya degradasi pada karbon penyangga katalis yang digunakan.
Saat ini, solusi yang paling menjanjikan dari permasalahan tingginya harga katalis tanpa menurunkan kinerja PEMFC adalah penerapan teknik sputtering untuk mendeposisikan katalis platina pada penyangga karbon. Sementara itu, degradasi pada karbon penyangga katalis dapat diatasi dengan mengganti penyangga katalis carbon black Vulcan XC 72 dengan carbon nanotube (CNT) yang lebih tahan terhadap lingkungan korosif. Selain mengatasi masalah degradasi, penggunaan CNT juga dapat menurunkan loading katalis Pt karena luas permukaan efektifnya yang lebih tinggi. Luas area MWNT yang digunakan dalam penelitian ini adalah 500 m_/gr, sementara luas carbon black Vulcan XC72 adalah 250 m_/gr.
Penelitian ini mengkombinasikan aplikasi CNT sebagai penyangga katalis dan teknik deposisi sputtering untuk mengoptimalkan kinerja dan memperpanjang usia pemakaian PEMFC. Penelitian ini terdiri dari 3 tahap utama, yakni fabrikasi membrane electrode assembly (MEA), set up sistem PEMFC, dan uji kinerja single cell PEMFC.
Hasil yang diharapkan dari penelitian ini adalah terbentuknya prototype PEMFC dengan kinerja yang lebih baik dan usia pemakaian yang lebih panjang dari hasil-hasil penelitian sebelumnya. Power density maksimum yang dihasilkan MEA CNT-sputtering adalah 12,57 mW/cm_. Hasil tersebut masih lebih rendah dari power density maksimum yang dihasilkan MEA komersial, yaitu 98,36 mW/cm_. Hal tersebut disebabkan rendahnya jumlah katalis Pt yang terdeposisi pada MEA. Namun, kelekatan carbon paper dan membran Nafion pada MEA CNT-sputtering lebih kuat sehingga pengelupasan carbon paper tidak terjadi setelah pengujian selama 6 jam dengan DC Electronic Load.

At present, the world is facing an energy crisis due to the declining reserve of fossil fuel and the environmental damage that is caused by the combustion of it. One of the most potential solution for the crisis is the application of polymer electrolyte membrane fuel cell (PEMFC) technology. Unfortunately, the mass application of PEMFC is still limited due to the high price of platinum catalyst and PEMFC's short lifetime that is caused by the degradation of carbon catalyst support.
Application of sputtering technology in the catalyst deposition is one of the best solution to overcome the high cost of platinum. Meanwhile, degradation of the catalyst support can be overcome by the usage of carbon nanotube (CNT) to replace the conventional Vulcan XC72 carbon support. CNT has more resistance to acid environment, thus more resistant to corrosion. Moreover, CNT can reduce the catalyst loading due the high effective surface area.
Therefore, this research combined the application of sputtering technology and the usage of CNT as catalyst support to optimize PEMFC performance and increase its lifetime. This research consists of three main step, i.e. the fabrication of membrane electrode assembly (MEA), set up of PEMFC system, and single cell PEMFC performance test.
The expected result of this research is the fabrication of a better PEMFC prototype with longer lifetime than the previous researches. The maximum power density result of the CNT ' sputtering MEA is 12,57 mW/cm_. Meanwhile, the maximum power density of commercial MEA is 98,36 mW/cm_. The low amount of Pt that deposited in the MEA is the main reason for this low power density. However, the MEA's resistance to the peeling of carbon paper after 6 hours test in DC Electronic Load is increasing.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51792
UI - Skripsi Open  Universitas Indonesia Library
cover
Anis Nahdi
"Proton exchange membrane fuel cell (PEMFC) merupakan tipe fuel cell yang paling banyak digunakan dalam aplikasi. Efisiensi dan performa merupakan hal yang sangat penting dalam pengembangan PEMFC. Elektrokatalis memiliki peranan penting dalam menentukan performa fuel cell. Penelitian katalis baru untuk peningkatan aktifitas, stabilitas, daya tahan, dan mengurangi biaya (40% biaya satu unit fuel cell) merupakan tantangan teknologi dan komersialisasi fuel cell. Makalah ini, efisiensi dan performa PEMFC telah dipelajari menggunakan katalis Pt/C (kontrol) dan beberapa katalis bimetal (Pt-Co/C, Pt-Ni/C, and Pt-Ru/C), menggunakan single stack PEMFC standar, luasan aktif 25 cm2 dan bipolar plate paralel. Sistem operasi diatur dengan kecepatan alir H2 dan O2 100 mL/menit, tekanan 0.1 bar dan temperatur 50°C. Performa PEMFC diukur dengan electronic discharge meter, 3300 C Electronic Load Mainframe ®Prodigit 3311D 60V/ 60A, 300V. Pt-Co/C pada katoda menghasilkan performa PEMFC tertinggi (0,445 V, 0,131 A, 0,058 W) dimana Pt-Co/C > Pt-Ni/C > Pt-Ru/C, dan pada anoda, Pt-Ru/C menghasilkan performa PEMFC tertinggi (0,403 V, 0,101 A, 0,041 W) dimana Pt-Ru/C > Pt-Co/C > Pt-Ni/C. Transfer massa dan efisiensi konsumsi H2 telah dihitung berdasarkan energi bebas Gibbs dan potensial selnya. Dari transfer massa, diperoleh efisiensi 57,51 % untuk Pt-Co/C di katoda dan 53,54 % untuk Pt-Ru/C di anoda.

Proton exchange membrane fuel cell (PEMFC) is the most available fuel cell type in various applications. Efficiency and performance are important focus on developing proton exchange membrane (PEM) fuel cell. Electrocatalysts and their corresponding catalyst layers thus play critical roles in fuel cell performance. Therefore, exploring new catalysts, improving catalyst activity, stability, durability, and reducing catalyst cost (40% for 1 unit fuel cell) are currently the major tasks in fuel cell technology and commercialization. In this paper, efficiency and performance of PEM fuel cell were studied with Pt/C catalyst as control and some bimetal catalyst (Pt-Co/C, Pt-Ni/C, and Pt-Ru/C) as electrode materials The membrane electrode assembly (MEA) was made using those catalyst then used with standard PEM fuel cell single stack 25 cm2 active areas with parallel bipolar plate. System operation was running in flow rate of 100 ml/min for hydrogen and oxygen at pressure 0.1 Bar and temperature was set constantly at 50°C. Performance of PEM fuel cell has measured by electronic discharge meter, 3300 C Electronic Load Mainframe ®Prodigit 3311D 60V/ 60A, 300V. Using Pt-Co/C on cathode was obtained the highest performance of PEMFC (0,445 V, 0,131 A, 0,058 W) whereas Pt-Co/C > Pt-Ni/C > Pt-Ru/C. Using Pt-Ru/C on cathode was obtained the highest performance of PEMFC (0,403 V, 0,101 A, 0,041 W) whereas Pt-Ru/C > Pt-Co/C > Pt-Ni/C. Mass transfer reaction and efficiency of H2 consumption in cell has been calculated by Gibbs free energy and open circuit voltage. Efisiensi was calculated based on mass transfer reaction and obtained 57,51% for Pt-Co/C as cathode material and 53,54% for Pt-Ru/C as anode material in PEMFC."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S30515
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>