Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 108101 dokumen yang sesuai dengan query
cover
Nur Hamid
"

Data LiDAR banyak menggantikan data dua dimensi untuk merepresentasikan data geografis karena kekayaan informasi yang dimilikinya. Salah satu jenis pemrosesan data LiDAR adalah segmentasi semantik tutupan lahan yang mana telah banyak dikembangkan menggunakan pendekatan model deep learning. Algoritma-algoritma tersebut menggunakan representasi jarak Euclidean untuk menyatakan jarak antar poin atau node. Namun, sifat acak dari data LiDAR kurang sesuai jika representasi jarak Euclidean tersebut diterapkan. Untuk mengatasi ketidaksesuaian tersebut, penelitian ini menerapkan representasi jarak non-Euclidean yang secara adaptif diupdate menggunakan nilai kovarian dari set data point cloud. Ide penelitian ini diaplikasikan pada algoritma Dynamic Graph Convolutional Neural Network (DGCNN). Dataset yang digunakan dalam penelitian ini adalah data LiDAR Kupang. Metode pada penelitian ini menghasilkan performa nilai akurasi 75,55%, di mana nilai akurasi ini lebih baik dari algoritma dasar PointNet dengan 65,08% dan DGCNN asli 72,56%. Peningkatan performa yang disebabkan oleh faktor perkalian dengan invers kovarian dari data point cloud dapat meningkatkan kemiripan suatu poin terhadap kelasnya.


LiDAR data widely replaces two-dimensional geographic data representation due to its information resources. One of LiDAR data processing tasks is land cover semantic segmentation which has been developed by deep learning model approaches. These algorithms utilize Euclidean distance representation to express the distance between the points. However, LiDAR data with random properties are not suitable to use this distance representation. To overcome this discprepancy, this study implements a non-Euclidean distance representation which is adaptively updated by applying their covariance values. This research methodology was then implemented in Dynamic Graph Convolutional Neural Network (DGCNN) algorithm. The dataset in this research is Kupang LiDAR. The results obtained performance accuracy value of 75.55%, which is better than the baseline PointNet of 65.08% and Dynamic Graph CNN of 72.56%. This performance improvement is caused by a multiplication of the inverse covariance value of point cloud data, which raised the points similarity to the class.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tubagus Dhafin Rukmanda
"ABSTRAK
PATCHY-SAN adalah sebuah framework untuk sembarang graf yang diajukan oleh Niepert pada tahun 2016. Pada penelitian ini diajukan modifikasi arsitektur dari convolutional neural network CNNs pada PATCHY-SAN menggunakan beberapa representasi dari graf seperti B^i,L^i,N^i dengan B,L,N, berturut-turut adalah matriks betweeness, matriks Laplacian and matriks normalisasi Laplacian dengan i=1,2,3,4,5. Dilakukan beberapa percobaan dari model CNNs dengan 3 layer dan 2 layer. Penelitian ini menggunakan dropout atau batch normalization untuk mengurangi permasalahan internal covariate shift sebagai regularisasi. Berdasarkan percobaan tersebut disimpulkan, penambahan layer, penggunaan dropout dan batch normalization dapat meningkatkan dan juga menurunkan prediksi akurasi, hal ini tergantung dari dataset dan arsitektur CNNs. Representasi graf yang digunakan dalam penelitian ini masih belum bagus untuk membuat PATCHY-SAN learning, karena peningkatan akurasi hanya sebesar - 9 dari benchmark 50 .

ABSTRACT
PATCHY SAN is a framework for learning Convolutional Neural Network CNNs for arbitrary graph proposed by Niepert in 2016. In this paper we propose to modified architecture of Convolutional Neural Network in PATCHY SAN by using some representation of graph such as B i,L i,N i, with B, L, N, is betweeness matrix, Laplacian matrix and normalize Laplacian matrix with i 1,2,3,4,5. We do some experiment of model with 3 convolutional layer and 2 convolutional layer. This research use dropout and batch normalization to reduce internal covariate shift problem as regularizer. In conclusion adding more convolution layer, and use dropout and batch normalization can increase and reduce accuracy, it depend on the architecture of CNNs. Graph representation used in this research still not good to make PATCHY SAN learning, because the accuration increase by 9 from benchmark 50 ."
2017
S70160
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mgs. M. Luthfi Ramadhan
"Asesmen kerusakan bangunan setelah bencana sangat penting dilakukan untuk membantu operasi tanggap darurat dan penyelamatan. Tetapi asesmen kerusakan bangunan membutuhkan banyak sumber daya untuk melakukannya secara manual. Banyak pendekatan telah diusulkan untuk mengotomatisasi asesmen kerusakan bangunan dengan memanfaatkan teknologi kecerdasan buatan. Beberapa diantaranya menggunakan handcrafted fitur yang dianggap tidak efektif. Penelitian ini mengusulkan sebuah pendekatan yang berdasarkan pada siamese neural network. Fitur ekstraksi, perbedaan fitur, dan klasifikasi dapat dilakukan hanya dengan menggunakan satu model yang terhubung secara end-to-end sehingga klasifikasi dan fitur ekstraksi dapat belajar secara bersama. Penelitian ini juga mengembangkan model siamese neural network dengan menambahkan mekanisme konkatenasi fitur. Konkatenasi ini bertujuan untuk membuat fitur perbedaan berdasarkan tiap-tiap keluaran dari convolution block dan menggabungkanya menjadi sebuah vektor yang berdimensi tinggi. Model ini diuji dalam tiga skenario eksperimen dan telah dibuktikan bahwa penerapan mekanisme konkatenasi fitur tersebut mampu meningkatkan skor f-measure pada model dengan dua dari tiga skenario eksperimen tersebut menunjukan perbedaan performa yang signifikan.

Post-earthquake building damage assessment is a very crucial job to do in order to execute emergency and rescue operations. With that being said, building damage assessment takes a lot of resources if it is done manually. Many approaches have been proposed to automate the process by using artificial intelligence, some of which use handcrafted features that are considered ineffective. This research proposes an approach based on siamese neural network. Feature extraction, feature differentiation, and classification can be performed using only one end-to-end connected model so that classification and feature extraction can learn simultaneously. Furthermore, this research also develope a siamese neural network model by implementing feature concatenation mechanism. This concatenation aims to create difference features based on each output from the convolution block and concatenate them into a high-dimensional vector. This model was tested in three experimental scenarios and it has been proven that the application of the feature concatenated mechanism is able to increase the f-measure score in the model with two out of three experimental scenarios showing a significant difference in perform"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Afifah Rofi Laeli
"Tuberkulosis (TB) merupakan suatu penyakit menular yang sebagian besar menyerang paru-paru manusia. Penularan penyakit ini terjadi ketika pasien tuberkulosis paru mengeluarkan percikan dahak yang mengandung kuman tuberkulosis ke udara. Penularannya yang mudah menjadikan tuberkulosis sebagai masalah kesehatan masyarakat, baik di Indonesia maupun internasional. Deteksi dini tuberkulosis paru dapat mencegah penularan serta menyembuhkan pasien. Namun, adanya pandemi COVID-19 saat ini dapat menurunkan angka kasus tuberkulosis yang berhasil terdeteksi. Hal ini menunjukkan perlu adanya kemajuan dalam metode pendeteksian penyakit tuberkulosis paru. Kini, perkembangan teknologi dapat dimanfaatkan untuk membantu bidang kesehatan, salah satunya dengan machine learning. Machine learning dapat digunakan untuk mendeteksi adanya suatu penyakit berdasarkan data citra. Dalam penelitian ini, model machine learning, Convolutional Neural Network-Random Forest (CNN-Random Forest) dan Convolutional Neural Network-XGBoost (CNN-XGBoost), diimplementasikan untuk mendeteksi tuberkulosis paru berdasarkan citra radiografi toraks. Selanjutnya, kedua model tersebut dievaluasi dan dibandingkan kinerjanya berdasarkan nilai akurasi dan nilai luas wilayah di bawah kurva ROC, atau biasa disebut dengan area under the curve (AUC). Data yang digunakan sebanyak 6000 yang terdiri dari 3000 citra radiografi toraks tuberkulosis paru dan 3000 citra radiografi toraks normal. Berdasarkan hasil yang diperoleh, model CNN-Random Forest dan CNN-XGBoost memberikan kinerja yang baik dan dapat diterapkan untuk mendeteksi tuberkulosis paru, dimana CNN digunakan untuk mengekstraksi fitur pada citra, kemudian hasil ekstraksi fitur tersebut menjadi input bagi pengklasifikasi Random Forest dan XGBoost. Evaluasi kinerja berdasarkan rata-rata nilai akurasi dan rata-rata nilai AUC pada model CNN-Random Forest memberikan hasil terbaik masing-masing sebesar 98.667% dan 99.933%, sementara pada model CNN-XGBoost memberikan hasil terbaik masing-masing sebesar 98.367% dan 99.866%. Kemudian berdasarkan perbandingan kinerja yang dilakukan, model CNN-Random Forest memberikan kinerja yang lebih baik dalam mendeteksi tuberkulosis paru dibandingkan dengan model CNN-XGBoost.

Tuberculosis (TB) is an infectious disease that in most cases attacks the human lungs. Transmission of this disease occurs when a patient with pulmonary tuberculosis expels phlegm containing tuberculosis germs into the air. Its easy transmission makes tuberculosis a public health problem, both in Indonesia and internationally. Early detection of pulmonary tuberculosis can prevent transmission and cure patients. However, the current COVID-19 pandemic can reduce the number of successfully detected tuberculosis cases. This shows the need for progress in the detection method of pulmonary tuberculosis. Now, technological developments can be used to help the health sector, one of which is machine learning. Machine learning can be used to detect the presence of a disease based on image data. In this study, machine learning models, Convolutional Neural Network-Random Forest (CNN-Random Forest) and Convolutional Neural Network-XGBoost (CNN-XGBoost), were implemented to detect pulmonary tuberculosis based on thorax radiography images. Furthermore, the performances of the two models were evaluated and compared based on the values of accuracy and area under the ROC curve, or commonly called the area under the curve (AUC). The data used were 6000 consisting of 3000 thorax radiography images of pulmonary tuberculosis and 3000 normal thorax radiography images. Based on the results obtained, the CNN-Random Forest and CNN-XGBoost models provided good performances and can be applied to detect pulmonary tuberculosis, where CNN was used to extract features in the image, then the results of the feature extraction became input for the Random Forest and XGBoost classifiers. Performance evaluation based on the average values of accuracy and AUC in the CNN-Random Forest model gave the best results of 98.667% and 99.933%, respectively, while the CNN-XGBoost model gave the best results of 98.367% and 99.866, respectively. Then based on the performance comparison, the CNN-Random Forest model provided a better performance in detecting pulmonary tuberculosis compared to the CNN-XGBoost model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afifah Rofi Laeli
"Tuberkulosis (TB) merupakan suatu penyakit menular yang sebagian besar menyerang paru-paru manusia. Penularan penyakit ini terjadi ketika pasien tuberkulosis paru mengeluarkan percikan dahak yang mengandung kuman tuberkulosis ke udara. Penularannya yang mudah menjadikan tuberkulosis sebagai masalah kesehatan masyarakat, baik di Indonesia maupun internasional. Deteksi dini tuberkulosis paru dapat mencegah penularan serta menyembuhkan pasien. Namun, adanya pandemi COVID-19 saat ini dapat menurunkan angka kasus tuberkulosis yang berhasil terdeteksi. Hal ini menunjukkan perlu adanya kemajuan dalam metode pendeteksian penyakit tuberkulosis paru. Kini, perkembangan teknologi dapat dimanfaatkan untuk membantu bidang kesehatan, salah satunya dengan machine learning. Machine learning dapat digunakan untuk mendeteksi adanya suatu penyakit berdasarkan data citra. Dalam penelitian ini, model machine learning, Convolutional Neural Network–Random Forest (CNN– Random Forest) dan Convolutional Neural Network–XGBoost (CNN–XGBoost), diimplementasikan untuk mendeteksi tuberkulosis paru berdasarkan citra radiografi toraks. Selanjutnya, kedua model tersebut dievaluasi dan dibandingkan kinerjanya berdasarkan nilai akurasi dan nilai luas wilayah di bawah kurva ROC, atau biasa disebut dengan area under the curve (AUC). Data yang digunakan sebanyak 6000 yang terdiri dari 3000 citra radiografi toraks tuberkulosis paru dan 3000 citra radiografi toraks normal. Berdasarkan hasil yang diperoleh, model CNN-Random Forest dan CNN-XGBoost memberikan kinerja yang baik dan dapat diterapkan untuk mendeteksi tuberkulosis paru, dimana CNN digunakan untuk mengekstraksi fitur pada citra, kemudian hasil ekstraksi fitur tersebut menjadi input bagi pengklasifikasi Random Forest dan XGBoost. Evaluasi kinerja berdasarkan rata-rata nilai akurasi dan rata-rata nilai AUC pada model CNN- Random Forest memberikan hasil terbaik masing-masing sebesar 98.667% dan 99.933%, sementara pada model CNN-XGBoost memberikan hasil terbaik masing-masing sebesar 98.367% dan 99.866%. Kemudian berdasarkan perbandingan kinerja yang dilakukan, model CNN-Random Forest memberikan kinerja yang lebih baik dalam mendeteksi tuberkulosis paru dibandingkan dengan model CNN-XGBoost.

Tuberculosis (TB) is an infectious disease that in most cases attacks the human lungs. Transmission of this disease occurs when a patient with pulmonary tuberculosis expels phlegm containing tuberculosis germs into the air. Its easy transmission makes tuberculosis a public health problem, both in Indonesia and internationally. Early detection of pulmonary tuberculosis can prevent transmission and cure patients. However, the current COVID-19 pandemic can reduce the number of successfully detected tuberculosis cases. This shows the need for progress in the detection method of pulmonary tuberculosis. Now, technological developments can be used to help the health sector, one of which is machine learning. Machine learning can be used to detect the presence of a disease based on image data. In this study, machine learning models, Convolutional Neural Network–Random Forest (CNN–Random Forest) and Convolutional Neural Network–XGBoost (CNN–XGBoost), were implemented to detect pulmonary tuberculosis based on thorax radiography images. Furthermore, the performances of the two models were evaluated and compared based on the values of accuracy and area under the ROC curve, or commonly called the area under the curve (AUC). The data used were 6000 consisting of 3000 thorax radiography images of pulmonary tuberculosis and 3000 normal thorax radiography images. Based on the results obtained, the CNN-Random Forest and CNN-XGBoost models provided good performances and can be applied to detect pulmonary tuberculosis, where CNN was used to extract features in the image, then the results of the feature extraction became input for the Random Forest and XGBoost classifiers. Performance evaluation based on the average values of accuracy and AUC in the CNN-Random Forest model gave the best results of 98.667% and 99.933%, respectively, while the CNN-XGBoost model gave the best results of 98.367% and 99.866, respectively. Then based on the performance comparison, the CNN-Random Forest model provided a better performance in detecting pulmonary tuberculosis compared to the CNN-XGBoost model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naili Suri Intizhami
"Pemantauan banjir dapat dilakukan dengan menggunakan Unmanned Aerial Vehicle (UAV) atau lebih dikenal dengan drone. Hasil pemantauan drone yang berupa video atau gambar kemudian akan dianalisa untuk memperoleh informasi. Salah satu metode yang dapat digunakan untuk melakukan analisa data citra adalah segmentasi semantik. Penelitian segmentasi semantik pada data video tangkapan UAV masih jarang dilakukan karena kurangnya dataset yang tersedia secara publik. Berbagai metode untuk segmentasi semantik antara lain menggunakan metode machine learning seperti Conditional Random Field (CRF) dan deep learning seperti Convolutional Neural Network (CNN). Namun, metode yang digunakan untuk segmentasi semantik masih memberikan hasil yang kurang optimal. Hal ini yang menjadi dasar kenapa penelitian ini dilakukan. Pada penelitian ini akan dilakukan pengembangan metode ENet, salah satu CNN yang berfokus untuk segmentasi semantik. Data yang akan digunakan adalah video banjir yang diambil oleh UAV. Pengembangan yang akan dilakukan akan berfokus pada menerapkan tipe konvolusi berbeda pada metode yang digunakan. Selain keakuratan segmentasi, penelitian ini juga akan berfokus untuk mengembangkan metode ENet yang dapat melakukan segmentasi semantik secara cepat, sehingga dapat diimplementasikan pada video tangkapan UAV. Metode yang diusulkan pada penelitian ini berhasil mendapatkan hasil akurasi hingga 93% dengan jumlah parameter yang lebih sedikit daripada metode pembanding.

Flood monitoring can be done using an Unmanned Aerial Vehicle (UAV) or better known as a drone. The results of drone monitoring in the form of videos or images will then be analyzed to obtain information. One method that can be used to analyze image data is semantic segmentation. Semantic segmentation research on UAV capture video data is still rarely conducted due to the lack of publicly available datasets. Various methods for semantic segmentation include using machine learning methods such as Conditional Random Field (CRF) and deep learning such as Convolutional Neural Network (CNN). However, the method used for semantic segmentation still gives less than optimal results. This is the basis for why this research was conducted. In this research, the ENet method will be developed, one of the CNNs that focuses on semantic segmentation. The data to be used is the flood video taken by the UAV. The development that will be carried out will focus on applying different types of convolution to the methods used. In addition to the accuracy of segmentation, this research will also focus on developing the ENet method that can do semantic segmentation quickly, so that it can be implemented on UAV capture videos. The method proposed in this study was successful in obtaining an accuracy of up to 95% with a smaller number of parameters than the comparison method."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rusnanda Farhan
"Penilaian citra embrio manusia memiliki peran yang penting dalam proses Fertilisasi In Vitro (FIV) atau yang dikenal juga sebagai proses bayi tabung. Penilaian citra embrio ini dilakukan secara manual oleh ahli embriologi. Hal ini tentunya membutuhkan waktu yang lama dan konsentrasi yang tinggi dari ahli embriologi sehingga perlu ada sistem yang dapat membantu ahli embriologi dalam melakukan penilaian dengan lebih efisien. Salah satu waktu penilaian embrio yang paling penting yaitu ketika embrio berusia lima hari, dimana ini merupakan tahap penilaian akhir sebelum proses implantasi ke rahim. Penilaian embrio pada hari kelima didasarkan pada tiga aspek yaitu derajat ekspansi, Inner Cell Mass, dan Trophoectoderm, yang menjadi tantangan tersendiri dalam penelitian di bidang ini. Permasalahan lain yang muncul yaitu ketersediaan data yang terbatas dan ketidakseimbangan proporsi kelas atau target pada dataset. Penelitian ini mengusulkan penggunaan augmentasi data berbasis Generative Adversarial Network seperti VanillaGAN, InfoGAN, DCGAN, dan Adversarial Autoencoder sehagai solusi permasalahan ketidakseimbangan data. Penelitian ini juga mengembangkan model klasifikasi berbasis Convolutional Neural Network sebagai klasifikator untuk menilai citra embrio. Penelititan ini menggunakan 10-fold cross validation untuk mengukur kinerja model. Untuk kategori derajat ekspansi, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Untuk kategori Inner Cell Mass, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan VanillaGAN sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Serta untuk kategori Trophoectoderm, model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder memperoleh hasil terbaik dengan nilai f1-score sebesar 0.89.

Assessment of human embryo images has an important role in the process of In Vitro Fertilization (IVF). Evaluation of this embryo image is done manually by the embryologist. This requires a long time and high concentration of embryologists, so it is necessary to create a system that can assist embryologists in making assessments more efficiently. One of the most important parts of human embryo assessment is the embryo on the fifth day after fertilization. Evaluation of embryos on the fifth day is based on three aspects, namely the degree of expansion, Inner Cell Mass, and Trophoectoderm, which is a particular challenge in research in this field. Another problem for this case is the limited availability of data and an imbalanced dataset. This study proposes the use of Generative Adversarial Network-based for data augmentation such as VanillaGAN, InfoGAN, DCGAN, and Adversarial Autoencoder as a solution to imbalanced data problems. This study also developed a classification model based on the Convolutional Neural Network as a classifier for assessing embryo images. This research uses 10-fold cross validation to measure model performance. This study obtained the best results for the degree of expansion category with the Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.92. This study obtained the best results for the Inner Cell Mass category with the Convolutional Neural Network model combined with VanillaGAN as a data augmentation with an f1-score of 0.92. The best result for Trophoectoderm category is Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.89."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kevin Harijanto
"Sebagai salah satu cara untuk memindahkan risiko, banyak orang menginginkan produk asuransi sebagai jaminan proteksi atas dirinya. Pada masa digital ini dimana internet, media sosial dan media komunikasi digital lainnya sudah menjadi bagian dari kehidupan sehari-hari. Perusahaan asuransi juga perlu untuk mengetahui preferensi pelanggannya untuk menjangkau pelanggan potensial dan mengoptimalkan model bisnisnya. Terlebih di masa pandemi COVID-19 yang dialami oleh seluruh dunia, perusahaan jasa transportasi sedang dilanda kesulitan. Namun hal ini merupakan potensi yang sangat besar untuk penjualan asuransi perjalanan ketika pandemi sudah berakhir dan perjalanan dimulai kembali. Salah satu cara untuk mendapatkan preferensi pelanggan adalah dengan studi historikal terkait data-data pelanggan sebelumnya. Masalah preferensi ini dapat disederhanakan menjadi klasifikasi biner, dan sudah banyak metode yang umum digunakan untuk masalah ini seperti Logistic Regression, Gradient Boosting Machine dan Random forest. Namun, belum banyak yang menyelesaikan masalah tersebut menggunakan metode Convolutional Neural Network (CNN). Metode ini memanfaatkan algoritma tabular convolution untuk mengubah data tabular menjadi bentuk citra yang kemudian diklasifikasikan menggunakan CNN. Dari hasil simulasi diperoleh bahwa penggunaan metode ini dapat menyaingi akurasi metode Logistic Regression, Gradient Boosting Machine dan Random Forest dengan iterasi yang cukup rendah.

Many people seek insurance products as a guarantee of protection for themselves, as a way to transfer the risk that they are facing. In this digital era where the internet, social media and other digital communication media have become a part of everyday life, insurance companies also need to know their customers’ preferences to reach potential customers and optimize their business models. Especially during the COVID- 19 pandemic experienced by the whole world, transportation service companies are experiencing many difficulties. But due to this pandemic, there lies a huge potential of travel insurance when the pandemic ends and demands surge for travel business. One way to get customer preferences is by historical studies related to previous customer data. This preference problem can be reduced to binary classification with many methods commonly used to address this problem, such as Logistic Regression, Gradient Boosting Machines and Random Forest. However, not many has solved this problem using the Convolutional Neural Network (CNN) method. This method utilizes the tabular convolution algorithm to convert tabular data into image form which will then be classified using CNN. The results obtained that the use of this method can compete with Logistic Regression, Gradient Boosting Machine and Random Forest with a fairly low iteration.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Hutomo Nugroho
"Proses segmentasi organ secara manual memakan waktu dan hasilnya subyektif terhadap definisi batas-batas kontur. Pemanfaatan teknologi Machine Learning (ML) berjenis 3D convolutional neural network (3D CNN) untuk mensegmentasi organ secara otomatis dapat mempercepat dan menstandarisasi hasil segmentasi organ. Penelitian ini mengimplementasilan network ML berbasis VoxResNet dan memanfaatkan 60 dataset CT Scan toraks dari Grand Callenge AAPM 2017 untuk melatih, memvalidasi, dan menguji model-model ML dengan berbagai variasi hyperparameter. Pengaruh variasi hyperparameter terhadap hasil segmentasi model juga dipelajari. Dataset dibagi menjadi 3 yaitu, 36 untuk perlatihan, 12 untuk validasi, dan 12 untuk pengujian. Dalam penelitian ini paru-paru kiri dan paru-paru kanan dijadikan satu jenis OAR bernama paru-paru, esophagus dan spinal cord dijadikan satu OAR bernama ESP, sedangkan jantung tetap OAR tersendiri. Variasi hyperparameter adalah variasi ukuran patch, jumlah batch, dan weight class. Hasil segmentasi model-model dievaluasi dan diperbandingkan untuk mencari model terbaik dengan hyperparameter-nya yang mampu menghasilkan kualitas hasil segmentasi organ terbaik. Kemampuan network dalam proses perlatihan dan validasi dievaluasi menggunakan kurva pembelajaran. Kualitas hasil segmentasi model organ dievaluasi menggunakan boxplot distribusi populasi nilai metrik Dice Similiarity Coefficient (DSC) dan Housdorf Distance (HD) setiap slice. Peningkatan atau penurunan kinerja model akibat variasi hyperparameter dinilai menggunakan skor peningkatan metrik. Terakhir, metrik DSC dan HD95 secara 3D hasil segmentasi model terbaik dibandingkan dengan hasil segmentasi oleh interrater variability AAPM 2017 dan hasil segmentasi team virginia. Hasil kurva pembelajaran tidak mengalami underfitting menunjukkan bahwa network mampu mempelajari data perlatihan dengan baik. Overfitting terjadi pada model organ jantung dan ESP. Hasil eksperimen variasi ukuran patch menunjukkan bahwa besar ukuran patch tidak selalu linier dengan kinerja moukuran patch menunjukkan bahwa besar ukuran patch tidak selalu linier dengan kinerja model. Model ukuran patch tengah memberikan kualitas distribusi metrik dan skor paling baik dibandingkan model ukuran patch terkecil dan terbesar pada semua OAR dengan skor 11, 13, dan 13 dari 16. Hasil eksperimen variasi jumlah batch menunjukkan bahwa peningkatan jumlah batch tidak selalu berdampak positif terhadap kinerja model. Untuk model jantung ukuran patch terbesar, peningkatan batch dapat meningkatkan skor dari 2 menjadi 12. Untuk model ESP ukuran patch terbesar, peningkatan batch menurunkan skor dari 13 menjadi 2. Hasil eksperimen variasi weight class (W) menunjukkan bahwa baik model jantung maupun ESP cenderung memberikan distribusi metrik dan skor terbaik di sekitar W = [1,3.67] atau W = [1, C1 < 11]. Dibandingkan dengan interrater variability AAPM, model jantung terbaik menghasilkan nilai metrik yang comparable, yaitu untuk DSC 3D 0.932 ± 0.016 = 0.931 ± 0.015 dan untuk HD95 4.00 ± 0.25 < 6.42 ± 1.82. Sedangkan untuk model paru-paru memberikan metrik lebih baik, yaitu 0.964 ± 0.025 > 0.956 ± 0,019 dan 4,72± 0,21 < 6.71 ± 3,91. Dibandingkan dengan team virginia, model jantung terbaik berhasil memberikan nilai metrik yang lebih baik. yaitu 0.932 ± 0.016 > 0.925 ± 0.015 dan 4.00 ± 0.25 < 6.57 ± 1.50, sedangkan model ESP terbaik menghasilkan metrik yang comparable, yaitu 0.815 ± 0.049 = 0,810 ± 0,069 dan 4,68 ± 0,17 < 8,71 ± 10,59. Dari hasil-hasil ini memberikan potensi adanya perpaduan ukuran patch, jumlah batch, dan weight class tertentu yang dapat menyebabkan hasil segmentasi model ukuran patch lebih kecil dapat mengimbangi hasil segmentasi model ukuran patch lebih besar sehingga tuntutan akan perangkat dengan spesifikasi tinggi dan mahal dapat berkurang.

The process of manual organ segmentation is time consuming and the results are subjective in term of definition of contour boundaries. The utilization of Machine Learning (ML) technology using 3D convolutional neural network (3D CNN) to segment organs automatically can speed up the procces as well as standardizing the results of organ segmentation. This study implements a VoxResNet-based ML network and utilizes 60 thoracic CT scan datasets obtained from Grand Callenge AAPM 2017 to train, validate, and test ML models with various hyperparameter variations. The effects of hyperparameter variations on the segmentation results of models are also studied. The dataset is divided into 3 parts, namely 36 for training, 12 for validation, and 12 for testing. In this study the left lung and right lung were combined into one type of OAR called the lung, the esophagus and spinal cord were combined into one OAR called ESP, while the heart remained a separate OAR. Hyperparameter variations are variations in patch size, number of batches, and weight loss. The segmentation results of the models are evaluated and compared each other to find the best model and it’s hyperparameters which is able to produce the best segmentation’s quality. The ability of the network in training and validation procceses is evaluated using learning curve. The quality of the organ model’s segmentation results is evaluated using boxplot of population’s distribution of the Dice Similiarity Coefficient (DSC) and Housdorf Distance (HD) metrics for each slice. The increases or decreases in model performance due to variations in hyperparameters are assessed using the metric improvement score. Finally, the 3D DSC and HD95 metrics of the best model’s segmentation results are compared to the results of segmentation by the AAPM 2017’s interrater variability and to the segmentation results by team virginia. There is no underfitting of learning curve indicates that the network is able to learn the training data. Overfitting occurs in the heart and ESP models. The experimental results from patch size variations show that the size of the patch is not always linear with the performance of the model. The middle patch sized models give the best metric distribution’s quality as well as scores compared to the smallest and largest patch sized models for all OARs with scores of 11, 13, and 13 out of 16. The experimental results from batch number variations show that an increase in batch does not always have a positive impact on model performance. For the largest patch sized heart’s model, the increase increases the score from 2 to 12. For the largest patch sized ESP's model, the increase reduces the score from 13 to 2. The results from variations in weight loss (W) experiment show that both heart’s and ESP's models tend to provide the best distributions in term of metrics and scores around W = [1, 3.67] or W = [1, C1 < 11]. By comparing with AAPM's interrater’s variability, the best heart model produces comparable metric's result, that is 0.932 ± 0.016 = 0.931 ± 0.015 for DSC 3D and 4.00 ± 0.25 < 6.42 ± 1.82 for HD95. The best lungs model produces better metrics, that is 0.964 ± 0.025 > 0.956 ± 0,019 and 4,72 ± 0,21 < 6.71 ± 3,91. By comparing with team virginia's results, the best heart model produces better results that is 0.932 ± 0.016 > 0.925 ± 0.015 and 4.00 ± 0.25 < 6.57 ± 1.50. Meanwhile the best ESP model produces comparable results that is 0.815 ± 0.049 = 0,810 ± 0,069 and 4,68 ± 0,17 < 8,71 ± 10,59. The results of this study suggests that there is a certain combination of patch size, batch, and weight class by which enables smaller patch sized model to produce comparable metric's result produced by larger patch sized model thus decreasing the need to use higher specificationed and expensive computer."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chris Solontio
"Analisis sentimen merupakan permasalahan klasifikasi data mining dengan proses memahami, mengekstrak dan mengolah data teks secara otomatis untuk mendapatkan informasi. Dalam menganalisis pendapat di media sosial digunakan machine learning untuk mendapatkan hasil klasifikasi. Banyak metode machine learning untuk melakukan klasifikasi, dalam penelitian ini akan digunakan convolutional neural network. Dalam machine learning, data dibagi menjadi data training dan data test dengan domain data yang sama.
Permasalahan utama skripsi ini adalah data yang digunakan memiliki dua domain berbeda, sehingga metode machine learning tradisional tidak dapat diterapkan. Sehingga agar dapat menerapkan convolutional neural network untuk dua data berbeda diperkenalkan suatu cara yaitu transfer learning. Transfer learning merupakan suatu proses pembelajaran model yang didapatkan dari training data A oleh data B dengan domain berbeda. Simulasi dalam penelitian ini menghasilkan suatu akurasi transfer learning dengan metode convolutional neural network.

Sentiment analysis is classification problem in data mining with process of understanding, extracting and processing text data to obtain information. Machine learning is needed in analyzing sentiment of the people to get the result of classification. There are many methods in machine learning to do classification, this research will use convolutional neural network. In machine learning, data is divided into train and test data with the same domain.
The main problem of this research is the data has a different domain, so the traditional machine learning method can not be applied. In order to apply convolutional neural network into data with different domain, it will be introduced transfer learning method. Transfer learning is learning model process obtained from training data A then tested by data B. In this research, the simulations result is accuracy of transfer learning with convolutional neural network.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>