Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10203 dokumen yang sesuai dengan query
cover
Bella Belinda
"

Model runtun waktu yang paling umum digunakan adalah runtun waktu diskrit yang mengasumsikan peubah yang diuji bersifat kontinu dan menghasilkan nilai kontinu. Padahal dalam banyak penerapan, diperlukan model runtun waktu diskrit yang dapat menangani peubah diskrit dan menghasilkan nilai diskrit juga. Salah satu model runtun waktu yang menangani data count atau bilangan bulat nonnegatif adalah model runtun waktu Integer-valued Autoregressive dengan order p yaitu INAR(p). Model ini dibangun dengan binomial thinning operator yang menerapkan operasi probabilistik dengan distribusi diskrit yang cocok memodelkan data count seperti Poisson dan Binomial. Parameter model akan diestimasi dengan metode Yule-Walker. Dalam penelitian ini, akan dibahas dan dijabarkan karakteristik dari model INAR(p) menggunakan operator binomial thinning. Spesifikasi INAR(p) mengikuti model Autoregressive dengan order p, AR(p). Peramalan INAR(p) menggunakan metode peramalan nilai tengah dengan menghitung probabilitas bersyarat dari setiap bilangan bulat nonnegatif yang mungkin menjadi nilai ramalan, lalu memilih nilai ramalan yang memiliki probabilitas bersyarat kumulatif lebih besar sama dengan 0,5. Model runtun waktu INAR(p) akan diaplikasikan pada data simulasi berjumlah 120 data yang bernilai bilangan bulat nonnegatif.


The most commonly used time series model is the discrete time series which assumes the variables being tested are continuous and produces continuous values. Whereas in many applications, a discrete time series model is needed to handle discrete variables and produce discrete values as well. Time series model that handles count or non-negative integer data is the Integer-valued Autoregressive model with the pth-order or INAR(p). This model is built with binomial thinning operator which implements probabilistic operations with discrete distribution that are suitable to model count data such as Poisson and Binomial. Model parameters will be estimated using the Yule-Walker method. In this research, we will discuss and describe the characteristics of the INAR(p) model using the binomial thinning operator. The INAR(p) specification follows the Autoregressive model with the p-th order, AR(p). Forecasting in INAR(p) uses median forecasting by calculating the conditional probability of each possible nonnegative integer value, then selecting a forecast value with a cumulative conditional probability greater than 0.5. The INAR(p) time series model will be applied to the 120 simulated data with nonnegative integer values.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Filbert Jose Chaivier
"Model Kumaraswamy Autoregressive Moving Average (KARMA) merupakan suatu model runtun waktu yang digunakan untuk data runtun waktu yang terbatas pada interval tertentu (a,b) dan diasumsikan mengikuti distribusi Kumaraswamy. Distribusi Kumaraswamy adalah distribusi yang memiliki dua shape parameter, yaitu dan yang menyebabkan distribusi ini memiliki keanekaragaman bentuk grafik fungsi densitas probabilitas seperti unimodal, fungsi naik, fungsi turun, dan fungsi konstan. Pada praktiknya, distribusi ini sering diaplikasikan pada berbagai bidang seperti bidang hidrologi, kesehatan, ekonomi, dan lain-lain. Model KARMA dibentuk dari regresi Kumaraswamy dengan asumsi error model mengikuti proses ARMA. Pada model KARMA, median variabel respon dihubungkan dengan variabel-variabel prediktor (regresor) menggunakan sebuah fungsi penghubung yang monoton, kontinu, dan dapat diturunkan. Metode estimasi parameter model KARMA adalah Conditional Maximum Likelihood Estimation (CMLE) karena dalam proses estimasi diperlukan distribusi bersyarat dari periode sebelumnya. Model KARMA selanjutnya diaplikasikan pada data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul, Brazil dari Januari 2000 hingga Desember 2017 karena data tingkat mortalitas merupakan data yang terbatas pada interval (0,1). Model KARMA terbaik untuk data dipilih berdasarkan nilai Akaike’s Information Criterion (AIC) terkecil kemudian dilakukan peramalan untuk enam periode selanjutnya. Pada data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul, digunakan model terbaik KARMA(3,3) dengan nilai MAPE sebesar 19.0988%.

The Kumaraswamy Autoregressive Moving Average (KARMA) model is a time-series model used for time-series data that is limited to a certain interval (a,b) and is assumed to follow the Kumaraswamy distribution. The Kumaraswamy distribution is a distribution that has two shape parameters, namely and which causes this distribution to have a diverse of graphic forms of probability density functions such as unimodal, increasing functions, decreasing functions, and constant functions. In practice, this distribution is often applied to various fields such as hydrology, health, economics, and other fields. The KARMA model is formed from Kumaraswamy regression assuming the error model follows the ARMA process. In the KARMA model, the median of response variable is linked to the predictor variables (regressor) using a monotonous, continuous, and derivable connecting function. The method used for parameter estimation in KARMA model is Conditional Maximum Likelihood Estimation (CMLE) because a conditional distribution of previous periods is required in the estimation process. The KARMA model will then be applied to monthly mortality rates due to occupational accidents in Rio Grande do Sul, Brazil from January 2000 to December 2017 data because mortality rate data is bounded to the interval (0.1). The best KARMA model for the data was selected based on Akaike's smallest Information Criterion (AIC) values and then forecasted for the next six periods. In the data on the monthly mortality rate due to work accidents in Rio Grande do Sul, a MAPE value of 19.0988% was obtained."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saragih, Putri Permata Sari
"ABSTRAK
Suatu runtun waktu dikatakan proses memori jangka panjang jika setiap pengamatan masih memiliki ketergantungan. Proses memori jangka panjang tidak dapat dimodelkan dengan model umum AR, MA, ARMA, serta ARIMA, karena pada proses memori jangka panjang korelasi antar pengamatan yang terpisah jauh tidak diabaikan. Granger Joyeux 1981 mengembangkan model Autoregressive Fractionally Integrated Moving Average ARFIMA yang dapat memodelkan proses memori jangka panjang dengan parameter fractional differencing d yang bernilai riil karena melibatkan seluruh data pengamatan, artinya korelasi setiap pengamatan yang sudah lama tidak diabaikan. Untuk memodelkan suatu runtun waktu dengan model ARFIMA, terlebih dahulu dilakukan pengujian untuk menentukan adanya proses memori jangka panjang yaitu analisis rescaled range. Analisis ini dilakukan dengan mempartisi runtun waktu menjadi beberapa sub-periode dan melihat korelasi antar sub-periode yang dipartisi. Dari analisis tersebut diperoleh eksponen Hurst H yang menggambarkan sifat runtun waktu. Proses memori jangka panjang terjadi ketika . Pada model ARFIMA dilakukan proses penaksiran untuk menentukan nilai parameter yang tepat untuk memodelkan proses memori jangka panjang pada data. Suatu data dikatakan stasioner dan memori jangka panjang jika . Penaksiran parameter yang digunakan yaitu metode Geweke Porter-Hudak GPH . Metode GPH ini dilakukan dengan membentuk persamaan spektral model ARFIMA menjadi persamaan regresi spektral dengan log-periodogram sebagai variabel tak bebasnya.

ABSTRACT
A time series is said to be a long term memory process if each observations still has a dependency. Long term memory processes can not be modeled with AR, MA, ARMA, and ARIMA general models, because the correlations between remote observations of long term memory processes of can not be ignored. Granger Joyeux 1981 developed an Autoregressive Fractionally Integrated Moving Average ARFIMA model for modeling time series in the presence of long memory with fractional differencing d parameters that are real value. So, the model involve all observational data, which means the correlation of any observations that are far apart by time is not ignored . For modeling a time series with the ARFIMA model, we have to determine the long term memory process by rescaled range analysis. This analysis is applied by partitioning the time series into several sub periods and considering the correlations between partitioned sub periods. From the analysis, Hurst exponents H are obtained which illustrate the time series characteristics. Long term memory process occurs when . In the ARFIMA model an estimation process is performed to determine the exact fractional differencing parameter values of data to model the long term memory process in the data. A data is said to be stationary and long term memory if . The estimation of fractional differencing parameter use the Geweke Porter Hudak GPH method. This method is implemented by forming spectral functions of the ARFIMA model into a spectral regression equation with log periodogram as the dependent variable. "
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simarmata, Desy Magdalena
"Runtun waktu bernilai bilangan bulat nonnegatif berkembang pada banyak penerapan. Model runtun waktu Integer-valued Autoregressive dengan order 1 (INAR(1)) dikonstruksi menggunakan binomial thinning operator untuk memodelkan runtun waktu bernilai bilangan bulat nonnegatif. Model runtun waktu INAR(1) bergantung satu periode dari proses sebelumnya. Parameter model dapat diestimasi menggunakan conditional least squares (CLS). INAR(1) memiliki spesifikasi mengikuti model Autoregressive dengan order 1 (AR(1)). Peramalan INAR(1) menggunakan metode peramalan nilai tengah atau dengan metode peramalan Bayes. Metode peramalan nilai tengah menghitung secara langsung bilangan bulat yang membuat fungsi kepadatan kumulatif lebih besar sama dengan 0.5. Metode peramalan Bayes meramalkan nilai untuk h periode ke depan dengan membangkitkan barisan parameter model dan parameter suku pembaharuan menggunakan Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), kemudian dengan mengambil sampel u pada distribusi Uniform(0,1), akan dicari bilangan bulat terkecil yang membuat fungsi kepadatan kumulatif melebihi u. Model runtun waktu INAR(1) diaplikasikan pada jumlah kasus polio di Amerika Serikat mulai Januari 1970 sampai Desember 1983 per bulan.

Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued Autoregressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR(1) is depend on one period from the process before. Parameter of the model can be estimated by conditional least squares (CLS). Specification of INAR(1) is following the specification of AR(1). Forecasting in INAR(1) uses forecasting methodology or Bayes forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (cdf) until s is more than or equal to 0.5. Bayes forecasting methodology forecasts h step ahead by generate the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer where is more than or equal than u. u is a value taken from the Uniform (0,1) distribution. INAR(1) is applied on polio case in United States from January 1970 until December 1983 monthly.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S65058
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achdalena
"Tulisan ini membahas metode peramalan dengan pendekatan model runtun waktu Box-Jenkins yang merupakan proses pengembangan dari kombinasi proses Autofegresive (AR) dan proses Moving Average (MA) untuk runtun waktu tidak stasioner menjadi proses Autoregresive Integrated Moving Average (ARIMA). Pembahasan dimulai dengan unsur-unsur yang merupakan konsep analisa runtun waktu Box-Jenkins yaitu : Analisa runtun waktu stasioner dan tidak stasioner, Fungsi Autokovariansi, Fungsi Autokorelasi, Fungsi Autokorelasi parsial, Operator Back—Shift, dan Operator Diferensi. Dilanjutkan dengan menerangkan langkah-langkah penentuan model peramalan dengan metode runtun waktu Box-Jenkins yaitu : Identifikasi model, Estimasi parameter, dan Verifikasi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1992
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Listiariati
"Tugas akhir ini membahas metode runtun waktu Box-Jenkins untuk data musiman. Metode ini merupakan salah satu metode peramalaan di mana variabel bebas dan variabel tak bebasnya hanya berdasarkan waktu dan tidak tergantung pada variabel lain yang mempengaruhinya. Dengan metode ini, secara iterasi akan dicari model peramalan terbaik dan suatu data yang tersedia melalui tahap identifikasi, estimasi dan diagnostic cheking. Dari model terbaik, dapat diramalkan keadaan data untuk beberapa waktu mendatang."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1993
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Martin Nathaniel
"Indeks Harga Saham Gabungan (IHSG) merupakan indeks saham yang biasanya digunakan investor untuk melihat kondisi pasar saham. IHSG merupakan data yang berjenis runtun waktu. Peramalan yang akurat pada IHSG dapat membantu investor meminimalisir risiko. Salah satu model runtun waktu yang sering digunakan adalah model Autoregressive Integrated Moving Average (ARIMA) dimana model ini mengasumsikan bahwa runtun masa kini memiliki hubungan linier dengan runtun historisnya. Jika terdapat pola nonlinier pada data runtun waktu, diperlukan model lain yang dapat mengakomodir pola nonlinier tersebut seperti model Recurrent Neural Network (RNN). Namun, bisa saja sebuah runtun waktu memiliki pola linier dan nonlinier sehingga dikembangkan sebuah model hybrid ARIMA-RNN. Data runtun waktu yang digunakan pada model hybrid ARIMA-RNN direpresentasikan sebagai penjumlahan dari komponen linear dan nonlinier. Ketika dijumpai runtun waktu yang kompleks, model hybrid ARIMA-RNN tidak mampu mendekomposisi data sebagai komponen linier dan nonlinier. Kompleksitas suatu runtun waktu dapat ditentukan dengan menggunakan Sample Entropy (SE). Meramalkan runtun waktu yang kompleks dengan model hybrid ARIMA-RNN dapat mengakibatkan penurunan performa peramalan. Untuk meningkatkan performa model hybrid ARIMA-RNN, diperkenalkan metode dekomposisi (filter) untuk mengurangi kompleksitas dari runtun waktu. Penelitian ini mengonstruksi model hybrid ARIMA-RNN dengan filter Empirical Mode Decomposition (EMD). Konstruksi model hybrid ARIMA-RNN diterapkan pada data indeks penutupan harian IHSG dari tanggal 1 Januari 2016 hingga 31 Desember 2019. Filter EMD pada data tersebut menghasilkan 6 IMF (Intrinsic Mode Function) dan residual yang kompleksitasnya bervariasi. Berdasarkan perhitungan menggunakan
Sample Entropy (SE) didapat IMF1 hingga IMF5 adalah runtun kompleksitas tinggi sedangkan IMF6 dan residual adalah runtun kompleksitas rendah. Runtun kompleksitas tinggi dan kompleksitas rendah selanjutnya masing-masing dimodelkan dengan RNN dan
ARIMA. Hasil peramalan akhir pada model hybrid ARIMA-RNN dengan filter EMD memberikan nilai RMSE sebesar 35,5702. Nilai RMSE yang didapat lebih kecil dibandingkan nilai RMSE pada model ARIMA, model RNN, dan model hybrid ARIMARNN. Hasil penelitian menunjukkan bahwa model hybrid ARIMA-RNN dengan filter EMD memberikan performa peramalan terbaik pada ramalan IHSG dan juga penggunaan filter EMD memberikan peningkatan performa peramalan pada model hybrid ARIMARNN.

Indonesia Composite Index (IDX Composite) is a stock index that is usually used by investors to see stock market conditions. Accurate forecasting on the IDX composite, which is time series data, may assist investors in reducing risk. Autoregressive Integrated Moving Average (ARIMA) model, which implies a linear relationship between the current series and its historical series, is one of the time series models that is frequently used. Other model, such as the Recurrent Neural Network (RNN) model, is required if the time series data contain a nonlinear pattern. A hybrid ARIMA-RNN model was developed since it is possible for a time series that have both a linear and nonlinear pattern. The sum of the linear and nonlinear components is used to represent the time series data in the ARIMA-RNN hybrid model. The ARIMA-RNN hybrid model is unable to separate the data into linear and nonlinear components when a complex time series is present. The complexity of a time series can be determined by using Sample Entropy (SE). The ARIMA-RNN hybrid model's forecasting performance may suffer when forecasting complex time series. To improve the performance of the hybrid ARIMA-RNN model, a decomposition (filter) method is introduced to reduce complexity and deal with nonstationary and nonlinear time series. This research constructs a hybrid ARIMA-RNN model with the Empirical Mode Decomposition (EMD) filter. The construction of the hybrid ARIMA-RNN model is applied to the daily closing of IDX composite from 1 January 2016 to 31 December 2019. The EMD filter on the data produces 6 IMFs and a residual with varying complexity. Based on calculations using Sample Entropy (SE), IMF1 to IMF5 are high complexity time series, while IMF6 and the residual are low complexity time series. The high and low complexity time series are then modeled with RNN and ARIMA, respectively. The final forecasting result on the hybrid ARIMA-RNN model with the EMD filter gives an RMSE value of 35.5702. This RMSE value is smaller than the RMSE values of the ARIMA model, the RNN model, and the hybrid ARIMARNN model. The results show that the hybrid ARIMA-RNN model with the EMD filter provides the best forecasting performance for the IDX composite forecast and also the use of the EMD filter improves the forecasting performance of the hybrid ARIMA-RNN model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Karyoko
"Runtun waktu adalah salah satu data yang paling umum dan banyak dijumpai di kehidupan sehari-hari. Runtun waktu dianalisis dengan dua tujuan utama, yaitu untuk memodelkan mekanisme stokastik dari runtun waktu tersebut dan untuk melakukan peramalan. Untuk keperluan dua tujuan tersebut, banyak model runtun waktu yang telah dikembangkan, salah satunya adalah model autoregressive moving average (ARMA). Model ARMA adalah model runtun waktu univariat yang cukup populer dan umum digunakan saat ini. Seiring berjalannya waktu, mulai dikembangkan model runtun waktu multivariat, yang dapat memodelkan runtun waktu dengan dua atau lebih variabel. Meng- gunakan model runtun waktu multivariat untuk memodelkan dua atau lebih variabel tentu lebih efektif dibandingkan memodelkannya satu per satu menggunakan model univariat. Selain itu, model runtun waktu multivariat juga dapat menjelaskan hubungan dinamis antarvariabel yang saling terkait. Dalam skripsi ini, akan dijelaskan versi multivariat dari model ARMA, yaitu model vector autoregressive moving average (VARMA), mulai dari karakteristiknya, spesifikasi model, penaksiran parameter, hingga melakukan pera- malan. Penaksiran parameter akan dilakukan dengan menggunakan metode conditional maximum likelihood. Model VARMA ini kemudian akan digunakan untuk melakukan peramalan dua variabel yang cukup berpengaruh dalam ekonomi makro, yaitu data harian indeks harga saham gabungan (IHSG) dan kurs mata uang rupiah terhadap dolar Amerika Serikat. Data tersebut juga akan dimodelkan menggunakan model ARMA(p,q) dan VAR(p). Model yang digunakan adalah model ARIMA(0,1,0) untuk data IHSG, model ARIMA(0,1,2) untuk data kurs rupiah, model VARI(3,1) dan model VARIMA(1,1,1). Menggunakan indikator mean absolute percentage error (MAPE), didapatkan hasil bahwa model VARI(3,1) memberikan hasil peramalan yang paling akurat.

Time series is one of the most common data and is often found in everyday life. The purpose of time series analysis is generally twofold: to understand or model the stochastic mechanism that gives rise to an observed series and to predict or forecast the future values of a series based on the history of that series and, possibly, other related series or factors. For the purposes of these two objectives, many time series models have been developed, the most popular one is autoregressive moving average (ARMA) model. The ARMA model is a univariate time series model that is quite popular and commonly used today. Over time, multivariate time series models have been developed, which can model time series with two or more variables. Using a multivariate time series model to model two or more variables is certainly more effective than modeling them one by one using a univariate model. In addition, the multivariate time series model can also explain the dynamic relationship between interrelated variables. In this undergraduate thesis, we will explain the multivariate version of the ARMA model, the vector autoregressive moving average (VARMA) model, starting from its characteristics, model specifications, param- eter estimation, to forecasting. Parameter estimation will be done using the conditional maximum likelihood method. Then, this VARMA model will be used to forecast two maroeconomics indicators: daily data of Indonesia Composite Index and the USD-IDR exchange rate. The data will also be modeled using the ARMA(p,q) and VAR(p) models. In chapter 4, the models used are ARIMA(0,1,0) model for Indonesia Composite Index data, ARIMA(0,1,2) model for USD-IDR exchange rate data, VARI(3,1) model and VARIMA(1,1,1) model. Using the mean absolute percentage error (MAPE) indicator, the results show that VARI(3,1) model provides the most accurate forecasting results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gregorius Arvianto
"Pemodelan runtun waktu banyak digunakan dalam berbagai bidang seperti keuangan, kesehatan, dan asuransi. Model runtun waktu yang sering digunakan adalah model runtun waktu kontinu. Akan tetapi di dunia nyata, diperlukan model runtun waktu yang bisa memodelkan data diskrit. Model INAR(1) adalah salah satu model runtun waktu yang bisa menangani data diskrit dengan asumsi inovasi atau error berdistribusi Poisson. Namun, distribusi Poisson mempunyai mean yang sama dengan variansinya sehingga distribusi Poisson memiliki asumsi equidispersi. Hal ini membatasi fleksibilitas model runtun waktu yang dapat dikonstruksi untuk data diskrit karena bisa terjadi overdispersi. Dalam artikel ini dikonstruksi sebuah model yang dapat mengatasi masalah overdispersi, yaitu model BL-INAR (1), yang merupakan model INAR(1) dengan inovasi yang berdistribusi Bell serta sifat dari model BL-INAR(1). Distribusi Bell adalah distribusi yang menggunakan satu parameter dengan basis ekspansi deret dari bilangan Bell. Parameter model BL-INAR(1) diestimasi menggunakan metode Conditional Least Squares. Model BL-INAR(1) selanjutnya diimplementasikan pada data mogok kerja di Amerika Serikat.

Time series models are used frequently in other field such as finance, medicine, and insurance. Models that were often used for time series are continuous time series models. Nonetheless, time series models that can handle discrete data are also needed. INAR(1) is one example of time series models that is able to deal with discrete data and its innovation are using Poisson distribution. However, Poisson distribution has a mean of same value with its variance which means Poisson distribution assumed equidispersion. This assumption limits the flexibility of time series models that can be built because overdispersion happen often in time series. In this paper, we will analyse a model that will solve overdispersion, BL-INAR(1)model which is an INAR(1) model with Bell inovations. Bell distribution is a distribution that use one parameter with the basis of series expansion of Bell numbers. Parameters of BL-INAR(1) model will be estimated using Conditional Least Squares. As an example, BL-INAR(1) model will be tested using strikes data in United States."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deni
"Runtun waktu adalah sekumpulan pengamatan kuantitatif dari sebuah kejadian yang diambil berturut-turut dengan periode yang sama. Dalam banyak penerapan, diperlukan runtun waktu dengan peubah acak diskrit yang dapat menangani pengamatan berupa count data. Salah satu model runtun waktu yang menangani count data adalah model runtun waktu Integer-valued Autoregressive order satu atau disebut INAR(1). Model ini dibangun dengan binomial thinning operator yang mengatasi masalah multiplikasi skalar dengan menerapkan operasi probabilisitik. Model INAR(1) yang umum memiliki suku pembaharuan berdistribusi Poisson dan memiliki asumsi equidispersi dimana variansi sama dengan mean pada count datanya. Akan tetapi banyak keadaan count data yang memiliki variansi yang lebih besar daripada mean yang disebut overdispersi. Salah satu penyebab overdispersi adalah banyaknya nilai nol yang berlebih pada count data. Sehingga, penggunaan model dengan asumsi equidispersi dapat mengakibatkan estimasi parameter yang kurang tepat dan hasil prediksi yang kurang valid. Oleh karena itu, salah satu model runtun waktu yang dapat menangani kasus overdispersi, yaitu model INAR(1) dengan suku pembaharuan berdistribusi Geometrik atau disebut juga INARG(1). Dalam penelitian ini, pertama dibahas mengenai binomial thinning operator, indeks dispersi dan properti pada model INARG(1). Lalu, penaksiran parameter model dilakukan menggunakan metode conditional least square. Selanjutnya, model yang didapat digunakan untuk mencari nilai ramalan pada periode selanjutnya menggunakan metode peramalan nilai tengah. Model runtun waktu INARG(1) ini diaplikasikan pada data jumlah kejahatan seksual yang dilaporkan terjadi di 21st police car beat street in Pittsburgh setiap bulannya, dari Januari 1990 hingga Desember 2001.

Time series is a set of quantitative observations of an event taken consecutively over the same period. In many applications, a time series with discrete random variables is needed that can handle observations in the form of count data. One of the time series model that handles count data is the first-order integer-valued Autoregressive time series model, or called INAR(1). This model is built with a binomial thinning operator that overcomes scalar multiplication problems by applying probabilistic operations. INAR(1) model has a Poisson distribution innovations, and the model assumes equidispersion where the variance is equal to the mean in the data count. However, in many situations, the data count has a more significant variance than the mean and it called overdispersion. One of the causes of overdispersion is the excessive number of zeros in the count data. Thus, the use of the equidispersion model can lead to inaccurate parameter estimates and invalid prediction results. Therefore, one of the time series model discussed used INAR(1) with geometric innovations or called INARG(1), where the time series model is suitable for modeling overdispersion cases. In this research, we discuss about binomial thinning operator, also the dispersion and property in INARG(1) model. Then, the model parameter estimates were determined using the Conditional Least Square method. Besides, the model is used to find the predicted value for the next period. The forecasting method in INARG(1) uses median forecasting by calculating the conditional probability of each possible nonnegative integer value. The INARG(1) time series model is applied to data on the number of reported sexual crimes occurring at the 21st police car beat street in Pittsburgh each month, from January 1990 to December 2001."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>