Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 120692 dokumen yang sesuai dengan query
cover
Dina Chahyati
"Pelacakan orang banyak pada video berdasarkan hasil deteksi orang pada setiap frame merupakan problem yang menantang karena kompleksitas yang dimilikinya. Kesalahan deteksi orang pada setiap frame akan menyebabkan kesalahan pelacakan orang pada keseluruhan video. Pada penelitian ini, diusulkan metode pelacakan yang dapat meminimalkan propagasi kesalahan dari kesalahan deteksi dengan waktu pelacakan yang tidak terlalu lama. Penelitian ini menggunakan deep convolutional neural network (DCNN) seperti Faster-RCNN dan RetinaNet sebagai detektor objek dan algoritma Hungarian sebagai metode asosiasi antar orang-orang yang terdeteksi di setiap frame. Matriks masukan untuk algoritma Hungarian terdiri dari kedekatan vektor ciri DCNN yang dihasilkan oleh Siamese Network, jarak titik tengah bounding box, dan perbandingan irisan-gabungan (IoU) dari bounding box. Pada tahap akhir dilakukan interpolasi terhadap hasil pelacakan. Metode yang diusulkan menghasilkan MOTA 61.0 pada dataset benchmark pelacakan orang banyak MOT16.

Multiple object (human) tracking in video based on object detection in every frame is a challenging problem due to its complexity. Error in the detection phase will cause error in the tracking phase. In this research, a multiple human tracking method is proposed to minimize the error propagation. The method uses deep convolutional neural network (DCNN) such as Faster-RCNN and RetinaNet as object detector and Hungarian algorithm as association method among detected humans in consecutive frames. The input matrix for Hungarian algorithm consists of the similarity of DCNN feature vector resulted from Siamese network, the distance of bounding box centers, and bounding box intersection of union (IoU). In the last step, interpolation is applied to the tracking result. The proposed method achieves 61.0 MOTA in multiple object tracking benchmark MOT16."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Rehan Hawari
"Jatuh merupakan penyebab utama kedua cedera dan kematian yang tidak disengaja di seluruh dunia. Kejadian ini sering terjadi pada lansia dan frekuensinya meningkat setiap tahun. Sistem pendeteksi aktivitas jatuh yang reliabel dapat mengurangi risiko cedera yang dialami. Mengingat jatuh adalah kejadian yang tidak dikehendaki atau terjadi secara tiba-tiba, sulit untuk mengumpulkan data jatuh yang sebenarnya. Deteksi jatuh juga sulit karena kemiripannya dengan beberapa aktivitas seperti jongkok, dan mengambil objek dari lantai. Selain itu, beberapa tahun belakangan dataset mengenai aktivitas jatuh yang tersedia secara publik juga terbatas. Oleh karena itu, di tahun 2019, beberapa peneliti mencoba membuat dataset jatuh yang komprehensif yang mensimulasikan kejadian yang sebenarnya dengan menggunakan perangkat kamera dan sensor. Dataset yang dihasilkan dataset multimodal bernama UP-Fall. Menggunakan dataset tersebut, penelitian ini mencoba mendeteksi aktivitas jatuh dengan pendekatan Convolutional Neural Network (CNN) dan Long Short Term Memory (LSTM). CNN digunakan untuk mendeteksi informasi spasial dari data citra, sedangakan LSTM digunakan untuk mengeksploitasi informasi temporal dari data sinyal. Kemudian, hasil dari kedua model digabungkan dengan strategi majority voting. Berdasarkan hasil evaluasi, CNN memperoleh akurasi sebesar 98,49% dan LSTM 98,88%. Kedua model berkontribusi kepada performa strategi majority voting sehingga mendapatkan akurasi (98,31%) yang melebihi akurasi baseline (96,4%). Metrik evaluasi lain juga meningkat seperti precision naik 11%, recall 14%, dan F1-score 12% jika dibandingan dengan baseline

.Fall is the second leading cause of accidental injury and death worldwide. This event often occurs in the elderly and the frequency is increasing every year. Reliable fall activity detection system can reduce the risk of injuries suffered. Since falls are unwanted events or occur suddenly, it is difficult to collect actual fall data. It is also difficult because of the similarity to some activities such as squatting, and picking up objects from the floor. In addition, in recent years the fall dataset that is publicly available is limited. Therefore, in 2019, some researchers tried to create a comprehensive fall dataset that simulates the actual events using camera and sensor devices. The experiment produced a multimodal dataset UP-Fall. Using this dataset, this study tries to detect falling activity using Convolutional Neural Network and Long Short Term Memory approaches. CNN is used to detect spatial information from image data, while LSTM is used to exploit temporal information from signal data. Then, the results of the two models are combined with the majority voting strategy. Based on the evaluation results, CNN obtained an accuracy of 98.49% and LSTM 98.88%. Both models contribute to the performance of the majority voting strategy with the result that the accuracy (98.31%) exceeds baseline accuracy (96.4%). Other evaluation metrics also improved such as precision goes up to 11%, recall 14%, and F1-score 12% in comparison with baseline."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasbullah
"Survei Kesehatan Indonesia (SKI) tahun 2023 yang dilakukan oleh Kementerian Kesehatan (Kemenkes) ada sekitar 70 juta perokok aktif di Indonesia. Apabila dihitung dari populasi penduduk Indonesia ada 28,62% penduduk yang merokok di tahun 2023 dan persentase ini meningkat dari tahun sebelumnya sebanyak 0,36%. Perilaku merokok ini menyebabkan berbagai penyakit seperti penyakit paru-paru kronis, kerusakan gigi, penyakit mulut, stroke, serangan jantung, kanker rahim, gangguan mata, dan kerusakan pada rambut. Untuk menekan jumlah perokok di Indonesia, diperlukan sistem untuk deteksi perokok. Deteksi perokok saat ini memakan biaya yang mahal, bantuan ahli, dan sistem yang kompleks. Oleh karena itu, deep learning dengan algoritma Convolutional Neural Network hadir sebagai solusi untuk mengatasi masalah tersebut. Skripsi ini membahas bagaimana merancang sistem deep learning dengan Convolutional Neural Network (CNN) untuk keperluan deteksi wajah perokok. Skripsi ini juga membahas bagaimana pengaruh berbagai skenario jumlah data pelatihan dan data pengujian serta penambahan ekstraksi fitur wajah terhadap metrik evaluasi . Hasil dari rancangan dievaluasi dengan metrik evaluasi kalkulasi loss function, akurasi, dan F1 score. Hasil simulasi menunjukan skenario data pelatihan 70% dan data pengujian 30% adalah skenario terbaik dengan nilai metrik evaluasi pengujian pada skenario ini sebesar 2.236 untuk loss, 54.5% untuk akurasi, dan 34.9% untuk F1 score. Skenario ini diimprovisasi dengan adanya penambahan ekstraksi fitur perokok pada awal preprocessing yang ditandai dari penurunan loss sebesar 65.65%, peningkatan akurasi sebesar 19%, dan peningkatan F1 score sebesar 24.08%.

The 2023 Indonesian Health Survey (SKI) conducted by the Ministry of Health (Kemenkes) reported that there are approximately 70 million active smokers in Indonesia. This accounts for 28.62% of the Indonesian population in 2023, representing a 0.36% increase from the previous year. Smoking behavior leads to various diseases such as chronic lung disease, tooth damage, oral diseases, stroke, heart attacks, uterine cancer, eye disorders, and hair damage. To reduce the number of smokers in Indonesia, a smoker detection system is necessary. Current smoker detection methods are expensive, require expert assistance, and involve complex systems. Therefore, deep learning with Convolutional Neural Network (CNN) algorithms presents a solution to address these issues. This thesis discusses how to design a deep learning system using Convolutional Neural Networks (CNN) for smoker face detection. It also examines the impact of different training and testing data scenarios and the addition of facial feature extraction on evaluation metrics. The designed system is evaluated using metrics such as loss function calculation, accuracy, and F1 score. The simulation results show that a scenario with 70% training data and 30% testing data is the best scenario, yielding evaluation metric values of 2.236 for loss, 54.5% for accuracy, and 34.9% for F1 score. This scenario was improved with the addition of smoker feature extraction in the preprocessing stage, resulting in a 65.65% reduction in loss, a 19% increase in accuracy, and a 24.08% increase in F1 score."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abitya Bagaskara
"Demensia adalah suatu istilah umum yang menggambarkan penurunan kemampuan mengingat yang cukup parah. Demensia paling umum disebabkan oleh alzheimer yang mana diagnosisnya seringkali sulit dan telat dilakukan. Padahal, pada tahap demensia sangat ringan merupakan tahap yang paling efektif dilakukan. Oleh karena itu, akan menjadi suatu keuntungan yang sangat besar apabila berhasil mendiagnosis pada tahap awal. Pendekatan paling populer untuk melakukan diagnosis pada demensia adalah dengan machine learning yang kemudian diperdalam kembali dengan deep learning. Sudah banyak arsitektur pada deep learning, di mana yang paling terkenal digunakan untuk klasifikasi berbentuk gambar adalah Convolutional Neural Network (CNN). Salah satu contoh turunan dari CNN adalah VGG di mana pertama kali diusulkan oleh tim dari Universitas Oxford. Pendekatan dengan arsitektur VGG dilakukan dalam skripsi ini, di mana menggunakan VGG-16 dan VGG-19. Hasil dari skripsi ini berhasil mendeteksi 4 kelas (sangat ringan, ringan, cukup, dan orang normal) dengan capaian akurasi di atas 89% untuk seluruh skenario, bahkan beberapa sampai 99%. Nilai akurasi tertinggi tercatat mencapai 99.68% untuk training dan 99.36% untuk validasi. Tidak hanya akurasi, pada skripsi ini juga akan menganalisis berdasar confusion matrix, presisi, recall, dan F1 Score sehingga bisa lebih mendalam analisis pendeteksiannya untuk tiap kelasnya.

Dementia is a general term that describes a severe impairment of memory. Dementia is most commonly caused by Alzheimer's and diagnosis is often difficult and late. In fact, the very mild stage of dementia is the most effective stage to do. Therefore, it will be a huge advantage if the diagnosis is successful at an early stage. The most popular approach to diagnosing dementia is machine learning which is then deepened by deep learning. There have been many architectures in deep learning, where the most well-known being used for image classification is the Convolutional Neural Network (CNN). One example of a derivative from CNN is VGG which was first proposed by a team from the University of Oxford. Approach to the VGG architecture is carried out in this thesis, which uses VGG-16 and VGG-19. The results of this thesis have successfully detected 4 classes (very light, light, moderate, and normal people) with accuracy above 89% for all scenarios, even some up to 99%. The highest accuracy value was recorded at 99.68% for training and 99.36% for validation. Not only accuracy, but this thesis will also analyze based on confusion matrix, precision, recall, and F1 Score so that the detection analysis can be more in-depth for each class."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmat Arasy
"Tekanan darah tinggi pada retina Hypertensive Retinopathy merupakan penyakit yang timbul akibat tingginya tekanan darah yang mengalir pada pembuluh darah retina, mengakibatkan penebalan dinding pembuluh darah, sehingga debit aliran darah pada retina berkurang. Komplikasi yang timbul dari penyakit ini beragam dan membahayakan, mulai dari oklusi pembuluh darah retina, kerusakan saraf mata, bahkan kebutaan. Skripsi ini membahas tentang pendeteksian tekanan darah tinggi pada retina, sehingga dapat digunakan sebagai media untuk membantu diagnosis dan pencegahan penyakit tekanan darah tinggi pada retina Hypertensive Retinopathy . Pendeteksian dilakukan dengan menganalisa gambar retina Fundus Image pasien dengan metode Principal Component Analysis PCA dan Backpropagation Neural Network BNN , sehingga outputnya berupa klasifikasi citra ke salah satu dari dua golongan; yaitu retina normal dan retina dengan tekanan darah tinggi. Dari hasil perancangan diperoleh tingkat akurasi pengujian dan pengujian neural network hingga 85,5 dan 63,6 .

Hypertensive Retinopathy is a disease caused by high blood pressure flowing in the retinal blood vessels, resulting in thickening of blood vessel walls and reduced blood flow in the retina. Complications arising from these diseases are diverse and dangerous, ranging from retinal vein occlusion, nerve eye damage, even blindness. This paper discusses the detection of high blood pressure in the retina, so it can be used as a medium to help diagnosis and prevention of Hypertensive Retinopathy disease. Detection is done by analyzing the patient 39 s retinal image Fundus Image with Principal Component Analysis PCA method and Backpropagation Neural Network BNN , so that the output is image classification to one of two classes namely the normal retina and retina with high blood pressure. The result shows that this proposed model have leaning and testing accuracy up to 85,5 and 63,6 ."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Ahli
"Kerusakan pada pipa di dalam sistem transportasi fluida kapal sangat mungkin terjadi dan dapat menyebabkan dampak kerapuhan pada pipa yang dapat menyebabkan failure dan kebocoran pada pipa. Oleh karena itu inspeksi korosi pipa dilakukan untuk meminimalisir kerusakan yang dapat terjadi. Saat ini, untuk melakukan inspeksi pipa dapat dilakukan dengan memanfaatkan sinar infra merah, pigging dengan metode Magnetic Flux Leakage dan banyak metode lainnya termasuk inspeksi dengan mata telanjang. Keseluruhan metode tersebut dilakukan secara manual sehingga menimbulkan beberapa kerugian, diantaranya waktu inspeksi yang lama karena masih melibatkan tenaga manusia dalam proses menginspeksi dan keakuratan yang rendah terutama apabila inspeksi masih dilakukan dengan mata telanjang. Oleh karena itu dibutuhkan metode analisa yang lebih akurat yang dapat melakukan inspeksi secara cepat. Algoritma Deep Learning yakni Regional Convolutional Neural Network (R-CNN) diaplikasikan dalam tulisan ini dengan dibantu teknologi pengelihatan komputer (computer vision) menghasilkan metode analisa yang lebih cepat dan akurat. Tidak hanya analisa, R-CNN juga dapat mengklasifikasi jenis korosi dan kerusakan yang terjadi dalam pipa sehingga dapat sekaligus memberikan rekomendasi yang akurat dalam prosesnya, dengan akurasi yang didapat dari fungsi binary entropy didapati akurasi validation sebesar 96% dan akurasi testing sebesar 93%. R-CNN dengan pengembangan rekomendasi perbaikan kerusakan ini dapat menggantikan proses inspeksi perpipaan yang lama dan sulit menjadi cepat dan mudah.

Damage to pipes in the ship's fluid transportation system is highly likely and can cause fragility impacts on pipes that can cause failure and leakage of pipes. Therefore, pipe corrosion inspection is carried out to minimize the damage that can occur. Currently, to conduct pipe inspection can be done by utilizing infrared rays, pigging with magnetic flux leakage method and many other methods including inspection with the naked eye. The whole method is done manually so that it causes some losses, including a long inspection time because it still involves human energy in the process of inspecting and low accuracy, especially if the inspection is still carried out with the naked eye. Therefore, a more accurate analysis method is needed that can conduct inspections quickly. Deep Learning algorithm, Regional Convolutional Neural Network (R-CNN) is applied in this paper with the help of computer vision technology to produce faster and more accurate analytical methods. Not only the analysis, R-
CNN can also classify the type of corrosion and damage that occurs in the pipe so that it can simultaneously provide accurate recommendations in the process, with the accuracy obtained from the binary entropy function found training accuracy of 96% and validation accuracy of 95%. R-CNN with the development of these damage repair recommendations can replace the long and difficult piping inspection process to be quick and easy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ricad Ragapati Prihandini
"Kemajuan di bidang teknologi dan kecerdasan buatan memungkinkan inspeksi otomatis dapat dilakukan. Sebuah drone dilengkapi kamera yang dapat mengidentifikasi permasalahan struktur kapal seperti korosi akan membuat proses inspeksi kapal menjadi lebih efisien dari segi waktu dan biaya yang dibutuhkan sekarang. Pada studi ini dibuat model yang dilatih untuk dapat mengidentifikasi korosi secara otomatis dengan algoritma Convolutional Neural Network memanfaatkan metode transfer learning. MobileNetV2 dipilih sebagai artsitektur model klasifikasi yang memanfaatkan transfer learning dari ImageNet ke dalam dataset yang digunakan. Berdasarkan model yang telah dibuat model mencapai nilai akurasi training sebesar 92,86% dengan loss sebesar 0.0578 dan akurasi validasi sebesar 90,66% dengan loss sebesar 0.0091. Secara keseluruhan, model mempunyai performa yang baik dalam proses training maupun validasi dataset. Tidak ada indikasi overfitting berdasarkan kurva akurasi dan loss.

Advancements in technology and artificial intelligence make automated inspections become possible to do. A drone which is mounted with a camera identifying ship structural issues such as corrosion will make ship inspections become more efficient for a fraction of time and cost that is currently needed. In this study, a trained model is made in order to automatically identify corrosion using Convolutional Neural Network employing transfer learning method. MobileNetV2 is chosen as a classification model architecture which leverages transfer learning from ImageNet to the dataset. According to the data, the model achieved a training accuracy of 92,86% with loss 0.0578 and a validation accuracy of 90,66 with loss 0.0091. Overall, the model performs well on both the training and validation datasets. There is not any indication of overfitting based on their accuracy and loss curves."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yumna Pratista Tastaftian
"Speech Emotion Recognition adalah teknologi yang mampu bisa mendeteksi emosi lewat data suara yang diproses oleh sebuah mesin. Media yang sering digunakan untuk menjadi media interaksi antara 2 orang atau lebih yang saat ini sedang digunakan oleh banyak orang adalah Podcast, dan Talkshow. Seiring berkembangya SER, penelitian terakhir menunjukkan bahwa penggunaan metode Deep Learning dapat memberikan hasil yang memuaskan terhadap sistem SER. Pada penelitian ini akan diimplementasikan model Deep Learning yaitu dengan Recurrent Neural Network (RNN) variasi Long Short Term Memory (LSTM) untuk mengenali 4 kelas emosi (marah, netral, sedih, senang). Penelitian ini menguji model yang digunakan untuk mengenali emosi dari fitur akustik pada data secara sekuensial. Skenario training dan testing dilakukan dengan metode one-against-all dan mendapatkan hasil (1) Dataset talkshow mengungguli dataset podcast untuk tipe 1 dan 2 dan untuk semua emosi yang dibandingkan; (2) Untuk dataset podcast pada emosi marah, senang, dan sedih didapatkan akurasi optimal pada dataset tipe 1 yaitu 67.67%, 71.43%, dan 68,29%, sedangkan untuk emosi netral didapatkan akurasi terbaik pada dataset tipe 2 dengan 77.91%; (3) Untuk dataset talkshow pada emosi marah, netral, dan sedih didapatkan akurasi terbaik pada dataset tipe 2 yaitu 78.13%, 92.0%, dan 100%. Dapat disimpulkan bahwa dataset talkshow secara garis besar memberikan hasil yang lebih optimal namun memiliki variasi data yang lebih sedikit dari dataset podcast. Dari sisi panjang data, pada penelitian ini didapatkan akurasi yang lebih optimum pada dataset dengan tipe 2.

Speech Emotion Recognition is a technology that is able to detect emotions through voice data that is processed by a machine. Media that is often used to be a medium of interaction between two or more people who are currently being used by many people are Podcasts, and Talkshows. As SER develops, recent research shows that the use of the Deep Learning method can provide satisfactory results on the SER system. In this study a Deep Learning model will be implemented, this study uses Long Short Term Memory (LSTM) as one of the variation of Recurrent Neural Network (RNN) to recognize 4 classes of emotions (angry, neutral, sad, happy). This study examines the model used to recognize emotions from acoustic features in sequential data. Training and testing scenarios are conducted using the one-against-all method and get results (1) The talkshow dataset outperforms the podcast dataset for types 1 and 2 and for all emotions compared; (2) For the podcast dataset on angry, happy, and sad emotions, the optimal accuracy in type 1 dataset is 67.67%, 71.43%, and 68.29%, while for neutral emotions the best accuracy is obtained in type 2 dataset with 77.91%; (3) For the talkshow dataset on angry, neutral, and sad emotions the best accuracy is obtained for type 2 datasets, namely 78.13%, 92.0%, and 100%. It can be concluded that the talkshow dataset in general gives more optimal results but has fewer data variations than the podcast dataset. In terms of data length, this study found more optimum accuracy in dataset with type 2."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Durrabida Zahras
"Untuk memenuhi tantangan dalam hal meningkatnya jenis penyakit di era modern ini, teknologi memainkan peran yang sangat penting dalam penelitian kesehatan. Kesehatan wanita telah menjadi perhatian utama karena meningkatnya angka kanker serviks yang  dapat menjadi penyakit mematikan. Dalam studi ini, kami akan menggunakan Deep Convolutional Neural Network untuk menemukan akurasi dalam mengklasifikasikan data kanker serviks pada empat jenis metode. Data kanker serviks diwakili oleh 32 faktor risiko dan empat variabel target: Hinselmann, Schiller, Cytology, dan Biopsy. Presentase akurasi metode Deep Convolutional Neural Network cukup baik jika dibandingkan dengan Neural Network dalam hal pengklasifikasian data faktor risiko kanker serviks, kita dapat melihat bahwa setiap data diklasifikasikan dengan benar dengan total akurasi mencapai hampir 90% untuk setiap target.

To meet the challenge of the increasing types of disease in this modern era, technology plays a very important role in health research. Womens health has become a major concern because of the increasing rates of cervical cancer because it can be a deadly disease. In this study, we will use deep Convolutional Neural Networks to find the accuracy in classifying cervical cancer data on four different types of methods. The cervical cancer data are represented by 32 risk factors and four target variables: Hinselmann, Schiller, Cytology, and Biopsy. The result with deep learning method is quite encouraging compare to the original neural network in classyfying cervical risk dataset, we can see that each data were correctly classified with the total accuracy reach almost 90% for each target."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mgs. M. Luthfi Ramadhan
"Asesmen kerusakan bangunan setelah bencana sangat penting dilakukan untuk membantu operasi tanggap darurat dan penyelamatan. Tetapi asesmen kerusakan bangunan membutuhkan banyak sumber daya untuk melakukannya secara manual. Banyak pendekatan telah diusulkan untuk mengotomatisasi asesmen kerusakan bangunan dengan memanfaatkan teknologi kecerdasan buatan. Beberapa diantaranya menggunakan handcrafted fitur yang dianggap tidak efektif. Penelitian ini mengusulkan sebuah pendekatan yang berdasarkan pada siamese neural network. Fitur ekstraksi, perbedaan fitur, dan klasifikasi dapat dilakukan hanya dengan menggunakan satu model yang terhubung secara end-to-end sehingga klasifikasi dan fitur ekstraksi dapat belajar secara bersama. Penelitian ini juga mengembangkan model siamese neural network dengan menambahkan mekanisme konkatenasi fitur. Konkatenasi ini bertujuan untuk membuat fitur perbedaan berdasarkan tiap-tiap keluaran dari convolution block dan menggabungkanya menjadi sebuah vektor yang berdimensi tinggi. Model ini diuji dalam tiga skenario eksperimen dan telah dibuktikan bahwa penerapan mekanisme konkatenasi fitur tersebut mampu meningkatkan skor f-measure pada model dengan dua dari tiga skenario eksperimen tersebut menunjukan perbedaan performa yang signifikan.

Post-earthquake building damage assessment is a very crucial job to do in order to execute emergency and rescue operations. With that being said, building damage assessment takes a lot of resources if it is done manually. Many approaches have been proposed to automate the process by using artificial intelligence, some of which use handcrafted features that are considered ineffective. This research proposes an approach based on siamese neural network. Feature extraction, feature differentiation, and classification can be performed using only one end-to-end connected model so that classification and feature extraction can learn simultaneously. Furthermore, this research also develope a siamese neural network model by implementing feature concatenation mechanism. This concatenation aims to create difference features based on each output from the convolution block and concatenate them into a high-dimensional vector. This model was tested in three experimental scenarios and it has been proven that the application of the feature concatenated mechanism is able to increase the f-measure score in the model with two out of three experimental scenarios showing a significant difference in perform"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>