Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21046 dokumen yang sesuai dengan query
cover
Josephine
"Salah satu metode yang digunakan untuk mendeteksi kadar kolesterol seseorang adalah dengan mengambil sejumlah darah untuk diuji. Namun, hal tersebut dapat membuat sejumlah orang merasa kurang nyaman. Oleh karena itu, metode pegukuran bersifat tidak merusak dibuat dan mengalami perkembangan yang pesat. Salah satu metode bersifat tidak merusak yang ditemukan adalah dengan menggunakan Iridologi. Fokus pada penelitian ini adalah perancangan sistem untuk memprediksi kelas kolesterol seseorang melalui citra iris. Kondisi kesehatan setiap organ dan jaringan pada tubuh dapat dilihat melalui iris. Hal tersebut dapat dimanfaatkan untuk memprediksi kelas kolesterol seseorang. Sistem yang dibuat terdiri dari instrument yang berfungsi untuk meng-akuisisi citra iris dan algoritma pengolahan citra yang berbasis ciri tekstur. Pemrosesan yang dilakukan pada citra iris adalah peningkatan kualitas dengan metode penyaringan Fast Fourier Transfor, dan mengubah citra menjadi keabuan, lokalisasi, normalisasi dan segmentasi 30% terluar dari citra iris. Metode ekstraksi ciri yang digunakan pada penelitian ini adalah Gray Level Co-occurance Matrix dengan jarak tetangga sebesar 45%, 65% dan 90%. Model klasifikasi terbaik dengan menggunakan MLP dapat mengklasifikasi kelas kolesterol tinggi dan kolesterol normal dengan K-fold cross validation dengan akurasi sebesar 86,67%, misclassification rate (MR) sebesar 13,33%, false positive rate (FPR) sebesar 9,09%, dan false negative rate (FNR) sebesar 25%.

One of the methods to detect the rate of cholesterol levels, is to extract a certain amount of blood from a subject’s body, which will then be tested. However, these practices has been deemed by a substantial amount of individuals or groups to be an uncomfortable procedure. These unpleasant reactions are the reason for the manufacturing and improvement of another measuring method, which is considerably less invasive. It is called Iridology, where the study or predictions of one’s cholesterol levels are based on one’s iris image. The method is developed further on an acquisition instrument and image processing algorithm, which are both based on an image texture factor. The pre-processing that are applied to the image are quality enhancement with an FFT filtering method and the transformation into a grayscale image, which are then localized, normalized, and segmented by 30% outlying the iris image. The extraction method applied in this study is the Gray Level Co-occurance Matrix with a neighbouring distance of 45%, 65%, and 90%. The Multilayer Perceptron Model is used to categorize different classes of both normal and high cholesterol levels with K-fold cross validation to produce an accuracy rate of 86,67%, misclassification rate (MR) of 13,33%, false positive rate (FPR) of 9,09%, and false negative rate (FNR) of 25%. These established rates proves that the alternative method is able to classifying an individual’s cholesterol levels in a less invasive manner."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tsuboi, Sakae
"Sebagai guru baru, Bu Guru Oishi ditugaskan mengajar di sebuah desa nelayan yang miskin. Di sana dia belajar memahami kehidupan sederhana dan kasih sayang yang ditunjukkan murid-muridnya. Sementara waktu berlalu, tahun-tahun yang bagai impian itu disapu oleh kenyataan hidup yang sangat memilukan. Perang memorak-porandakan semuanya, dan anak-anak ini beserta guru mereka mesti belajar menyesuaikan diri dengan perubahan zaman.
"
Jakarta: PT Gramedia, 2024
895.6 TSU d
Buku Teks  Universitas Indonesia Library
cover
Rashifa Khairani Setianegara
"Curah hujan mempunyai dampak yang signifikan terhadap berbagai sektor kehidupan dan lingkungan. Misalnya, curah hujan membantu meningkatkan produktivitas pertanian, menjamin cadangan pangan dan air. Selain itu, curah hujan juga mempengaruhi kekeringan dan siklus air tanah. Oleh karena itu, mengetahui cara memperkirakan curah hujan di suatu daerah secara akurat sangat penting. Salah satu cara memperkirakan curah hujan adalah dengan menggunakan radar cuaca yang mengukur nilai reflektivitas, kemudian menggunakan persamaan Z-R untuk menghitung curah hujan yang terjadi. Namun, beberapa penelitian sebelumnya telah menggunakan model estimasi curah hujan kuantitatif dengan machine learning dari data radar hujan karena dapat memberikan prediksi yang lebih akurat dibandingkan persamaan Z-R. penelitian lain menyatakan bahwa gradient boosting menghasilkan estimasi curah hujan yang lebih akurat dibandingkan beberapa algoritma lainnya. Pada penelitian ini, estimasi curah hujan dilakukan pada satu wilayah dengan tipe curah hujan lokal di Kota Gorontalo. Estimasi ini dilakukan dengan membandingkan keakuratan dua metode: persamaan Z-R dan algoritma machine learning. Persamaan Z-R yang digunakan adalah persamaan Z-R oleh Marshall-Palmer (𝐴 = 200, 𝑏 = 1.6) dan Rosenfeld (𝐴 = 250, 𝑏 = 1.2), sedangkan algoritma machine learning yang digunakan adalah gradient boosting. Hasil perbandingan menunjukkan bahwa gradient boosting memberikan estimasi yang lebih akurat dibandingkan dengan kedua persamaan Z-R tersebut. Hasil estimasi algoritma gradient boosting memberikan nilai RMSE, MAE, dan R 2 masing-masing sebesar 0,61, 0,17, dan 0,86. Persamaan Marshall-Palmer Z-R menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,14, 3,66, dan -0,19. Estimasi persamaan Z-R Rosenfeld menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,18, 3,71, dan -0,20. Dari ketiga metrik tersebut, dapat disimpulkan bahwa gradient boosting memberikan estimasi yang paling akurat untuk curah hujan di wilayah dengan tipe hujan lokal di Kota Gorontalo.

Rainfall has a significant impact on various sectors of life and the environment. For example, rainfall helps increase productivity in agriculture, ensuring food reserves and water. In addition, rainfall also affects drought and the soil water cycle. Therefore, knowing how to estimate rainfall in an area accurately is essential. One way to estimate rainfall is to use a weather radar that measures reflectivity values, then use the Z-R equation to calculate the rainfall that occurs. However, Several previous studies have used machine learning quantitative rainfall estimation models from rain radar data because it can provide more accurate predictions than the Z-R equation. Another study state that gradient boosting provides more accurate rainfall estimation than several other algorithms. In this study, rainfall estimation was carried out in an area with local rainfall types in Gorontalo City. This estimation is done by comparing the accuracy of two methods: the Z-R equation and machine learning algorithms. The Z-R equation used is the Z-R Equation by Marshall-Palmer (𝐴 = 200, 𝑏 = 1.6) and Rosenfeld (𝐴 = 250, 𝑏 = 1.2), while the machine learning algorithm used is gradient boosting. The comparison results show that gradient boosting provides a more accurate estimation than the two ZR equations. The gradient boosting algorithm estimation results provide RMSE, MAE, and R 2 values of 0.61, 0.17 and 0.86, respectively. The Marshall-Palmer Z-R equation obtained RMSE, MAE, and R 2 values of 8.14, 3.66, and -0.19. The estimation of Rosenfeld's Z-R equation resulted in RMSE, MAE, and R 2 values of 8.18, 3.71, and - 0.20. From these three metrics, it is concluded that gradient boosting provides the most accurate estimate for rainfall in areas with localized rainfall types in Gorontalo City."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ester Vinia
"Pemeriksaan hemoglobin umum dilakukan secara invasif menggunakan berbagai metode, seperti automated hematology analyzer dan hemoglobinometer. Akan tetapi metode tersebut memakan waktu, biaya, dan menyakitkan bagi pasien. Pemeriksaan hemoglonin secara invasif juga tidak memungkinkan untuk dilakukan secara real-time dalam situasi mendesak. Akurasi dan ketepatan pembacaan menjadi tantangan dalam pengembangan sistem pengukur konsentrasi hemoglobin non-invasif. Pada penelitian ini dilakukan pengembangan dua desain sistem pengukur hemoglobin non-invasif (desain prototipe A dan desain prototipe B) menggunakan prinsip photoplethysmography (PPG) menggunakan sensor MAX30102 dan Arduino Uno sebagai mikrokontroler. Pengembangan prototipe dibuat berbasis machine learning dengan menggunakan model Dense Neural Network (DNN) dan menunjukkan akurasi paling maksimal menggunakan MSE loss function sebesar 92,31% untuk desain prototipe A dan 94,70% untuk desain prototipe B. Didapatkan juga hasil pengukuran reliabilitas alat ukur untuk desain prototipe A dan B masing-masing sebesar 84,9% dan 97,3%. Meski sudah memiliki tingkat akurasi yang cukup baik, penelitian ini masih perlu dikembangkan dari segi pemilihan alat referensi pemeriksaan Hb invasif, pengambilan dan pengolahan data yang lebih bervariasi mencakup usia, warna kulit, dan penyakit yang sedang dialami.

Hemoglobin examination is commonly conducted invasively using various methods such as automated hematology analyzers and hemoglobinometers. However, these methods are time-consuming, costly, and painful for patients. Invasive hemoglobin examinations also do not allow real-time measurements in urgent situations. Accuracy and precision of readings pose challenges in the development of non-invasive hemoglobin concentration measurement systems. In this study, the development of two designs of non-invasive hemoglobin measurement systems (prototype design A and prototype design B) using photoplethysmography (PPG) principle with MAX30102 sensor and Arduino Uno as the microcontroller was conducted. Prototype development was based on machine learning using a Dense Neural Network (DNN) model and achieved maximum accuracy using MSE loss function of 92,31% for prototype design A and 94,7% for prototype design B. The measurement reliability of the measurement device was also obtained, with 84,9% for prototype design A and 97,3% for prototype design B, respectively. Although the study already achieved a relatively good level of accuracy, further development is still needed in terms of selecting invasive Hb examination reference devices, obtaining and processing more diverse data including age, skin color, and existing diseases."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ester Vinia
"Pemeriksaan hemoglobin umum dilakukan secara invasif menggunakan berbagai metode, seperti automated hematology analyzer dan hemoglobinometer. Akan tetapi metode tersebut memakan waktu, biaya, dan menyakitkan bagi pasien. Pemeriksaan hemoglonin secara invasif juga tidak memungkinkan untuk dilakukan secara real-time dalam situasi mendesak. Akurasi dan ketepatan pembacaan menjadi tantangan dalam pengembangan sistem pengukur konsentrasi hemoglobin non-invasif. Pada penelitian ini dilakukan pengembangan dua desain sistem pengukur hemoglobin non-invasif (desain prototipe A dan desain prototipe B) menggunakan prinsip photoplethysmography (PPG) menggunakan sensor MAX30102 dan Arduino Uno sebagai mikrokontroler. Pengembangan prototipe dibuat berbasis machine learning dengan menggunakan model Dense Neural Network (DNN) dan menunjukkan akurasi paling maksimal menggunakan MSE loss function sebesar 92,31% untuk desain prototipe A dan 94,70% untuk desain prototipe B. Didapatkan juga hasil pengukuran reliabilitas alat ukur untuk desain prototipe A dan B masing-masing sebesar 84,90% dan 97,30%. Meski sudah memiliki tingkat akurasi yang cukup baik, penelitian ini masih perlu dikembangkan dari segi pemilihan alat referensi pemeriksaan Hb invasif, pengambilan dan pengolahan data yang lebih bervariasi mencakup usia, warna kulit, dan penyakit yang sedang dialami.

Hemoglobin examination is commonly conducted invasively using various methods such as automated hematology analyzers and hemoglobinometers. However, these methods are time-consuming, costly, and painful for patients. Invasive hemoglobin examinations also do not allow real-time measurements in urgent situations. Accuracy and precision of readings pose challenges in the development of non-invasive hemoglobin concentration measurement systems. In this study, the development of two designs of non-invasive hemoglobin measurement systems (prototype design A and prototype design B) using photoplethysmography (PPG) principle with MAX30102 sensor and Arduino Uno as the microcontroller was conducted. Prototype development was based on machine learning using a Dense Neural Network (DNN) model and achieved maximum accuracy using MSE loss function of 92,31% for prototype design A and 94,70% for prototype design B. The measurement reliability of the measurement device was also obtained, with 84,90% for prototype design A and 97,30% for prototype design B, respectively. Although the study already achieved a relatively good level of accuracy, further development is still needed in terms of selecting invasive Hb examination reference devices, obtaining and processing more diverse data including age, skin color, and existing diseases."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Alharits Sadly
"Sistem prediksi kadar fenolik pada daun Bisbul (Diospyros discolor Willd.) berbasis citra hiperspektral visible and near-infrared (VNIR) terbukti mampu dibuat dan mendapatkan hasil dengan nilai yang baik. Kamera hiperspektral dengan rentang panjang gelombang 400-1000 nm digunakan dalam mengakuisisi citra VNIR pada daun Bisbul. Penelitian ini membahas mengenai komparasi dari beberapa model regresi baru dengan penelitian terdahulu yang diharapkan bisa mendapatkan hasil yang lebih baik dalam memprediksi kadar fenolik pada daun Bisbul. Digunakan tiga model regresi dalam membuat sistem prediksi ini yaitu model Partial Least Square Regression (PLSR), Random Forest, dan XGBoost Regressor. Sistem Prediksi menggunakan PLSR menghasilakan sebesar 3,62 (RMSE test), 0,81 (R2 test), nilai akurasi sebesar 91,3%, dan waktu training 0,27 detik. Sistem Prediksi menggunakan Random Forest tanpa menggunakan seleksi fitur menghasilakan sebesar 4,04 (RMSE test), 0,81 (R2 test), nilai akurasi sebesar 90,86%, dan waktu training 17,81 detik. Sistem Prediksi menggunakan Random Forest dengan seleksi fitur menghasilakan sebesar 3,84 (RMSE test), 0,79 (R2 test), nilai akurasi sebesar 91,31%, dan waktu training 19,05 detik. Sistem Prediksi menggunakan XGBoost Regressor dengan menghasilakan sebesar 3,48 (RMSE test), 0,83 (R2 test), nilai akurasi sebesar 91,1%, dan waktu training 24,9 detik. Performa terbaik dihasilkan oleh model XGBoost Regressor dengan sedikit perbedaan dengan PLSR. Model XGBoost Regressor berhasil meningkatkan performa sebesar 14% pada RMSE dan 2% pada R2 berbanding dengan PLSR.

Phenolic levels prediction system on Bisbul leaves (Diospyros discolor Willld.) Based on visible and near-infrared (VNIR) hyperspectral images proved to be able to be made and get results with good values. Hyperspectral camera with a wavelength range of 400-1000 nm is used in acquiring VNIR images on Bisbul leaves. This study discusses the comparison of several new regression models with previous studies that are expected to get better results in predicting phenolic levels in Bisbul leaves. Three regression models are used in making this prediction system, namely the Partial Least Square Regression (PLSR), Random Forest, and XGBoost Regressor models. The prediction system using PLSR produces 3.62 (RMSE test), 0.81 (R2 test), an accuracy of 91.3%, and a training time of 0.27 seconds. The prediction system uses Random Forest without using the selection feature with results of 4.04 (RMSE test), 0.81 (R2 test), an accuracy of 90.86%, and a training time of 17.81 seconds. The prediction system using Random Forest with feature selection resulted in 3.84 (RMSE test), 0.79 (R2 test), an accuracy of 91.31%, and a training time of 19.05 seconds. The prediction system using the XGBoost Regressor produces 3.48 (RMSE test), 0.83 (R2 test), an accuracy of 91.1%, and training time of 24.9 seconds. The best performance is produced by XGBoost Regressor with a slight difference from PLSR. The XGBoost Regressor model managed to improve performance by 14% on RMSE and 2% on R2 compared to PLSR."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yovan Yudhistira Widyananto
"Keamanan privasi data dan informasi dalam internet sering menjadi topik pembahasan dari waktu ke waktu, hal ini dikarenakan metode penyerangan siber selalu berevolusi menyesuaikan dengan struktur keamanan yang ada, menjadikan bidang keamanan siber menjadi bagaikan kompetisi untuk selalu lebih dahulu dari lawannya. Salah satu contoh implementasi keamanan siber merupakan Intrusion Detection System, dikenal juga dengan IDS. IDS dapat membantu menjaga sebuah jaringan dengan mendeteksi jika ada tanda-tanda penyerangan, namun dengan ini saja tidak cukup untuk memaksimalkan keamanan sebuah jaringan. Dari dasar IDS ini, sebuah proyek mencoba mengembangkan konsepnya dan membuat struktur besar, dan berhasil diciptakan proyek Mata Elang. Struktur Mata Elang dapat menjadi perantara antara internet dengan jaringan yang dilindunginya, dan ketika terjadi serangan, aktivitas tersebut akan dideteksi, ditahan, dan diproses oleh Mata Elang. Sistem deteksi Mata Elang bergantung kepada framework Snort. Sayangnya, Snort tidak memiliki kemampuan untuk beradaptasi di luar dari konfigurasi yang telah diberikan kepadanya. Dalam penelitian ini, penulis akan mengimplementasikan Machine Learning untuk meningkatkan keamanan yang diberikan pada proyek Mata Elang, spesifiknya pada sensornya yang menggunakan Snort. Setelah segala proses perancangan, pembuatan, dan pengujian telah dilakukan, hasil akhir yang didapatkan dari sistem Machine Learning merupakan sistem prediksi yang memuaskan untuk memprediksi kategori serangan bahkan dengan dukungan data yang lemah, namun kemampuan dari aturan Snort yang dihasilkan masih belum diuji dengan matang.

The talk about the security of private data and information will continue to be a relevant topic because of the nature of the concept. Cyberattacks have always been adapting according to the technology and structure that exists at the time, and so cybersecurity will continue to be a competition for gaining the advantage against their contrarian. One of the prime examples in cybersecurity implementation is Intrustion Detection Systems, also known as the shortened term, IDS. IDS can help guard a network by detecting different kinds of anomalies or attacks, although this alone wouldn’t be enough to maximize the level of proper security necessary for a whole network. Under the basic concept of IDS, a project attempts to develop an IDS and create a larger structure. The project was successfully implemented and now titled as Mata Elang. Mata Elang’s structure is an intermediary between an internet connection and the network it is connected to, and when an attack happens, those activities will be detected, interrupted, and then processed by Mata Elang. Mata Elang’s detection system completely relies on the framework Snort. Unfortunately, Snort does not have the capabilities to adapt outside the configurations that has been given to it. In this research, the writer will implement Machine Learning to further increase the security provided by Mata Elang, specifically on the sensors that uses Snort. After every step of the planning, making, and testing has been done the final result of the product was a Machine Learning system that has a satisfactory performance in categorizing the attacks, even with a weak supporting data, however the performance of the snort rules generated by it has not been tested thoroughly.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Umar Mardianto
"Pemeriksaan biometri sebelum operasi katarak untuk menentukan kekuatan lensa intraokular (IOL) terutama dipengaruhi oleh pengukuran panjang aksial bola mata (AXL) dan kedalaman bilik mata depan (ACD). Kondisi hipotoni bola mata membuat pemendekan kedua parameter ini. Berdasarkan hal tersebut, dilakukan penelitian untuk mencari formula yang tepat yang bisa digunakan untuk mengoreksi ukuran AXL dan ACD mata yang terukur dalam kondisi hipotoni.
Penelitian ini adalah studi prospektif pre-pasca eksperimental pada hewan coba. Populasi penelitian adalah mata kambing dewasa yang memenuhi kriteria inklusi, eksklusi dan drop out sesuai perhitungan besar sampel.
Karakteristik data TIO, AXL dan ACD pada pengukuran biometri ultrasound teknik imersi dan dino-lite pada kedua mata terdistribusi normal (p > 0,05). Terdapat hubungan linier pada pengukuran menggunakan biometri ultrasound teknik imersi antara TIO dengan AXL (p = 0,003) dan ACD (p = 0,002) maupun dengan dino-lite yaitu AXL (p = 0,001) dan ACD (p = 0,008). Ditemukan formula/persamaan model untuk memprediksi koreksi ukuran AXL dan ACD.
Formula/persamaan model yang didapatkan pada penelitian ini dapat memprediksi ukuran sebenarnya bola mata kambing dewasa. Dilakukan adjustment pada data agar hasil penelitian ini dapat dioptimasi untuk diterapkan pada mata manusia yang mengalami hipotoni sebelum operasi katarak.

Biometry examination before cataract surgery to determine intraocular lens (IOL) power is mainly influenced by the measurement of eyeball axial length (AXL) and anterior chamber depth (ACD). The condition of eyeball hypotony shortens these two parameters. Based on this, a study was conducted to find an appropriate formula that can be used to correct the measured AXL and ACD of the eye under hypotony conditions.
This was a prospective pre-post-experimental study in experimental animals. The study population was adult goat eyes that met the inclusion, exclusion, and dropout criteria according to the sample size calculation.
The data characteristics of IOP, AXL, and ACD in ultrasound biometry measurements of immersion techniques and dino-lite in both eyes were normally distributed (p > 0,05). There was a linear relationship between IOP with AXL (p = 0,003) and ACD (p = 0,002) and with dino-lite, namely AXL (p = 0,001) and ACD (p = 0,008). A formula/equation model was found to predict AXL and ACD size correction.
The formula/equation model obtained in this study can predict the actual size of the adult goat eyeball. Adjustments were made to the data so that the results of this study can be optimized for application to human eyes that experience hypotony before cataract surgery.
"
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2025
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Jeffry Kurniawan Zheta
"Penggunaan pin dan password bahkan token sudah dianggap ketinggalan zaman sehingga negara berkembang banyak mengembangkan metode transaksi berbasis biometrik. Biometrik yang merupakan karakterisitik biologis yang banyak digunakan saat ini adalah mata, wajah, dan sidik jari. Wajah dan sidik jari dalam kondisi tertentu dapat berubah dan tidak dapat dikenali oleh sebab itu mata atau tepatnya iris adalah pilihan yang tepat untuk digunakan untuk metode autentikasi mengingat mata manusia tidak mudah berubah.
Tugas akhir ini berfokus pada pengembangan sistem yang sudah ada sebelumnya mengenai autentikasi menggunakan metode lokalisasi dan normalisasi half-polar pada iris mata. Pengembangan yang dilakukan adalah agar pengenalan dapat lebih akurat dan cepat menggunakan metode segementasi mata dan normalisasi yang berbeda dengan metode half-polar serta membuat pengenalan dapat dilakukan pada mata kiri dan kanan secara bersamaan mengingat Iris pattern pada kedua mata manusia berbeda.
Metode-metode segmentasi iris yang diajukan adalah Zeta-v1, Zeta-v2, Zeta-v3, Zeta-v4, Zeta-v5, Zeta-v6 dan Zeta-v7. Hasil pengujian terbaik dari segi performa waktu ditunjukkan oleh metode Zeta-v7 dengan rata-rata 0.0138427 detik. Hasil Pengujian terbaik dari segi akurasi sistem adalah Zeta-v1, dengan persentase penolakan yang salah bernilai 100 dan persentase penerimaan yang benar bernilai 94,90.

The use of pin and password and even tokens is considered outdated, so many countries develop biometric based transaction methods. Biometrics which are the most widely used biological characteristics are the eye, face, and fingerprint. The faces and fingerprints in certain conditions can change and can not be recognized. The eye or precisely the iris is the right choice to use for authentication methods considering that the human rsquo s eye is not easily changed.
This final assignment focuses on the development of previous systems of authentication using localization methods and half polar Normalization of the iris. Development is performed to make the recognition more accurate dan faster while using different eye segmentation and Normalization methods. The recognition methods can be used for left and right eyes considering both eyes in human have different iris pattern.
The proposed iris segmentation methods are Zeta v1, Zeta v2, Zeta v3, Zeta v4, Zeta v5, Zeta v6 dan Zeta v7. The best test result based on time performance presented by the Zeta v7 segmentation which shows the average time performance 0.0138427 seconds. The best result based on accuracy presented by Zeta v1 which show the percentage of wrong rejection 100 and percentage of right acceptance 94,90.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mia Amalina Husna
"Tujuan dari penelitian ini adalah untuk menjelaskan pemaknaan idiom dalam bahasa Rusia yang menggunakan kata 'mata'. Idiom merupakan sebuah frasa atau kalimat yang memiliki makna yang berbeda dari arti secara harfiahnya. Data yang diperoleh berasal dari e-book berjudul A Book of Russian Idioms Illustrated yang ditulis oleh Dubrovin 1980 . Penelitian ini dilakukan dengan metode deskriptif analitis. Hasil dari penelitian ini ada dua yaitu idiom yang menggunakan kata mata dapat berupa rangkaian kata atau kalimat yang terdiri dari gabungan kata benda 'mata' dengan kelas kata lain seperti kata kerja dan kata sifat; dan idiom mata menunjukkan makna yang terkait dengan mata sebagai indera penglihatan yang menunjukkan pandangan seseorang terhadap sesuatu atau orang lain.

The purpose of this study is to describe the meaning of idioms in Russian language using the word 'eyes'. Idioms are phrases or sentences, which have different meanings from their literal meanings. The data are from the e-book titled A Book of Russian Idioms Illustrated written by Dubrovin 1980. This paper applies the analytical descriptive method. There are two results of this research, the idioms using the word 'eyes' could be phrases or sentences consisted of the noun 'eyes' with other word classes, such as verbs and adverbs; and idioms using the word 'eyes' show the meanings are related to eyes human's sight which related to someone's views or opinions to something or someone else.
"
Depok: Fakultas Ilmu Pengetahuan Budaya Universitas Indonesia, 2018
MK-Pdf
UI - Makalah dan Kertas Kerja  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>