Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 68917 dokumen yang sesuai dengan query
cover
Ely Sudarsono
"Indonesia merupakan salah satu negara dengan penduduk terbanyak yang mengalami kebutaan yang disebabkan oleh katarak sebesar 77,7 %. Pendeteksian terhadap pasien katarak dapat dilakukan menggunakan citra fundus dengan metode komputasi. Salah satu metode komputasi populer dalam klasifikasi citra fundus adalah deep learning yang merupakan salah satu pendekatan machine learning. Pada tesis ini, model convolutional neural network (CNN) yang digunakan adalah arsitektur AlexNet dengan Lookahead-diffGrad optimizer. Data yang digunakan dalam penelitian ini diambil dari situs Kaggle yang berisi citra fundus katarak. Selanjutnya, dilakukan tahap pra-pengolahan pada citra seperti menerapkan resize dan menerapkan normalisasi agar semua citra dapat diinput ke dalam model dengan ukuran yang sama serta meningkatkan kinerja model. Hasil penelitian ini menunjukkan CNN dengan Lookahead-diffGrad optimizer pada dataset citra retina katarak dapat mengklasifikasikan data menjadi dua kelas, yaitu normal dan katarak, sehingga dapat membantu untuk mendiagnosis penyakit tersebut dengan baik. Selain itu, hasil terbaik juga diperoleh oleh CNN dengan Lookahead-diffGrad optimizer berdasarkan nilai loss sebesar 0,0010 dan akurasi 100 % dibandingkan berbagai optimizer lainnya untuk mengklasifikasikan dataset citra retina katarak.


Indonesia is one of the countries with the most people experiencing blindness due to cataracts at up to 77.7% of the population. Detection of cataract patients can be done using fundus images with computational methods. One of the popular computational methods in the classification of fundus images is deep learning, which is one of machine learning approaches. In this thesis, the convolutional neural network (CNN) model used is the AlexNet architecture with Lookahead-diffGrad optimizer. The data used in this study were taken from the Kaggle website which contains the images of cataract fundus. Furthermore, the pre-processing stage of the image is carried out such as applying resizing and applying normalization so that all images can be inputted into the model with the same size and improve the performance of the model. The results of this study indicate that CNN using the Lookahead-diffGrad optimizer on the retinal cataract image dataset can classify the data into two classes, namely normal and cataracts, so that it can help diagnose the disease properly. In addition, the best results were obtained by CNN with the Lookahead-diffGrad optimizer based on a loss value of 0.0010 and 100% accuracy compared to other optimizers for classifying the retinal cataract image dataset."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mas Andam Syarifah
"Katarak menjadi penyebab kebutaan tertinggi di Indonesia. Dilaporkan oleh Kementrian kesehatan RI bahwa hasil survey yang dilakukan terhadap penduduk dibeberapa kota besar di Indonesia sebanyak 3% mengalami kebutaan, dan 81% dari nilai tersebut diakibatkan oleh katarak. Cara yang paling ampuh dalam mengatasi katarak ialah operasi dan perawatan setelahnya. Namun, diperlukan biaya 70 juta rupiah untuk operasi satu mata. Salah satu cara yang dihimbau ialah dengan mendeteksi dini pada kelainan mata. Pemeriksaan dilakukan oleh seorang spesialis mata yaitu Ophtalmology, dengan menggunakan bantuan fundus image mata dapat merepresentasikan keadaan pasien. Oleh karena itu diperlukan cara yang mampu mendeteksi katarak secara otomatis. Proses pembelajaran mesin menjadi cara yang banyak digunakan dalam menyelesaikan berbagai masalah, seperti masalah supervised atau masalah unsupervised. Untuk mengklasifikasi pasien katarak atau normal, dapat dibantu dengan metode Convolutional Neural Network (CNN) dengan model arsitektur VGG16 yang merupakan metode pembelajaran dengan algoritma deep learning biasa digunakan sebagai metode penyelesaian masalah gambar. Fundus image mata akan diekstrak menjadi fitur map yang akan menjadi ciri dari data. Kemudian setiap fitur map diolah melalui lapisan lainnya. Setiap lapisan berisikan parameter yang perlu dioptimasi agar proses pembelajaran data menjadi mudah dan efektif. Oleh karena itu diperlukan metode optimasi yang dapat mencari parameter terbaik yang dapat meminimumkan fungsi loss. Pada penelitian ini, dibangun metode optimasi RAdam berbasis Lookahead yang mampu mempercepat proses komputasi dan mempertahankan stabilitas dari learning rate. Dari hasil eksperimen pengklasifikasian fundus image mata katarak dan mata normal menggunakan model CNN dengan arsitektur VGG16 dan optimasi Lookahead-RAdam mendapatkan nilai loss 0,00608, akurasi 97,5% dan waktu lama proses 2388,081 detik.

Cataracts are the leading cause of blindness in Indonesia. It was reported by the Ministry of Health of the Republic of Indonesia that the results of a survey conducted on the population of several big cities in Indonesia were 3% blind, and 81% of this value was caused by cataracts. The most effective way to deal with cataracts is surgery and aftercare. However, it costs 70 million rupiah for one eye surgery. One of the recommended ways is for early detection of eye disorders. The examination is carried out by eye specialists, namely Ophthalmologists, using the help of a fundus image of the eye to represent the patient's condition. However, specialists in Indonesia are not evenly distributed throughout the country. Therefore, we need another way that can detect cataracts automatically. The machine learning approach is an approach that is widely used to solve various problems, such as supervised problems or unsupervised problems. There are many methods to help classify cataract or normal patients, one of which is by the Convolutional Neural Network (CNN) with the VGG16 architectural model which is a learning method with deep learning algorithms commonly used as a method of solving image problems. The Fundus image of the eye will be extracted into a feature map that will characterize the data. Then, each feature map is processed through other layers. Each layer contains parameters that need to be optimized so that the data learning process becomes easy and effective. Therefore, we need an optimization method that can find the best parameters that can minimize the loss function. In this study, constructed the RAdam optimization based Lookahead which is able to accelerate the computation process but also maintain the stability of the learning rate. From the experimental results of the classification of the fundus images of cataract and normal eye using the CNN model with the VGG16 architecture and the optimization Lookahead-RAdam, the value of loss is 0.00608, accuracy of 97.5% and a processing time of 2388.081 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Amin Nur Ambarwati
"Katarak merupakan keadaan di mana lensa mata yang biasanya terlihat jernih dan bening menjadi keruh yang disebabkan oleh sebuah kumpulan protein yang terletak di depan retina. Hal ini menyebabkan jaringan lensa mata mulai rusak dan menggumpal, sehingga berkurangnya cahaya yang masuk ke retina dan pandangan akan terlihat buram, kurang berwarna, serta dapat menyebabkan kebutaan yang permanen. Mendiagnosis penyakit katarak pada seseorang dapat menggunakan proses pemeriksaan citra fundus, hasil dari citra fundus kemudian dideteksi menggunakan salah satu pendekatan deep learning. Dalam penelitian ini, digunakan pendekatan deep learning yaitu metode Convolutional Neural Networks (CNN) classic dan CNN LeNet-5 pada fungsi aktivasi ReLU dan Mish dalam mendeteksi katarak. Data yang digunakan dalam penelitian ini yaitu data ODR yang merupakan online database yang berisi citra fundus dengan bervariasi ukuran citra. Dataset kemudian memasuki tahap preprocessing dalam meningkatkan performa model seperti mengkonversikan citra RGB menjadi grayscale dari intensitas green channel, kemudian menerapkan proses binerisasi citra menggunakan thresholding untuk menyesuaikan target atau label berdasarkan diagnosis dokter dan mengetahui tingkat kerusakan bagian mata dalam mendeteksi mata mengalami katarak atau tidak. Hasil performa pada penelitian ini menunjukkan bahwa model CNN LeNet-5 dengan fungsi aktivasi Mish lebih baik dibandingkan model CNN clasic dengan fungsi aktivasi Mish dalam mendeteksi penyakit katarak. Hasil performa keseluruhan yang optimal pada penelitian ini berdasarkan nilai accuracy, precision, recall, dan F1- score secara berturutturut yaitu 87%, 87,5%, 89,3%, 86,7%, dengan running time yang dibutuhkan pada training 95,67 detik dan testing 0,1859 detik.

Cataract is a condition in which the normally clear lens of the eye becomes cloudy due to a collection of proteins located in front of the retina. This causes the tissue of the eye's lens to begin to break down and clot, resulting in less light entering the retina and blurred vision, lack of color, and can lead to permanent blindness. Diagnosing cataracts in a person can use the process of examining the fundus image, the results of the fundus image are then detected using one of the deep learning approaches. In this study, a deep learning approach was used, namely Convolutional Neural Networks (CNN) classic and CNN LeNet-5 method on the ReLU and Mish activation functions in detecting cataracts. The data used in this study is ODR data which is an online database containing fundus images with varying image sizes. The dataset then enters the preprocessing stage to improve model performance, such as converting the RGB image to grayscale from the intensity of the green channel, then applying a binary image process using thresholding to adjust the target or label based on the doctor's diagnosis and determine the level of eye damage to detect cataracts or not. The performance results in this study indicate that the CNN LeNet- 5 model with Mish activation function is better than the CNN classic model with Mish activation function in detecting cataract disease. Optimal overall performance results in this study are based on the values of accuracy, precision, recall, and F1-score, respectively, namely 87%, 87,5%, 89,3%, 86,7%, with the running time required for training 95,67 seconds and testing 0,1859 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elkania Samanta Nagani
"Penyakit mata perlu pendeteksian dan diagnosis yang tepat mengingat peran organ mata yang penting dalam kehidupan. Salah satu cara mendeteksi penyakit mata yang menyebabkan kebutaan adalah melalui ophthalmoscopy, dengan hasil pemeriksaan berupa citra fundus. Penelitian ini menggunakan metode Convolution Neural Network (CNN) dengan arsitektur CO-ResNet. Data yang digunakan dalam penelitian ini diambil dari online database yang berisi data multi-kelas penyakit mata. Preprocessing crop center dan resize digunakan dalam penelitian ini agar ukuran data citra dapat dijadikan input model. Fungsi optimasi untuk meminimalkan loss function ketika melatih model yang digunakan dalam penelitian ini adalah fungsi Adam dengan setting hyperparameter learning rate, epoch, 𝛽1 , dan 𝛽2 . Fungsi loss yang digunakan untuk masalah pengklasifikasian multikelas dalam penelitian ini adalah categorical cross entropy. Hasil penelitian menunjukan nilai yang diperoleh dengan training loss terkecil sebesar 0,4066 dan validation loss terkecil sebesar 0,4950. Sementara itu, nilai training accuracy terbaik sebesar 87% dan validation accuracy terbaik sebesar 79%. Setelah melalui proses training, dilakukan proses testing untuk mengevaluasi kinerja model. Hasil testing terbaik yang didapat dengan nilai testing accuracy sebesar 75,25%, precision sebesar 75,6%, recall sebesar 75,4%, dan F1-score sebesar 75,4%. Secara keseluruhan, metode CO- ResNet bekerja dengan cukup baik dalam mengklasifikasi dan mendeteksi penyakit mata.

Eye diseases need proper detection and diagnosis considering the important role of eye organs in life. One way to detect eye diseases that cause blindness is through ophthalmoscopy, with the results of the examination being an image of the fundus. This research uses the Convolution Neural Network (CNN) method with CO-ResNet architecture. The data used in this study were taken from an online database containing data on multi-class eye diseases. Preprocessing crop center and resize are used in this study so that the size of the image data can be used as model input. The optimization function to minimize the loss function when training the model used in this study is the Adam function with the hyperparameters setting are learning rate, epoch, 𝛽1, and 𝛽2. The loss function used for the multiclass classification problem in this study is categorical cross entropy. The results showed that the value obtained with the smallest training loss was 0.4066 and the smallest validation loss was 0.4950. Meanwhile, the best training accuracy value is 87% and the best validation accuracy is 79%. After going through the training process, a testing process is carried out to evaluate the performance of the model. The best testing results were obtained with testing accuracy values of 75.25%, precision of 75.6%, recall of 75.4%, and F1-score of 75.4%. Overall, the CO-ResNet method works quite well in classifying and detecting eye diseases."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alva Andhika Sa`Id
"Degenerasi makula atau Age-Related Macular Degeneration (AMD) adalah penyakit mata yang menyebabkan kebutaan pada bagian tengah mata yang merusak kinerja retina pada bagian makula yang berfungsi untuk mempertajam penglihatan untuk beberapa aktivitas, seperti membaca, menulis, dan mengenali wajah seseorang. Penderita AMD akan mengalami penglihatan yang buram, distorsi penglihatan, atau bahkan kehilangan penglihatannya. Dalam mendiagnosis AMD dapat digunakan oftalmoskopi, beberapa metodenya yaitu Ocular Coherence Tomography (OCT) dan fotografi fundus sudah banyak dilakukan untuk membantu diagnosis AMD. Namun, diagnosis AMD dengan mengandalkan ahli dapat berlangsung lama dan memungkinkan terjadinya error subjektivitas oleh pendiagnosis. Diagnosis awal diperlukan untuk mendeteksi adanya kemungkinan terjadinya AMD pada tahap awal yang gejalanya tidak dirasakan oleh penderita. Pendekatan diagnosis AMD salah satunya dapat dilakukan dengan pendekatan machine learning. Machine learning sudah berperan besar dalam sektor medis membantu permasalahan klasifikasi diagnosis penyakit seperti metode Support Vector Machines (SVM) dan Twin Support Vector Machines (TSVM). Salah satu cabang machine learning yang sangat baik dalam klasifikasi penyakit lewat gambar adalah deep learning. Metode yang digunakan deep learning untuk permasalahan klasifikasi data citra salah satunya adalah Convolutional Neural Network (CNN). Pada penelitian ini, akan digunakan metode Convolutional Neural Network – Twin Support Vector Machines (CNN-TSVM) untuk mengklasifikasi penyakit AMD menggunakan data citra fundus yang diperoleh dari Ocular Disease Recognition (ODIR-5K) 2019, dengan 227 data citra fundus normal dan 227 data citra fundus penyakit AMD. Evaluasi kinerja metode CNN-TSVM menggunakan teknik hold-out validation dengan membagi data latih dan data uji dengan proporsi 10% - 90% dan metrik akurasi, presisi, dan recall. Hasil kinerjanya dibandingkan dengan metode CNN dan Convolutional Neural Network – Support Vector Machines (CNN-SVM). Hasil yang diperoleh menunjukkan CNN-TSVM menggunakan kernel RBF memberikan akurasi dan recall terbaik, sementara CNN-TSVM menggunakan kernel polinomial memberikan presisi terbaik.

Age-related Macular Degeneration (AMD) is an eye disease that causes blindness in the middle of the eye that impairs retinal performance in the macula that serves to sharpen vision for some activities, such as reading, writing, and recognizing a person's face. AMD sufferers will experience blurred vision, vision distortion, or even loss of vision. In AMD diagnosed, ophthalmology can be used, several methods of ophthalmology including Ocular Coherence Tomography (OCT) and fundus photography have been widely done to help the diagnosis of AMD. However, AMD diagnosis by relying on experts can be long-lasting and allow subjective errors to occur in the diagnosis. An initial diagnosis is needed to detect the possibility of AMD occurrence at an early stage where symptoms are not felt by the sufferer. One of AMD diagnosis approach can be done with machine learning approach as one of artificial intelligence methods. Machine learning method has played a major role in the medical sector helping classification problems of disease diagnosis such as Support Vector Machines (SVM) and Twin Support Vector Machines (TSVM). One of the excellent branches of machine learning in the classification of diseases through images is deep learning. The suitable method used by deep learning for image data classification problems is convolutional neural network (CNN). In this study, Convolutional Neural Network–Twin Support Vector Machines (CNN-TSVM) method will be used to classify AMD diseases using fundus image data obtained from Ocular Disease Recognition (ODIR-5K) 2019, with 227 normal fundus image data and 227 fundus image data of AMD disease. Performance evaluation of CNN-TSVM method using hold-out validation techniques by dividing training data and testing data by a proportion of 10% - 90% and metrics of accuracy, precision, and recall. The performance results will be compared to CNN and Convolutional Neural Network – Support Vector Machines (CNN-SVM). The results showed CNN-TSVM using RBF kernel provided the best accuracy and recall, while CNN-TSVM using polynomial kernel provided the best precision."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widi Nugroho
"Bayi prematur adalah bayi yang lahir dengan usia kehamilan kurang dari 37 minggu yang memiliki sistem saraf dan organ-organ yang belum sempurna sehingga lebih beresiko mengalami berbagai masalah kesehatan. Salah satu masalah kesehatan yang dapat terjadi adalah pada organ mata yang merupakan organ penting dalam perkembangan bayi. Retinopathy of Prematurity (ROP) merupakan salah satu penyakit mata yang terjadi pada bayi prematur yang disebabkan oleh pembentukan pembuluh darah retina yang tidak normal. Proses diagnosis yang dilakukan oleh dokter mata belum bisa mengatasi kenaikan jumlah kasus ROP, sehingga disini penulis menggunakan pendekatan deep learning untuk melakukan klasifikasi tingkat keparahan ROP pada citra fundus retina. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur ResNet50. Data yang digunakan pada penelitian ini merupakan data sekunder yang diperoleh dari online database Kaggle berupa 90 data citra fundus retina yang terbagi atas 38 citra bukan penderita ROP, 19 citra penderita ROP Stage 1, 22 citra penderita ROP Stage 2, dan 11 citra penderita ROP Stage 3. Pada tahap persiapan data, dilakukan perbaikan kontras citra menggunakan Contrast Limited Adaptive Histogram (CLAHE) dan image masking. Kemudian dilakukan resize citra menjadi ukuran 224×224. Data kemudian diaugmentasi menggunakan teknik flip horizontal dan rotation agar data menjadi lebih banyak yang kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 20% untuk data validation. Training model dilakukan menggunakan model dengan arsitektur ResNet50 dengan hyerparameter model yaitu batch size 64, learning rate 0.001, dan epoch sebanyak 30, fungsi optimasi Adam (Adaptive moment estimation), dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan berhasil memperoleh nilai rata-rata kinerja training model sebesar 99.714% dan 92.85% pada akurasi training dan akurasi validation-nya, selain itu diperoleh nilai 0.01864 dan 0.18434 pada loss training dan loss validation. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 97.352%, testing loss sebesar 0.0986374, dan AUROC sebesar 0.0955. Selain melakukan evaluasi kinerja, peneliti juga akan menggunakan GradCAM untuk menampilkan visualisasi ciri-ciri yang dianggap penting untuk nantinya membantu dokter dalam mengevaluasi ROP.

Premature infants are babies born with a gestational age of less than 37 weeks, and they have underdeveloped nervous systems and organs, making them more susceptible to various health issues. One of the health problems that can occur involves the eye, which plays a crucial role in the baby's development. Retinopathy of Prematurity (ROP) is one of the eye diseases that affects premature infants and is caused by abnormal blood vessel formation in the retina. The current diagnostic processes performed by ophthalmologists have not been effective in addressing the increase in ROP cases. Therefore, in this study, the author employs a deep learning approach to classify the severity of ROP in retinal fundus images. The deep learning method utilized is the Convolutional Neural Network (CNN) with the ResNet50 architecture. The research data consists of 90 retinal fundus images obtained from the online database Kaggle, comprising 38 images of non-ROP cases, 19 images of ROP Stage 1, 22 images of ROP Stage 2, and 11 images of ROP Stage 3. In the data preparation phase, the image contrast is enhanced using Contrast Limited Adaptive Histogram (CLAHE) and image masking techniques. Subsequently, the images are resized to 224×224 dimensions. Data augmentation is performed using horizontal flip and rotation techniques to increase the dataset, which is then split into 80% training data and 20% testing data. From the 80% training data, 20% is further allocated for validation data. The model is trained using the ResNet50 architecture with hyperparameters set to batch size 64, learning rate 0.001, and 30 epochs. The optimization function used is Adam (Adaptive Moment Estimation), and the loss function is categorical cross-entropy. The modeling process is repeated five times, and the average performance of the training model is achieved at 99.714% for training accuracy and 92.85% for validation accuracy, with training and validation losses of 0.01864 and 0.18434, respectively. As for the average performance of the testing model, the testing accuracy is 97.352%, the testing loss is 0.0986374, and the AUROC (Area Under the Receiver Operating Characteristic) is 0.0955. In addition to evaluating the model's performance, the researcher also employs GradCAM to visualize important features, which can assist doctors in evaluating ROP cases.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rezika Damayanti
"Jagung (Zea mays L.) merupakan salah satu tanaman serelia atau tanaman biji-bijian yang menjadi bahan pangan utama terpenting setelah padi dan gandum di dunia. Komoditas jagung dinilai sangat penting karena memiliki fungsi multiguna sebagai bahan pangan, bahan baku industri, bahan pakan ternak dan bahan bakar nabati. Seiring dengan kebutuhan jagung yang kian naik dari tahun ke tahunnya, kekurangan produksi dalam pasokan jagung global dan kenaikan harga input jagung menjadi hal yang harus diperhatikan karena memiliki dampak yang serius. Salah satu ancaman utama bagi produksi jagung adalah penyakit daun jagung yang disebabkan oleh jamur, beberapa diantaranya adalah Gray leaf spot, Northern leaf blight, dan Common rust. Gray leaf spot, Northern leaf blight, dan Common rust dapat menyebabkan hilangnya hasil panen sekitar 50%-70% di beberapa daerah penghasil jagung di dunia. Oleh karena itu, salah satu cara yang dapat dilakukan untuk mengurangi resiko kegagalan produksi jagung adalah mengambil langkah-langkah pencegahan dengan pendeteksian dini pada penyakit daun jagung melalui citra digital. Pada penelitian ini, digunakan pendekatan deep learning dengan metode Convolutional Neural Network (CNN) arsitektur ResNet-50 yang merupakan salah satu metode yang paling baik dalam mengolah citra digital. Data yang digunakan adalah Maize or Corn Dataset oleh Smaranjit Ghose dan diambil dari Kaggle yang merupakan online database. Setelah itu, dilakukan tahapan mengolah data citra dengan melakukan preprocessing data yang bertujuan agar meningkatkan akurasi seperti mengubah ukuran dan melakukan flip horizontal kemudian rotasi. Hasil penelitian menunjukkan bahwa Convolutional Neural Network ResNet-50 dengan menggunakan fungsi optimasi Adam dapat mendeteksi penyakit daun jagung dengan sangat baik. Hasil tersebut diperoleh dari 5 kali percobaan simulasi pada setiap skenario kasus yang menghasilkan rata-rata nilai training dan validation accuracy sebesar 98,68% dan 97,86%. Kemudian, rata-rata hasil accuracy testing, recall macro, recall micro, precision macro dan precision micro terbaik diperoleh dengan hasil masing-masing sebesar sebesar 97,49%, 97,13%, 97,53%, 96,69% dan 97,87%.

Maize (Zea Mays L.) is one of the cereal plants or grain crops that become an important food ingredient after rice and wheat in the world. Maize is also considered very important because it has a multi-purpose function as food, industrial raw materials, animal feed ingredients, and biofuels. Along with increasing demand for maize from year to year, lack of production for global maize supply and increase of maize price is one thing that needs more attention because it has a serious impact. One of the main threats to maize production is maize leaf disease that is caused by fungi, some of them are Gray leaf spot, Northern leaf blight, and Common rust. Gray leaf spot, Northern leaf blight, and Common rust can lead to reduced yields of about 50%-70% in some maize-producing areas. Therefore, one method that can be done to reduce the failure of maize production is taking preventive measures by detecting disease using digital images. This study uses deep learning methods by Convolutional Neural Network (CNN) ResNet-50 architecture, which is one of the best methods in processing digital images. The data used in this study is Maize or Corn Dataset by Smaranjit Ghose and taken from Kaggle which is an online database. After that, the stages of processing image data are carried out by preprocessing data to increase accuracies such as resizing and doing horizontal flips and rotations. The results showed that the Convolutional Neural Network ResNet-50 using the Adam optimization function could detect maize leaf disease very well. These results were obtained from 5 simulations experiments in each case scenario which resulted in an average value of training and validation accuracy of 98.68% and 97.86. Then, the average results of the best accuracy testing, recall macro, recall micro, precision macro, and precision micro were obtained with results of 97.49%, 97.13%, 97.53%, 96.69%, and 97,87%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardanareswari Chaerani
"Glaukoma adalah salah satu penyebab kebutaan terbanyak kedua di dunia yang disebabkan oleh tekanan yang meninggi pada bola mata. Dalam proses mendiagnosa glaukoma, dibutuhkan waktu yang lama dikarenakan tidak ada perubahan secara signifikan pada citra fundus. Pada penelitian ini, penulis menggunakan Convolutional Neural Network (CNN) untuk mengekstraksi fitur dan metode klasifikasi Deep Belief Network (DBN) dalam mengklasifikasi glaukoma pada data citra fundus. Hasil pada model CNN-DBN dibandingkan dengan metode ekstraksi fitur CNN dan klasifikasi Support Vector Machine (SVM) yang dinamakan model CNN-SVM. Arsitektur CNN yang digunakan pada penelitian ini adalah ResNet-50. Dataset yang digunakan dalam penelitian ini diperoleh dari 2 online database, yaitu cvblab dan kroy1809. Pada proses ekstraksi fitur, model dilatih dari fully connected layer pada ResNet-50. Kemudian, vektor fitur dari fully connected layer diklasifikasi menggunakan metode klasifikasi DBN dan SVM. Berdasarkan hasil simulasi, CNN-DBN memiliki hasil akurasi, precision, dan recall terbaik dibandingkan dengan metode CNN-SVM dan CNN dengan akurasi 96.46%, precision 95.86%, dan recall 98.05% pada pembagian dataset training dan testing 70:30.

Glaucoma is the second most common factor of blindness in the world caused by the increasing pressure on the eyeball. It takes a long time to diagnose glaucoma due no significant change in the fundus image. In this study, the author used the Convolutional Neural Network (CNN) to extract the features and the Deep Belief Network (DBN) classification method to classify glaucoma in fundus images. The results on the CNN-DBN model will be compared with to the CNN feature extaction method and the Support Vector Machine (SVM) classification method, named the CNN-SVM model. The CNN architecture used in this study is ResNet-50. The dataset used in this study are from 2 online database, cvblab and kroy1809. In the feature extraction process, the model is trained using the CNN method with the ResNet-50 architecture. Afterward, the feature vectors of the fully connected layer are classified using the DBN and SVM classification methods. Based on the simulation results, CNN-DBN has the best results than CNN-SVM and CNN method with the accuracy of 90%, precision of 95%, and recall of 92% with splitting data training and testing of 70:30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhry Arief Fabian
"Tanaman karet berperan sebagai komoditas penting di Indonesia karena menghasilkan karet alami yang memiliki banyak manfaat dan mampu bersaing di pasar internasional. Namun, sejak tahun 2017, produksi karet mengalami hambatan karena timbul serangan penyakit gugur daun baru yang berbeda dari penyakit terdahulu. Penyakit tersebut dapat menyebabkan gugur daun hingga 90% dan penurunan produksi lateks hingga 45%. Setelah ditelusuri, penyakit gugur daun baru ini disebabkan oleh patogen Pestalotiopsis sp. dan diberi nama penyakit gugur daun Pestalotiopsis. Sebagai penyakit baru, perlu dilakukan penelitian lebih lanjut untuk memonitor laju pertumbuhan penyakit ini. Salah satu penelitian ini adalah melakukan klasifikasi indeks atau level keparahan penyakit gugur daun Pestalotiopsis. Keparahan penyakit ini dapat dikelompokkan berdasarkan perubahan warna daun dan lesi khas yang timbul pada permukaan daun tanaman karet. Pada penelitian sebelumnya, pengukuran intensitas keparahan dilakukan dengan observasi secara langsung bercak gejala yang muncul pada daun atau pohon dalam jangka waktu tertentu. Pengamatan secara konvensional ini memerlukan tenaga yang banyak dan waktu yang cukup lama. Diperlukan suatu metode yang mampu melakukan klasifikasi level keparahan ini secara tepat dan cepat terhadap sampel daun yang berjumlah banyak. Saat ini, implementasi Artificial Intelligence (AI) melalui algoritma machine learning dapat menjadi solusi untuk menyelesaikan suatu permasalahan seperti klasifikasi multikelas secara otomatis dan efisien. Penelitian ini memanfaatkan salah satu teknik machine learning, yaitu artificial neural network berupa deep learning dengan arsitektur convolutional neural network (CNN). Dengan mempertimbangkan penelitian sebelumnya, maka penelitian ini mengajukan sebuah pengembangan dari CNN, yaitu arsitektur DenseNet121 sebagai metode untuk melakukan klasifikasi level keparahan penyakit gugur daun Pestalotiopsis menggunakan data citra daun karet. Klasifikasi level keparahan dibagi menjadi lima kelas, yaitu Level 0 (daun sehat atau tidak terinfeksi penyakit gugur daun Pestalotiopsis) dan Level 1-4 (menunjukkan tingkat keparahan penyakit gugur daun Pestalotiopsis). Pada Penelitian ini, digunakan 257 data citra daun karet yang dikumpulkan mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia ketika berkunjung ke Pusat Penelitian Karet Sembawa, Palembang pada tahun 2022. Data citra tersebut melalui preprocessing berupa crop dan resize agar dapat menjadi input yang diterima arsitektur.  Data dipisahkan menjadi data latih dan data uji dengan rasio 80:20. Model dilatih dengan pendekatan 5-fold cross validation sehingga pengujian dilakukan terhadap lima model berbeda. Berdasarkan simulasi, diperoleh rata-rata lima model berupa ccuracy sebesar 56,16% , precision sebesar 54,2% , recall sebesar 55,6%, skor F1 sebesar 51% , dan running time 3,110 detik.

Rubber plant is an essential commodity in Indonesia since natural rubbers from this plant are very beneficial and have high international market potential. Unfortunately, since 2017, a new leaf fall disease has caused massive decline of the rubber production. This disease leads to at most 90% leaf fall percentage and production decline as high as 45%. Subsequently, researchers found that this new leaf fall disease is caused by Pestalotiopsis sp., thus, the name of this disease is Pestalotiopsis leaf fall disease. Studies must be conducted to further investigate the growth and pattern of this new leaf fall disesase. One of these studies is to classify the intensity of the Pestalotiopsis leaf fall disease.The intensity can be measure by observing distinct symptoms and lesion frequency that would appear on the rubber plant’s leave surface. In earlier works, intensity are measured by conventionally taking notes of the symptomps that appear on the leaves or trees and these methods was done on timely basis. These traditional approaches takes a lot of time and requires a handful of people. Hence, there must be new methods to classify this disease’s intensity with less time and resource when the amount of leaf samples increase. Recent studies implement Artificial Intelligence (AI) by using machine learning to solve classification problems efficiently. This study takes a technique of machine learning, that is, deep learning convolutional neural network (CNN) architectures. By comparing previous researches, we propose the architecture DenseNet121 to implement CNN in multiclass classification problem by using leaf image data. The classification consists of five classes, which are the intensity of the Pestalotiopsis leaf fall disease from level 0 to level 4. Level 0 corresponds to healthy leaves or leaves with other diseases whereas Level 1-4 refer to leaves with the intensity of lesion and discoloration caused by Pestalotiopsis leaf fall disease. This study uses 257 image data that was taken by students of the Math and Science Faculty from Universitas Indonesia when they visited Rubber Research Center, Sembawa in 2022. The data is split into train and test data with 80:20 ratio. Models are trained with 5-fold cross validation approach so the that each model will be trained and tested towards 5 folds of data. Then, five different models are tested by evaluating their predictions to the test data. The result of this simulation shows the average performance from five models, they are an accuracy of 56,16%, a precision of 54,2%, a recall of 55,6%, an F1-score of 51% , and an average running time of 3,110 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahesa Oktareza
"Kanker kolorektal adalah kanker yang berkembang pada usus besar dan/atau rektum. Berdasarkan survei GLOBOCAN 2012, insidens kanker kolorektal di seluruh dunia menempati urutan ketiga dan menduduki peringkat keempat sebagai penyebab kematian. Dalam proses diagnosis kanker kolorektal, telah diterapkan pendekatan medis dengan digital rectal examination menggunakan colonoscopy untuk menilai keadaan tumor dan mobilitas tumor. Namun, seiring berkembangnya teknologi, para ilmuwan mencoba pendekatan lain untuk pendeteksian kanker kolorektal salah satunya menggunakan penggunaan artificial intelligence khususnya machine learning. Terdapat beberapa penelitian yang lalu mengenai pengaplikasian machine learning dalam kasus klasifikasi kanker kolorektal dengan berbagai model dan tingkat akurasi. Pada penelitian ini, penulis menggunakan pendekatan Convolutional Neural Network (CNN) dengan arsitektur You Only Look Once (YOLO) untuk mengklasifikasi kanker kolorektal tipe ganas dan jinak. Data yang digunakan pada penelitian ini adalah Lung and Colon Cancer Histopathological Image Dataset oleh Borkowski AA, dkk. dengan mengambil dataset kanker kolorektal yaitu 5000 kanker ganas dan 5000 kanker jinak. Model akan dibangun melalui data tersebut, yang dilatih menggunakan metode CNN dengan arsitektur YOLO. Data di split dengan perbandingan data latih dan data uji 70:30 dan 80:20. Kinerja model dievaluasi dengan nilai accuracy, recall, loss dan running time. Accuracy dan Recall yang didapatkan pada masing-masing split data sebesar 100% dengan running time 3 jam 7 menit 43 detik pada split data 70:30 dan 3 jam 30 menit 6 detik pada split data 80:20.

Colorectal cancer is cancer that develops in the colon and/or rectum. Based on the 2012 GLOBOCAN survey, the incidence of colorectal cancer worldwide ranks third and ranks fourth as a cause of death. In the process of diagnosing colorectal cancer, a medical approach has been applied with digital rectal examination using colonoscopy to assess the state and mobility of the tumor. However, as technology develops, scientists try other approaches to detect colorectal cancer, one of which is using artificial intelligence, especially machine learning. There have been several past studies regarding the application of machine learning in the case of colorectal cancer classification with various models and levels of accuracy. In this study, the authors used a Convolutional Neural Network (CNN) approach with You Only Look Once (YOLO) architecture to classify malignant and benign types of colorectal cancer. The data used in this study was the Lung and Colon Cancer Histopathological Image Dataset by Borkowski AA, et al. by taking the colorectal cancer dataset, namely 5000 malignant cancers and 5000 benign cancers. The model will be built using the data, which is trained using the CNN method with the YOLO architecture. The data is split with a comparison of training data and test data of 70:30 and 80:20. The performance of the model is evaluated with the values of accuracy, recall, loss and running time. Accuracy and Recall obtained in each data split is 100% with a running time of 3 hours 7 minutes 43 seconds on a 70:30 data split and 3 hours 30 minutes 6 seconds on an 80:20 data split."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>