Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2546 dokumen yang sesuai dengan query
cover
Vina Dwi Maharani
"Pemodelan data survival bergantung pada bentuk dari fungsi hazard-nya. Fungsi hazard dapat berbentuk monoton (monoton naik dan monoton turun) dan non-monoton (bathtub dan upside-down bathtub atau unimodal). Pada penelitian ini, diperkenalkan sebuah distribusi yang disebut distribusi extended inverse Lindley. Distribusi extended inverse Lindley merupakan distribusi yang dibangun dengan menggunakan transformasi terhadap distribusi Lindley dua paramater. Transformasi yang digunakan adalah transformasi power serta transformasi inverse agar distribusi yang dihasilkan mampu memodelkan data yang bersifat heavy tailed dan fungsi hazard-nya berbentuk upside-down bathtub. Pada penulisan ini, dibahas pembentukan distribusi extended inverse Lindley serta karakteristik dari distribusi tersebut yang meliputi fungsi distribusi, fungsi kepadatan peluang, fungsi survival, fungsi hazard, momen ke-r, skewness, kurtosis, modus dan median. Parameter dari distribusi extended inverse Lindley ditaksir menggunakan metode maximum likelihood. Pada akhir penelitian, dilakukan penerapan distribusi extended inverse Lindley terhadap data riil yaitu data survival lamanya waktu perbaikan untuk kerusakan penerima sinyal dan dibandingkan dengan distribusi lain yang mampu memodelkan data tersebut, dimana hasil dari perbandingan menunjukkan bahwa distribusi extended inverse Lindley mampu memodelkan data tersebut lebih baik dibanding dengan distribusi lain yang digunakan.

Modeling survival data depends on the shape of the hazard rate. Hazard rate may belong to the monotone (non-increasing and non-decreasing) and non-monotone (bathtub and upside-down bathtub). In this paper, a distribution called the extended inverse Lindley distribution will be introduced. Extended inverse Lindley distribution is a distribution that is formed from the transformation of the two parameter Lindley distribution. The transformations used are power transformation and inverse transformation. So that, the extended inverse Lindley distribution can model heavy tailed data with a upside-down bathtub hazard rate. In this essay, we will discuss how to construct extended inverse Lindley distribution and characteristics of these distributions. These include density function, probability distribusi function, survival function, hazard rate, r-th moment, skewness, kurtosis, mode dan median. Parameter estimation of the extended inverse Lindley distribution is using the maximum likelihood method. At the end of this paper, the application of the extended inverse Lindley distribution to real data in the form of survival data is the length of time to repair the damaged signal receiver and is compared with other distributions that are able to model the data, where the results of the comparison show that the application of the extended inverse Lindley distribution is better than the other distribution to model the data."
Depok: Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitria Rahmawati
"Data lifetime biasanya digunakan peneliti untuk mengetahui tingkat survival atau tingkat kegagalan suatu objek. Distribusi Weibull merupakan distribusi probabilitas yang sering digunakan untuk memodelkan data lifetime. Namun, distribusi Weibull hanya dapat memodelkan data lifetime dengan tingkat kegagalan atau hazard rate yang monoton. Sehingga dibutuhkan distribusi baru yang dapat memodelkan data lifetime dengan karakteristik tingkat kegagalan atau hazard rate yang beragam. Distribusi inverse Weibull adalah distribusi hasil transformasi inverse dari distribusi Weibull. Distribusi inverse Weibull merupakan distribusi yang dapat memodelkan data lifetime dengan hazard rate monoton (turun) maupun  non-monoton (upside-down bathtub shaped). Namun, untuk membuat kepadatan fleksibel dengan berbagai macam bentuk diperlukan generalisasi dari distribusi ini dengan menambahkan suatu parameter shape. Distribusi generalized inverse Weibull merupakan generalisasi dari distribusi inverse Weibull yaitu yang dibentuk dengan memangkatkan fungsi distribusi inverse Weibull dengan suatu parameter baru. Distribusi generalized inverse Weibull memiliki 2 parameter shape dan 1 parameter scale sehingga distribusi ini dapat menggambarkan shape dari fungsi hazard yang lebih beragam. Pada  skripsi ini, akan dibahas mengenai pembentukan distribusi inverse Weibull dan pembentukan distribusi generalized inverse Weibull, serta fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, fungsi hazard, dan karakteristik-karakteristik dari kedua distribusi tersebut. Penaksiran parameter dari distribusi generalized inverse Weibull menggunakan metode maksimum likelihood.

Lifetime data is usually used by researchers to determine the level of survival or failure rate of an object. Weibull distribution is a probability distribution that is often used to model the lifetime data. However, the Weibull distribution is only used to model the lifetime data with monotone failure rate or monotone hazard rate. So that, a new distribution is needed to model the lifetime data with varying characteristics of failure rates or hazard rates. Inverse Weibull distribution is a distribution that is formed from the inverse transformation of the Weibull distribution. Inverse Weibull distribution is a continued distribution which can model lifetime data with a monotone hazard rate (constant, increase, and decrease) or non-monotone hazard rate (upside-down bathtub shaped). However, to make a density flexible with wide variety of shapes the generalizations from this distribution are needed by adding a shape parameter. Generalized inverse Weibull distribution is derived from generalization of inverse Weibull distribution that is formed by raising the inverse Weibull distribution function with a new parameter. Generalized inverse Weibull distribution has two shape parameters and one scale parameter. So, this distribution can describe a more diverse shapes of hazard function. In this skripsi, we will discuss how to construct inverse Weibull distribution and Generalized inverse Weibull distribution, and probability distribution function, cumulative distribution function, survival function, hazard function, and characteristics of these distributions. Parameter estimation of the generalized inverse Weibull distribution is using the maximum likelihood method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratu Mutiara Pakungwati
"Tugas akhir ini berisi pembahasan mengenai distribusi Invers Weibull Marshall-Olkin IWMO yang merupakan distribusi probabilitas untuk peubah acak kontinu. Distribusi IWMO dibentuk dari distribusi Invers Weibull IW dengan metode Marshall-Olkin, metode ini adalah metode penambahan parameter yang diperkenalkan oleh Albert W Marshall dan Ingram Olkin pada tahun 1997. Distribusi IW sendiri diperoleh dari distribusi Weibull dengan melakukan tranformasi terhadap peubah acak. Distribusi IWMO mampu menggambarkan bentuk data seperti distribusi asalnya dalam hal ini distribusi IW dan bentuk data dari distribusi invers Eksponensial selain itu distribusi IWMO dapat menjelaskan data outlier lebih baik dibandingkan distribusi IW disebabkan oleh penambahan parameter Marshall-Olkin. Selanjutnya akan dibahas mengenai fungsi kepadatan probabilitas, fungsi distribusi, Moment Generating Function MGF, momen ke-r, mean, variansi, koefisien skewness, koefisien kutrosis, kuantil dan median dari IWMO. Penaksiran parameter menggunakan metode maksimum likelihood. Distribusi Weibull, IW dan IWMO akan diterapkan pada data yang memiliki outlier. Perbandingan model menggunakan log likelihood, AIC, BIC menunjukan distribusi IWMO sesuai dengan data lebih baik dibandingkan Weibull dan IW.

This final project contains a discussion of the distribution of Inverse Weibull Marshall Olkin IWMO which is the probability distribution for continuous random variables. The IWMO distribution is formed from the Inverse Weibull IW distribution by Marshall Olkin method, this method is the parameter addition method introduced by Albert W Marshall and Ingram Olkin in 1997. IWull distribution itself is obtained from the Weibull distribution by transforming the random variables. IWMO distribution able to describe data form like its original distribution that is IW distribution and data form from Exponential inverse distribution beside that IWMO distribution can explain data outlier better than IW distribution caused by addition of Marshall Olkin parameter. The next will be discussed about probability density function, distribution function, Moment Generating Function MGF, rth moment, mean, variance, skewness coefficient, coefficient kutrosis, quantitative and median from IWMO. Parameter estimation using likelihood maximum method. Weibull, IW and IWMO distributions will be applied to data that has an outlier. Comparison of models using log likelihood, AIC, BIC shows IWMO distribution in accordance with better data than Weibull and IW. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeremia Henry Pniel
"Fungsi hazard dapat dikategorikan menjadi dua, yaitu monoton (naik atau turun) dan non monoton (bathtub shape dan upside down bathtub shape). Untuk memodelkan data
dengan fungsi hazard monoton, naik atau turun, dan non monoton bathtub shape umumnya digunakan distribusi Gamma atau Weibull. Pada skripsi ini, akan diperkenalkan sebuah distribusi yang dapat memodelkan data dengan fungsi hazard berbentuk upside down bathtub shape. Distribusi ini diturunkan dari distribusi Lindley dengan melakukan transformasi yang disebut distribusi generalized inverse Lindley. Distribusi ini lebih fleksibel dalam memodelkan data dengan fungsi hazard non-monoton upside down bathtub. Hal ini dikarenakan parameter shape pada distribusi tersebut menyebabkan fungsi hazard memiliki banyak variasi bentuk namun tetap mempertahankan bentuk upside down bathtub. Beberapa karakteristik dari distribusi seperti fungsi kepadatan peluang, fungsi distribusi, fungsi survival, fungsi hazard,dan momen ke-r akan dicari. Untuk mengestimasi parameter distribusinya akan digunakan metode maximum likelihood. Di akhir skripsi ini, akan dibangun data untuk mengestimasi parameter dari distribusi yang bersangkutan

Hazard rate are categorized by their shape, either its monotone (decreasing or increasing) or non-monotone (upside down bathtub shaped and bathtub shaped). Modelling data from monotone hazard rate, either decreasing or increasing, and bathtub shaped hazard rate are possible with common distribution such as Gamma distribution or Weibull distribution. For data which has upside down bathtub shaped hazard rate is usually done by using inverse transformation of exponential distribution such as inverse Gamma, inverse Weibull, and inverse Lindley. In this paper, a distribution that can model a data with upside down bathtub shaped hazard rate is introduced. The distribution is derived from Lindley distribution with transformation and is called generalized inverse Lindley distribution. The distribution is more flexible because shape parameter which make wide variety of shape without changing its hazard rate from upside down bathtub shaped. Some
statistic properties of the distribution such as density function, cumulative function, survival function, hazard function, and moment will be discussed. For estimating
parameter of the distribution, maximum likelihood method will be used. In the end, simulation data will be generated to see the estimation of the distributions parameter."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafif Hibatullah
"Distribusi Lindley diperkenalkan oleh Lindley 1958 dalam konteks inferensi Bayes. Baru-baru ini, perluasan dari distribusi Lindley diusulkan oleh Ghitany 2013 dan disebut distribusi yang dihasilkan disebut distribusi power Lindley. Skripsi ini akan memperkenalkan perluasan dari distribusi power Lindley menggunakan metode Marshall-Olkin dan akan menghasilkan distribusi power Lindley Marshall-Olkin PLMO. Distribusi PLMO dapat lebih fleksibel dalam merepresentasikan data dengan berbagai bentuk. Sifat fleksibilitas ini disebabkan oleh penambahan parameter ke distribusi power Lindley.
Beberapa sifat PLMO akan dijelaskan dalam skripsi ini, seperti probability density function pdf, cumulative distribution function cdf, fungsi survival, fungsi hazard, kuantil, dan momen ke-r. Estimasi parameter PLMO dilakukan dengan menggunakan metode maksimum likelihood. Distribusi PLMO diterapkan pada data dan akan dibandingkan dengan distribusi Lindley, power Lindley, Lindley Marshall-Olkin LMO , gamma, dan Weibull. Perbandingan model akan menggunakan nilai log likelihood, AIC, dan BIC.

Lindley distribution was introduced by Lindley 1958 in the context of Bayes inference. Recently, a new generalization of the Lindley distribution was proposed by Ghitany et al. 2013 , called power Lindley distribution. This paper will introduce an extension of the power Lindley distribution using the Marshall Olkin method, resulting in Marshall Olkin Extended power Lindley MOEPL distribution. The MOEPL distribution offers a flexibility in representing data with various shapes. This flexibility is due to the addition of a tilt parameter to the power Lindley distribution.
Some properties of the MOEPL were explored, such as probability density function pdf, cumulative distribution function cdd, hazard rate, survival function, and quantiles. Estimation of the MOEPL parameters was conducted using maximum likelihood method. The proposed distribution was applied to data. The results were given which illustrate the MOEPL distribution and were compared to Lindley, power Lindley, Marshall Olkin Extended Lindley MOEL, gamma, and Weibull. Models comparison using the log likelihood, AIC, and BIC showed that MOEPL fit the data better than the other distributions.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risna Diandarma
"ABSTRACT
Overdispersi sering kali menjadi kendala dalam memodelkan count data dikarenakan distribusi Poisson yang sering digunakan untuk memodelkan count data tidak dapat menanggulangi data overdispersi. Telah diperkenalkan beberapa distribusi yang dapat digunakan sebagai alternatif dari distribusi Poisson dalam menanggulangi overdispersi pada data. Namun, distribusi yang ditawarkan tesebut memiliki kompleksitas yang lebih tinggi dibanding distribusi Poisson dalam hal jumlah parameter yang digunakan. Untuk itu, ditawarkan distribusi baru yang memiliki sebaran mirip dengan distribusi Poisson, yaitu distribusi Lindley. Namun, distribusi Lindley merupakan distribusi kontinu sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, dilakukan diskritisasi pada distribusi Lindley menggunakan metode yang mempertahankan fungsi survival dari distribusi Lindley. Distribusi hasil dari diskritisasi distribusi Lindley tersebut memiliki satu parameter dan dapat digunakan untuk memodelkan data overdispersi sehingga cocok digunakan sebagai alternatif dari distribusi Poisson dalam memodelkan count data yang overdispersi. Distribusi hasil dari diskritisasi distribusi Lindley tersebut biasa disebut distribusi Discrete Lindley. Dalam penulisan ini diperoleh karakteristik dari distribusi Discrete Lindley yang unimodal, menceng kanan, memiliki kelancipan yang tinggi, dan overdispersi. Berdasarkan simulasi numerik, diperoleh pula karakteristik dari parameter distribusi Discrete Lindley yang memiliki bias dan MSE besar pada sekitaran nilai parameter exp(-1).

ABSTRACT
Overdispersion often being a problem in modeling count data because the Poisson distribution that is often used to modeling count data cannot conquer the overdispersion data. Several distributions have been introduced to be used as an alternative to the Poisson distribution on conquering dispersion in data. However, that alternative distribution has higher complexity than Poisson distribution in the number of parameters used. Therefore, a new distribution with similar distribution to Poisson is offered, that is Lindley distribution. Lindley distribution is a continuous distribution, then it cannot be used to modeling count data. Hence, discretization on Lindley distribution should be done using a method that maintain the survival function of Lindley distribution. Result distribution from discretization on Lindley distribution has one parameter and can be used to modeling overdispersion data so that distribution is appropriate to be used as an alternative to Poisson distribution in modeling overdispersed count data. The result distribution of Lindley distribution discretization is commonly called Discrete Lindley distribution. In this paper, characteristics of Discrete Lindley distribution that are obtained are unimodal, right skew, high fluidity and overdispersion. Based on numerical simulation, another charasteristic of parameter is also obtained from Discrete Lindley distribution that has a large bias and MSE when parameter value around exp(-1)."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olivia Iolana
"Analisis data lifetime sangat penting dalam berbagai bidang ilmu pengetahuan seperti biomedis, teknik, dan ilmu kemasyarakatan. Pemodelan data tersebut dilakukan dengan menggunakan fungsi hazard dari distribusi lifetime seperti distribusi eksponensial, Weibull, lognormal, dan juga gamma. Namun, keempat distribusi tersebut tidak dapat memodelkan fungsi hazard berbentuk bathtub. Padahal, fungsi hazard berbentuk bathtub adalah yang paling sering ditemukan dalam kehidupan nyata. Oleh karena itu, akan dibentuk distribusi generalized Lindley yang lebih fleksibel dalam memodelkan fungsi hazard. Distribusi tersebut merupakan perumuman dari distribusi Lindley dengan menggunakan transformasi exponentiation. Kemudian, karakteristik-karakteristik dari distribusi generalized Lindley juga akan ditelusuri. Selanjutnya, analisis bentuk dari fungsi hazard akan menunjukkan bahwa distribusi generalized Lindley dapat memodelkan data dengan fungsi hazard yang berbentuk monoton naik, monoton turun, dan juga bathtub. Setelah itu, penaksiran parameter distribusi generalized Lindley akan dilakukan dengan metode yang paling umum digunakan yaitu metode maximum likelihood. Simulasi dengan membangkitkan data menggunakan software juga akan dilakukan dengan bantuan metode Newton-Raphson untuk melihat penaksiran parameter dari distribusi generalized Lindley.

Analysis of lifetime data is very important in various fields such as biomedical science, engineering, and social science. The modelling of lifetime data is done by using hazard function of lifetime distributions such as exponential, Weibull, lognormal, and gamma distribution. However, these four distributions cannot model data with bathtub-shaped hazard function even though it is the one mostly found in real life situation. Therefore, more flexible distribution called generalized Lindley distribution is introduced to model hazard function. The distribution is created by using transformation called exponentiation to generalize the Lindley distribution. Afterwards, some characteristics of generalized Lindley distribution will be discussed. Analysis of the hazard function will show that generalized Lindley distribution can models data with increasing, decreasing, and bathtub-shaped hazard function. In addition, parameter estimation of the distribution will be done by the usual method which is maximum likelihood estimation. Lastly, simulation using software-generated data will be displayed with help from Newton-Raphson numerical method to see the parameter estimation of generalized Lindley distribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Detasya Avri Magfira
"

Pada sistem reliabilitas atau sistem ketahanan suatu objek penelitian dikenal prinsip sistem seri dimana dari sekumpulan kejadian yang mungkin merupakan penyebab kegagalan pada akhirnya hanya akan ada satu kejadian yang secara nyata berhasil menyebabkan kegagalan pada sebuah sistem. Dalam kehidupan nyata, pada sistem seri, antar kejadian seolah saling berkompetisi untuk dapat menyebabkan kegagalan sistem. Aplikasi sistem seri banyak diimplementasikan pada kasus di bidang medis dan bidang teknik. Oleh karena itu, sebelumnya telah dibangun beberapa distribusi hasil compounding distribusi lifetime yang dapat memodelkan data pada sebuah sistem seri. Namun kelemahannya adalah distribusi-distribusi tersebut tidak dapat memodelkan data dengan fungsi hazard bathtub. Bentuk hazard bathtub sering ditemukan dalam berbagai permasalahan di kehidupan nyata khususnya masalah mortalitas pada manusia. Oleh karena itu dibutuhkan distribusi yang dapat memodelkan data pada sebuah sistem seri dan dapat menganalisis data dengan fungsi hazard bathtub. Distribusi Weibull Lindley merupakan distribusi hasil compounding antara distribusi Weibull dan distribusi Lindley yang dapat memodelkan kegagalan pada sebuah sistem seri dimana objek penelitian dapat mengalami kegagalan disebabkan oleh 2 kemungkinan kejadian dan dapat menganalisis data dengan bentuk hazard naik, turun dan bathtub. Penulisan skripsi ini membahas tentang proses pembentukan distribusi Weibull Lindley, karakteristik dari distribusi Weibull Lindley dan penaksiran parameter dengan metode maximum likelihood. Selain itu, dibahas pula aplikasi distribusi Weibull Lindley pada data masa fungsional mesin yang terdiri dari 2 komponen.

 


In reliability systems there are known two types of systems namely series systems and parallel systems. In the series system, failure will occur if any of the possible event happens. Applications of the series system analysis also varies from inspecting the durability of manufactured products to examining diseases in human. Therefore, several distributions have been introduced to model failure data in series system. However, these distributions cannot model data with bathtub shaped hazard function even though it is the one mostly found in real life situation. As a result, distribution which can model lifetime data in series system with bathtub-shaped hazard function has to be developed. Weibull Lindley distribution, which was introduced by Asgharzadeh et al. (2016), is developed to solve the problem. Weibull Lindley distribution describes lifetime data of an object that can experience failure caused by 2 possible events. It can model data with increasing, decreasing and bathtub shaped hazard function. This paper discusses the process of forming the Weibull Lindley distribution, its properties and parameter estimation using the maximum likelihood method. In addition, the application of Weibull Lindley distribution in lifetime data of machine consists of two independent component paired in series also be discussed.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sigit Supriyadi
"ABSTRAK
Dalam analisis multivariate klasik dalam suatu uji hipotesa sering digunakan
analisis nilai eigen dalam penetuan statistik ujinya. Dibawah kondisi H0, nilai
statistik uji yang diperoleh akan digunakan untuk bentuk distribusi yang berkaitan
dengan statistik uji. Daerah kritis penolakan suatu uji uji hipotesa ditentukan
berdasarkan bentuk distribusi yang diperoleh. Nilai eigen yang diperoleh untuk
analisi multivariat ini untuk pembentukan statistik ujinya bisa menggunakan
fungsi yang melibatkan keseluruhan nilai eigen atau dengan menggunakan nilai
yang ekstrem. Untuk nilai eigen yang maksimum statistik uji yang digunakan
berdasar Roy test maksimum. Cara lain yang digunakan adalah dengan
pendekatan distribusi Tracy-Widom. Disamping daerah kritis yang diperoleh juga
dibutuhkan p-value berdasar nilai statistik uji yang sebenarnya.

ABSTRACT
Clasical multivariate analysis in test hipothesa H0 most used eigen analysis in
determined their test statistics . Under H0 test statistics which founded wiil be
used to make distribution concerning with test statistics. Critical area H0
determined their distributions. Eigenvalue which founded will be used to build
test statistics may included entilrely or eigen value maximum. Roy maximum test
had used maximum eigen value for inference by Tracy-Widom distribution.
Besides founded critical area, for also wanted p-value for their test statistics
which had found"
Depok: 2013
T44762
UI - Tesis Membership  Universitas Indonesia Library
cover
Miniyanti Sandiman
"Di dalam skripsi ini dibahas tentang distribusi normal dan beberapa jenis pengujian model normal, yaitu kertas probabilitas normal, pengujian Chi Kuadrat, pengujian Kolmogorov, pengujian Lilliefors, dan pengujian Shapiro-Wilk. Juga diberikan contoh pengujian model normal dengan menggunakan aplikasi Komputer."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1985
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>