Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 120009 dokumen yang sesuai dengan query
cover
Shannisya Noorcintanami
"

Posisi Indonesia sebagai salah satu negara yang masuk ke dalam kategori High Burden Countries untuk penyakit menular Tuberkulosis (TB), menyebabkan TB menjadi masalah kesehatan yang patut diperhatikan oleh Pemerintah. Maka, penting bagi Pemerintah untuk mengidentifikasi faktor-faktor yang mempengaruhi jumlah kasus TB. Pada umumnya, model regresi linear berganda digunakan untuk melihat bagaimana hubungan linear antara faktor-faktor tersebut dengan jumlah kasus TB, namun dengan model ini variasi spasial pada data tidak diperhitungkan. Untuk menutupi kekurangan tersebut, penelitian ini menggunakan model spasial, yaitu model yang memperhitungkan lokasi geografis observasi dalam pembentukan model. Penelitian ini mencakup dua jenis Geographically Weighted Models (GWM), yaitu Geographically Weighted Regression (GWR) dan Mixed Geographically Weighted Regression (MGWR). Jenis model spasial ini akan memberikan bobot tertentu pada observasi-observasi sesuai dengan lokasi geografisnya. Kedua model tersebut dikonstruksi untuk melihat hubungan antara jumlah kasus baru TB dengan faktor-faktor yang diduga mempengaruhinya per Kabupaten/Kota di Pulau Jawa tahun 2017. Faktor-faktor tersebut adalah jumlah penduduk, angka keberhasilan pengobatan TB, persentase balita yang diimunisasi BCG, persentase penderita HIV, persentase rumah sehat, persentase penduduk miskin dan jumlah puskesmas per seratus ribu penduduk. Perbandingan performa kedua model diukur menggunakan Akaike’s Information Criterion (AIC) dan Adjusted R2 untuk menentukan model yang relatif lebih baik. Dari penelitian ini, ditemukan bahwa GWR merupakan model yang relatif lebih baik untuk data. Salah satu penemuan pada penelitian ini adalah bahwa hubungan antara persentase balita yang diimunisasi BCG dan jumlah kasus baru TB adalah negatif dan paling kuat di DKI Jakarta. Hal ini dapat disebabkan oleh tingginya tingkat kesadaran dari pentingnya imunisasi BCG dan sosialisasinya di lokasi tersebut.

 


Indonesia’s position as one of the High Burden Countries for the infectious disease, Tuberculosis (TB), has caused TB to be a major health problem in Indonesia. As means to control the number of TB cases, it becomes important for the government to identify the factors affecting it. Commonly, multiple linear regression models are used to evaluate the linear relationship between the factors and the number of TB cases.  Unfortunately, this model does not have the ability to expose the spatial variation in the data. To improve that, this research uses a spatial model: a model that takes the geographical location into account in the making of the model. This research covers two types of Geographically Weighted Models (GWM), which are Geographically Weighted Regression (GWR) and Mixed Geographically Weighted Regression (MGWR). These spatial models assign weights to the observations based on its’ geographical location. These two models will be constructed to evaluate the relationship between the number of TB cases and the factors affecting it per Regency/City in Java in 2017, namely: population, success rate of TB treatment, percentage of toddlers receiving BCG vaccine, percentage of HIV patient, percentage of healthy homes, percentage of poor people and the number of public health centre per one hundred thousand people. The performance of both models is measured using Akaike’s Information Criterion (AIC) and Adjusted R2 to find out which model is relatively better. The result of this research suggests that the GWR model is the relatively better model for the data. The model suggests that the relationship between percentage of toddlers receiving BCG vaccine and the number of TB cases is negative and is the strongest in Jakarta, which may be caused by the level of awareness and socialization of BCG vaccine that is better in this area.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saskia Oktavia Zarfa
"Kematian balita merupakan indikator utama kesehatan anak dan pembangunan bangsa secara keseluruhan, karena mencerminkan kondisi sosial, ekonomi, dan lingkungan. Angka kematian balita sebagai barometer sosial ekonomi dan kesehatan telah dimasukkan dalam Sustainable Development Goals (SDGs) dengan target baru untuk menurunkan angka kematian balita di dunia secara keseluruhan menjadi kurang dari 25 per 1000 kelahiran hidup di tahun 2030. Tujuan penelitian ini adalah untuk mengetahui faktor apa yang memengaruhi jumlah kasus kematian balita di Pulau Jawa. Variabel respon penelitian ini adalah jumlah kasus kematian balita yang merupakan data diskrit  dengan kondisi overdispersi. Penelitian ini menggunakan model Geographically Weighted Negative Binomial Regression (GWNBR) yang merupakan pengembangan regresi Binomial Negatif dengan memperhitungkan pengaruh spasial. Data yang digunakan pada penelitian ini mengandung missing value sehingga dilakukan penanganan dengan imputasi data menggunakan Classification and Regression Tree (CART). Model yang digunakan untuk menganalisis jumlah kasus kematian balita adalah model GWNBR dengan fungsi pembobot kernel Adaptive Gaussian. Hasil dari analisis tersebut menunjukkan bahwa terdapat 5 variabel prediktor yang secara signifikan memengaruhi jumlah kasus kematian balita di seluruh Kabupaten/Kota di pulau Jawa yaitu variabel kecukupan air bersih (AIRB), proporsi diare pada balita (DIARE), kecukupan jumlah dokter (DOK), cakupan penimbangan balita (CPB) dan cakupan Imunisasi Dasar Lengkap (IDL).

Under-five mortality is the main indicator of child health and the development of the nation as a whole, because it reflects social, economic and environmental conditions. The under-five mortality rate as a socio-economic and health barometer has been included in the Sustainable Development Goals (SDGs) with a new target to reduce the world under-five mortality rate as a whole to less than 25 per 1000 live births in 2030. The purpose of this study was to determine what factors which affects the number of under-five mortality cases in Java. The response variable of this research is the number of under-five mortality cases which are discrete data with overdispersion conditions. This study uses a Geographically Weighted Negative Binomial Regression (GWNBR) model which is the development of Negative Binomial regression by taking into account the spatial effect. The data used in this study contains missing values ​​so that it is handled by imputing data using the Classification and Regression Tree (CART). The model used to analyze the number of under-five mortality cases is the GWNBR model with the Adaptive Gaussian kernel weighting function. The results of the analysis show that there are 5 predictor variables that significantly affect the number of cases of under-five mortality in all districts/cities on the island of Java, namely the clean water adequacy variable (AIRB), the proportion of diarrhea in children under five (DIARE), the adequacy of the number of doctors (DOK), coverage of under-five weighing (CPB) and coverage of Complete Basic Immunization (IDL)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Taruga Runadi
"Menganalisis hubungan antara jumlah tindak kejahatan dan faktor-faktor yang mempengaruhinya menjadi topik penelitian yang menarik karena jumlah tindak kejahatan di Indonesia dalam sepuluh tahun terakhir cenderung meningkat. Untuk meningkatkan kualitas keamanan masyarakat maka pemerintah perlu memahami faktor-faktor apa saja yang dapat memicu tindakan kejahatan. Dibandingkan dengan metode analisis regresi klasik, metode Geographically Weighted Regression GWR lebih diunggulkan karena dapat menangani masalah ketidak stasioneran spasial yang biasanya terjadi pada data fenomena-fenomena sosial. Ketidakstasioneran spasial adalah situasi dimana hubungan antar peubah berbeda-beda secara signifikan disetiap lokasi observasi. Hal tersebut mengakibatkan hasil analisis regresi klasik menjadi tidak akurat di beberapa lokasi. GWR menangani masalah tersebut dengan membangun model regresi di setiap titik observasi sehingga memungkinkan parameter regresi menjadi berbeda di setiap lokasi observasi. Penelitian ini menggunakan jumlah tindak kejahatan y sebagai peubah terikat dan peubah bebasnya adalah jumlah penduduk buta huruf x1, jumlah pengangguran x2, jumlah penduduk miskin x3, kepadatan penduduk x4, dan jumlah korban NAPZA x5. Penelitian ini menggunakan data sekunder yang dihimpun oleh POLRI, BPS, dan Dinsos di Jawa Tengah pada tahun 2015. Terdapat dua fungsi pembobot spasial GWR yang akan dibandingkan yaitu Kernel Gaussian dan Kernel Bisquare. Hasil penelitian menunjukkan fungsi Kernel Gaussian lebih baik dibanding Kernel Bisquare berdasarkan skor AIC dan R2. Hasil analisis menggunakan GWR menghasilkan model untuk 35 kabupaten/kota di Jawa Tengah.

Analyzing the relationship between number of crime cases and factors defined became an interesting research topic over the last ten years. The total number of crime in Indonesia didn rsquo t show a consistent decrease. In order to upgrade people safeness quality, the government need to know the factors influence people committing crime acts. Rather than using classical regression analysis, Geographically Weighted Regression GWR was preferable since it gave a better representative model by effectively resolve spatial non stationary problem which is generally exist in spatial data of social phenomenon. Spatial non stationary is a situation when the relationship between variables are significantly different in each location of observation point, so that classic regression analysis will result a misleading interpretation in some location. GWR handled the spatial non stationary problem by generating a single model in each observation point which allow different relationship to exist at different point in space. This study used number of crime cases y as the dependent variable and the factors which affect the number of crime cases as independent variables that consist of the number of illiterates x1 , the number of unemployed x2, the number of poor population x3, population density x4, the number of victims of drug x5. This study used secondary data collected by POLRI, BPS, and Social ministry of Indonesia in Central Java during 2015. Two spatial weighting functions were compared i.e. Kernel Gaussian and Kernel Bisquare and the study result indicated that Kernel Gaussian was batter according to score of R2 and AIC. GWR generated model for 35 city regency in Central Java. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T48305
UI - Tesis Membership  Universitas Indonesia Library
cover
Michael Mario Bramanthyo Adhi
"Angka Harapan Hidup (AHH) merupakan rata-rata perkiraan banyak tahun yang dapat ditempuh oleh seseorang sejak lahir. Badan Pusat Statistik (BPS) mencatat bahwa AHH penduduk di Provinsi Jawa Barat tahun 2021 mencapai 73,23 tahun dan menempati posisi keempat dengan nilai AHH tertinggi di Indonesia pada 2021. Penelitian ini bertujuan untuk menganalisis variabel-variabel yang menjelaskan AHH di setiap kabupaten/kota di Provinsi Jawa Barat tahun 2021 menggunakan model regresi linear berganda, Geographically Weighted Regression (GWR), dan Mixed Geographically Weighted Regression (MGWR) yang kemudian dievaluasi untuk memeroleh model terbaik. Pada penelitian ini, model regresi linier berganda digunakan untuk mengetahui seberapa besar pengaruh variabel-variabel independen terhadap variabel AHH dimana nilai estimasi parameter regresi sama untuk setiap wilayah penelitian atau disebut dengan model regresi global. Provinsi Jawa Barat terdiri dari 27 kabupaten/kota yang memiliki karakteristik berbeda antarwilayah sehingga memungkinkan adanya heterogenitas spasial. Model GWR bertujuan untuk mengeksplor heterogenitas spasial dengan membentuk model regresi yang berbeda pada setiap lokasi pengamatan atau dapat disebut dengan model regresi lokal. Hal ini akan menimbulkan permasalahan apabila terdapat variabel independen yang tidak bersifat lokal atau tidak mempunyai pengaruh lokasi, tetapi diduga memiliki pengaruh terhadap variabel dependen secara global. Oleh karena itu, dikembangkan lagi menggunakan model MGWR. Model MGWR menghasilkan estimasi parameter yang bersifat global dan lokal sesuai dengan lokasi pengamatan. Variabel yang bersifat global, yaitu Tingkat Pengangguran Terbuka (TPT) dan Pengeluaran Per Kapita (PPK), sedangkan variabel yang bersifat lokal, yaitu Jumlah Penduduk Miskin (JPM), Harapan Lama Sekolah (HLS), dan Persentase Penduduk yang Mempunyai Keluhan Kesehatan Sebulan Terakhir (KK). Hasil penelitian ini menunjukkan bahwa kedua variabel global berpengaruh terhadap AHH, sedangkan variabel lokal yang berpengaruh terhadap AHH berbeda pada setiap wilayahnya, begitu pula dengan model yang terbentuk juga akan berbeda untuk setiap wilayahnya. Selain itu, model terbaik yang diperoleh adalah model GWR dengan fungsi pembobot fixed Gaussian kernel dengan nilai AIC terkecil, adjusted R-squared terbesar, dan RMSE terkecil dibandingkan model regresi linier berganda dan MGWR.

Life Expectancy (AHH) is an estimate of the years that a person will take from birth. Badan Pusat Statistik (BPS) notes that the AHH of the population in West Java Province in 2021 reached 73.23 years and ranked fourth with the highest AHH value in Indonesia in 2021. This study aims to analyze the variables that explain AHH in each district/city in West Java Province in 2021 using multiple linear regression models, Geographically Weighted Regression (GWR) models, and Mixed Geographically Weighted Regression (MGWR) models which are then evaluated to obtain the best model. In this study, the multiple linear regression model is used to determine how much influence the independent variables had on the AHH variable where the estimated values of the regression parameters were the same for each study area or called the global regression model. West Java Province consists of 27 districts/cities which have different characteristics between regions, thus allowing for spatial heterogeneity. The GWR model aims to explore spatial heterogeneity by forming a different regression model at each observation location or it can be called a local regression model. This will cause problems if there are independent variables that are not local in nature or do not have a location effect, but are suspected of having an influence on the dependent variable globally. Therefore, it is further developed using the MGWR model. The MGWR model produces parameter estimates that have global and local characteristics according to the observation location. Global variables are Open Unemployment Rate (TPT) and Per Capita Expenditures (PPK), while local variables are Number of Poor Population (JPM), Expected Years of Schooling (HLS), and Percentage of Population with Health Complaints in the Last Month (KK). The results of this study indicate that both global variables have a significant effect on AHH, while local variables which have a significant effect on AHH are different in each region, as well as the model formed will also be different for each region. In addition, the best model obtained is the GWR model with a fixed Gaussian kernel weighting function with the smallest AIC value, the largest adjusted R-squared, and the smallest RMSE compared to the multiple linear regression model and MGWR model.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nathanael Andrian Patrick
"Kemiskinan adalah suatu masalah yang tidak hanya dipengaruhi oleh dimensi ekonomi, namun juga dapat dipengaruhi oleh dimensi-dimensi lain seperti pendidikan, kesehatan, dan standar hidup yang layak. Kemiskinan dapat diukur dengan Head Count Index, yaitu indeks yang mengukur persentase penduduk miskin di suatu wilayah. Dimensi-dimensi yang menjelaskan kemiskinan biasanya terdiri dari beberapa variabel. Sehingga apabila dalam penelitian akan dilakukan pemodelan menggunakan beberapa dimensi, akan mengandung banyak sekali variabel, yang memungkinkan adanya multikolinearitas antar variabel independen. Kondisi ini menyebabkan pemodelan tidak dapat dilakukan dengan baik. Masalah multikolinearitas pada data yang dimodelkan, dapat diatasi menggunakan metode Analisis Komponen Utama (Principal Component Analysis). Metode Principal Component Analysis (PCA) dilakukan pada variabel-variabel independen, sehingga diperoleh komponen-komponen utama yaitu hasil reduksi dari variabel-variabel independen. Komponen-komponen utama ini tidak lagi saling berkorelasi. Selanjutnya dilakukan analisis regresi dengan komponen-komponen utama tersebut sebagai variabel independen barunya. Model ini disebut Regresi Komponen Utama (RKU). Penelitian ini menggunakan data yang terkait dengan lokasi atau geografis atau dapat disebut dengan data spasial. Setelah dilakukan pemeriksaan asumsi, terdapat multikolinearitas dan heterogenitas spasial pada data. Oleh karena itu, untuk menangani kedua masalah ini, dapat digunakan pemodelan Geographically Weighted Principal Component Regression (GWPCR) atau Regresi Komponen Utama Terboboti Geografis (RKUTG). Sebelum diterapkan metode Regresi Komponen Utama Terboboti Geografis (RKUTG), akan digunakan metode Analisis Komponen Utama menentukan komponen-komponen utama untuk dijadikan variabel independen atau prediktor baru dalam penelitian ini. Didapat tiga komponen utama yang masing-masing komponen menjelaskan Faktor Demografi dan Air Bersih untuk PC1 atau komponen utama pertama, Faktor Kondisi Hidup Layak dan Ketimpangan untuk PC2, dan Faktor Kesejahteraan Anak untuk PC3. Lalu dilakukan Regresi Komponen Utama (RKU) dengan PC1, PC2, dan PC3 sebagai prediktornya dan diperiksa asumsi heterogenitas spasial dari model RKU. Pemeriksaan asumsi mengambil keputusan bahwa terdapat heterogenitas spasial pada model RKU sehingga model GWPCR dapat dilakukan. Berdasarkan hasil pemodelan RKUTG, pengaruh setiap komponen utama bervariasi pada setiap lokasi dan jika dikelompokkan diperoleh 4 kelompok, yaitu kelompok 1 yaitu Kabupaten/Kota dengan Head Count Index dipengaruhi oleh PC1 yaitu sebanyak 13 Kabupaten/Kota, kelompok 2 yaitu Kabupaten/Kota dengan Head Count Index dipengaruhi PC1 dan PC2 yaitu sebanyak 5 Kabupaten/Kota, kelompok 3 yaitu Kabupaten/Kota dengan Head Count Index dipengaruhi PC1 dan PC3 yaitu sebanyak 4 Kabupaten/Kota, dan kelompok 4 yaitu Kabupaten/Kota dengan Head Count Index dipengaruhi PC1, PC2 dan PC3 yaitu sebanyak 4 Kabupaten/Kota.

Poverty is a problem that is not only influenced by the economic dimension, but can also be influenced by other dimensions such as education, health, and a decent standard of living. Poverty can be measured by the Head Count Index, which is an index that measures the percentage of poor people in a region. The dimensions that explain poverty usually consist of several variables. Therefore, if the research will be modeled using several dimensions, it will contain a large number of variables, which allows for multicollinearity between independent variables. This condition causes the modeling to not be done properly. The problem of multicollinearity in the data being modeled can be overcome using the Principal Component Analysis method. The Principal Component Analysis (PCA) method is performed on the independent variables, so that the main components are obtained, namely the reduction results of the independent variables. These main components are no longer correlated with each other. Furthermore, regression analysis is carried out with these main components as the new independent variables. This model is called Principal Component Regression (RKU). This study uses data related to location or geography or can be called spatial data. After checking the assumptions, there is multicollinearity and spatial heterogeneity in the data. Therefore, to handle these two problems, Geographically Weighted Principal Component Regression (GWPCR) modeling or Geographically Weighted Principal Component Regression (RKUTG) can be used. Before applying the Geographically Weighted Principal Component Regression (RKUTG) method, the Principal Component Analysis method will be used to determine the main components to be used as independent variables or new predictors in this study. There are three main components, each of which explains the Demographic and Clean Water Factors for PC1 or the first main component, the Decent Living Conditions and Inequality Factors for PC2, and the Child Welfare Factor for PC3. Principal Component Regression (RKU) was then conducted with PC1, PC2, and PC3 as predictors and the assumption of spatial heterogeneity of the RKU model was checked. The assumption check makes a decision that there is spatial heterogeneity in the RKU model so that the GWPCR model can be carried out. Based on the results of RKUTG modeling, the influence of each main component varies at each location and if grouped, 4 groups are obtained, namely group 1, namely districts / cities with Head Count Index influenced by PC1, consisting of 13 districts / cities, group 2, namely districts / cities with Head Count Index influenced by PC1 and PC2, consisting of 5 districts / cities, group 3, namely districts / cities with Head Count Index influenced by PC1 and PC3, consisting of 4 districts / cities, and group 4, namely districts / cities with Head Count Index influenced by PC1, PC2 and PC3, consisting of 4 districts / cities."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yemima Kathleen Monica
"Diare merupakan salah satu infeksi saluran pencernaan berupa keluarnya tinja encer atau cair tiga kali atau lebih setiap hari. Penyakit ini umum terjadi di Indonesia dan potensial menjadi Kejadian Luar Biasa (KLB) yang sering menyebabkan kematian. Tujuan penelitian ini adalah memodelkan dan mengidentifikasi variabel yang dapat menjelaskan jumlah kejadian penyakit diare di Provinsi Jawa Barat. Jumlah kejadian diare sebagai variabel respons merupakan data berbentuk diskrit yang umumnya dimodelkan menggunakan regresi Poisson. Namun, adanya asumsi equidispersi yang harus dipenuhi dalam regresi Poisson membuat regresi Binomial Negatif digunakan apabila terjadi overdispersi. Aspek spasial juga diperhatikan sehingga model yang digunakan dalam penelitian ini adalah Geographically Weighted Negative Binomial Regression (GWNBR). Penaksiran parameter dilakukan menggunakan metode Maximum Likelihood Estimation dengan iterasi Newton-Raphson. Model GWNBR memberikan bobot tertentu pada setiap lokasi pengamatan sehingga menghasilkan taksiran parameter model yang berbeda untuk setiap lokasi pengamatan. Fungsi pembobot kernel yang digunakan adalah Fixed Bisquare dan bandwidth optimum ditentukan menggunakan cross validation (CV). Prediktor yang digunakan dalam penelitian ini adalah persentase rumah tangga yang memiliki akses terhadap sanitasi layak, persentase penduduk miskin, jumlah puskesmas, kepadatan penduduk, jumlah dokter umum, dan indeks pendidikan. Hasil dari analisis menunjukkan bahwa dalam model GWNBR diperoleh 5 kelompok berdasarkan prediktor yang signifikan. Sebanyak 3 prediktor secara signifikan menjelaskan jumlah kejadian diare di seluruh kabupaten/kota di Provinsi Jawa Barat tahun 2022, yaitu persentase penduduk miskin, kepadatan penduduk, dan indeks pendidikan.

Diarrhea is an intestinal infection characterized by the excretion of loose or watery stools three or more times a day. This disease is common in Indonesia and has the potential to become an outbreak (KLB) that often leads to death. The aim of this study is to model and identify variables that can explain the number of diarrhea cases in West Java Province. The number of diarrhea cases as the response variable is discrete data, which is generally modeled using Poisson regression. However, due to the equidispersion assumption required in Poisson regression, Negative Binomial regression is used if overdispersion occurs. Spatial aspects are also considered, so the model used in this study is Geographically Weighted Negative Binomial Regression (GWNBR). Parameter estimation is done using the Maximum Likelihood Estimation method with Newton-Raphson iteration. The GWNBR model assign specific weights to each observation location, resulting in different parameter estimates for each location. The kernel weighting function used is Fixed Bisquare, and the optimal bandwidth is determined using cross-validation (CV). The predictors used in this study are the percentage of households with access to adequate sanitation, the percentage of poor population, the number of health centers, population density, the number of general practitioners, and the education index. The results of the analysis show that the GWNBR model identified 5 groups based on significant predictors. Three predictors significantly explain the number of diarrhea cases in all districts/cities in West Java Province in 2022: the percentage of the poor population, population density, and education index."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zalfa Alifah Budiawan
"Tuberkulosis adalah penyakit menular yang termasuk kedalam sepuluh peringkat penyebab kematian tertinggi di dunia, sebagai contoh di Indonesia. Oleh karena itu, perlu diketahui faktor-faktor apa saja yang memengaruhi jumlah kasus tuberkulosis. Jumlah kasus tuberkulosis sebagai variabel dependen merupakan data cacah yang umumnya dianalisis menggunakan Regresi Poisson. Namun, adanya asumsi equidispersi yang harus dipenuhi pada Regresi Poisson maka Regresi Generalized Poisson dan Regresi binomial negatif dapat digunakan sebagai alternatif apabila asumsi equidispersi tidak terpenuhi. Aspek spasial dapat diperhatikan, sehingga pemodelan Geographically Weighted Generalized Poisson Regression dan Geographically Weighted Negative Binomial Regression juga dilakukan. Keempat model itu dibangun untuk mengetahui apakah ada hubungan jumlah kasus tuberkulosis di Pulau Jawa pada tahun 2020 dengan faktor-faktor yang diperkirakan memengaruhinya. Variabel independen yang digunakan adalah kepadatan penduduk, persentase balita diberikan imunisasi BCG, persentase penduduk miskin, persentase sarana air minum memenuhi syarat, persentase kartu keluarga dengan akses sanitasi layak, persentase tempat-tempat umum yang memenuhi syarat kesehatan, dan persentase tempat pengelolaan makanan yang memenuhi syarat higienis. Dari penelitian ini, diketahui bahwa model terbaik untuk memodelkan data adalah GWNBR dengan diperoleh 2 kelompok variabel independen signifikan. Sebanyak 7 variabel independen signifikan secara statistik di 88 kabupaten/Kota dan 6 variabel independen signifikan secara statistik di 12 kabupaten/Kota.

Tuberculosis is an infectious disease and one of the world's top 10 highest causes of mortality, for example, in Indonesia. Based on this fact, it’s necessary to know what factors influence number of tuberculosis cases. The number of tuberculosis cases as dependent variable is a count data that generally analyzed using Poisson regression. However, equidispersion assumption must be met, so Generalized Poisson Regression and Negative Binomial Regression are applied if the assumption is not met. Spatial aspects can be considered so Geographically Weighted Generalized Poisson Regression and Geographically Weighted Negative Binomial Regression were also conducted. Four models were built to evaluate relationship between number of tuberculosis cases and factors affecting it in Java in 2020. The explanatory variables are population density, percentage of children receiving BCG immunization, percentage of poor people, percentage of eligible drinking water facilities, percentage of family cards with access to proper sanitation, percentage of public places meet health requirements, and percentage of food management places meet hygienic requirements. This study shows that the best model for modeling the data is GWNBR with 2 groups of significant explanatory variables. Seven explanatory variables are statistically significant in 88 districts and six explanatory variables statistically significant in 12 districts."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisal Khafie Alam
"Stunting adalah kondisi gagal tumbuh pada balita akibat dari kekurangan gizi kronis,
sehingga anak terlalu pendek pada usianya. Stunting memiliki dampak yang buruk
terhadap pertumbuhan dan perkembangan anak serta berpengaruh terhadap kualitas
sumber daya manusia di masa depan. Dalam rangka menurunkan angka stunting di
Indonesia, pada tahun 2018, pemerintah menetapkan 100 kabupaten/kota sebagai daerah
prioritas penanganan kasus stunting di Indonesia. Penetapan 100 kabupaten/kota prioritas
tersebut ditentukan berdasarkan indikator jumlah balita stunting, prevalensi stunting, dan
tingkat kemiskinan. Penelitian ini bertujuan untuk mengetahui variabel-variabel yang
memengaruhi status daerah prioritas penanganan stunting di Indonesia agar pemerintah
lebih fokus dalam menangani kasus stunting di setiap daerah. Model yang digunakan
dalam penelitian ini adalah Geographically Weighted Logistic Regression (GWLR).
Untuk variabel respon, kategori 0 adalah daerah bukan prioritas penanganan stunting
(prevalensi stunting kurang dari rata-rata prevalensi stunting Indonesia tahun 2018
sebesar 32,01%) dan kategori 1 adalah daerah prioritas penanganan stunting (prevalensi
stunting lebih besar dari rata-rata prevalensi stunting Indonesia tahun 2018 sebesar
32,01%). Model Geographically Weighted Logistic Regression (GWLR) merupakan
pengembangan dari model regresi logistik dengan memperhitungkan pengaruh spasial.
Pengaruh spasial tersebut digambarkan melalui matriks pembobot di setiap lokasi
pengamatan sehingga menghasilkan pendugaan parameter model yang bersifat lokal
untuk setiap lokasi pengamatan. Metode penaksiran parameter yang digunakan adalah
metode Maximum Likelihood Estimation (MLE) dengan fungsi pembobot spasial adalah
fungsi pembobot kernel Fixed Gaussian dan Fixed Bisquare. Pada penelitian ini data
yang digunakan mengandung missing values sehingga diperlukan penanganan lebih
lanjut. Penanganan missing values yang digunakan pada penelitian ini adalah metode
imputasi data menggunakan Classification and Regression Tree (CART). Model GWLR
terbaik pada pemodelan kasus stunting di Indonesia tahun 2018 adalah model GWLR
dengan pembobot fungsi kernel Fixed Bisquare dengan nilai AIC sebesar 622,806477
dan akurasi klasifikasi model sebesar 0,7257.

Stunting is a condition of failure to thrive in children under five because of chronic
malnutrition so that the child is too short for his/her age. Stunting has bad effect on
children's growth and the quality of human resources in the future. To reduce the number
of stunting in Indonesia, in 2018, the government determined 100 districts/cities as
priority areas for handling stunting cases in Indonesia. The 100 priority districts/cities are
determined based on the number of stunting children, stunting prevalence, and poverty
level. This study aims to determine the variables that affect the status of priority areas for
stunting handling in Indonesia so the government can be more focused on handling
stunting cases in each region. The model used in this study is Geographically Weighted
Logistic Regression (GWLR) with 0 as the category of a non-priority area for handling
stunting cases (stunting prevalence is less than the average stunting prevalence of
Indonesia in 2018) and 1 as the category of a priority area for handling cases stunting (the
prevalence of stunting is greater than the average stunting prevalence of Indonesia in
2018). The average stunting prevalence of Indonesia in 2018 that used in this study is
32,01%. The Geographically Weighted Logistic Regression (GWLR) model is a
development of the logistic regression model which considers spatial influence. The
spatial influence is illustrated through a weighting matrix at each observation location to
produce an estimation of the local model parameters for each observation location. The
parameter estimation method used is the Maximum Likelihood Estimation (MLE) method
with the spatial weighting function is the Fixed Gaussian and Fixed Bisquare kernel
weighting function. There are missing values in the study data so Classification and
Regression Tree (CART) method used to handle the missing values. The results showed
that the best GWLR model on stunting cases modeling in Indonesia in 2018 is the GWLR
model with Fixed Bisquare kernel function weighting with AIC value of 622,806477 and
accuracy of model classification of 0,7257.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zalfa Nurfadhilah Haris
"Kemiskinan merupakan salah satu masalah sosial yang masih menjadi perhatian pemerintah. Hampir seluruh negara berkembang memiliki standar hidup yang masih rendah. Salah satu cara untuk mengurangi kemiskinan adalah dengan menganalisis faktor-faktor yang memengaruhi Salah satu metode yang cocok dalam menganalisis tingkat kemiskinan adalah dengan menggunakan Geographically Weighted Regression (GWR). Hal ini dikarenakan dalam model GWR dipertimbangkan aspek spasial yang berbeda-beda untuk masing-masing lokasi pengamatan. Dalam model GWR dilakukan pendekatan analisis regresi yang digunakan untuk memahami hubungan spasial antara variabel-variabel dalam konteks geografi. Hal ini dikarenakan model GWR mempertimbangkan jarak lokasi pengamatan dengan lokasi sekitarnya, model GWR juga mempertimbangkan pembobot pada masing-masing lokasi pengamatan. Daerah yang dekat dengan lokasi pengamatakan mendapatkan pembobot yang lebih besar daripada daerah yang jauh dengan lokasi pengamatan, dalam hal ini penentuan pembobot dalam model GWR bergantung pada bandwidth. Dalam penelitian ini dilakukan analisis dengan mempertimbangkan empat pembobot spasial yaitu fixed gaussian kernel, fixed bisquare kernel, fixed tricube kernel, dan fixed exponential kernel yang diterapkan pada dua bandwidth yaitu bandwidth CV dan bandwidth AIC. Variabel dependen yang digunakan adalah tingkat kemiskinan dan variabel independen yang digunakan adalah rata-rata lama sekolah, upah minimum, tingkat pengangguran, indeks pembangunan manusia, angka harapan hidup dan jumlah penduduk. Hasil dari penelitian ini menunjukkan bahwa pada 118 Kabupaten/Kota di Pulau Jawa memiliki model GWR yang berbeda-beda. Untuk model GWR menggunakan bandwidth CV diperoleh model terbaik dengan menggunakan fixed exponential kernel dengan sembilan kelompok variabel yang signifikan, untuk model GWR menggunakan bandwidth AIC diperoleh model terbaik dengan menggunakan fixed bisquare kernel dengan enam kelompok variabel yang signifikan.

Poverty is one of the social issues that continues to be a concern for the government. Almost all developing countries have low living standards. One way to reduce poverty is by analyzing the factors that influence it. One suitable method for analyzing poverty levels is by using Geographically Weighted Regression (GWR). This is because the GWR model considers different spatial aspects for each observation location. In the GWR model, a regression analysis approach is used to understand the spatial relationship between variables in a geographical context. This is because the GWR model considers the distance between the observation location and its surrounding locations. The GWR model also considers weighting for each observation location. Areas close to the observation location are given a higher weight than areas far from the observation location. In this case, the determination of the weight in the GWR model depends on the bandwidth. This research analyzes four spatial weights, namely fixed Gaussian kernel, fixed bisquare kernel, fixed tricube kernel, and fixed exponential kernel, applied to two bandwidths: CV bandwidth and AIC bandwidth. The dependent variable used is the poverty rate, and the independent variables used are average length of schooling, minimum wage, unemployment rate, human development index, life expectancy, and population. The results of this study show that the 118 districts in Java Island have different GWR models. For the GWR model using the CV bandwidth, the best model is obtained using the fixed exponential kernel with nine significant variable groups. For the GWR model using the AIC bandwidth, the best model is obtained using the fixed bisquare kernel with six significant variable groups.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Carisa Putri Salsabila Purnamasari
"Pengangguran merupakan fenomena sosial yang menjadi salah satu masalah utama yang dihadapi setiap daerah di Indonesia. Salah satu cara yang dapat dilakukan untuk mengurangi angka pengangguran adalah dengan melakukan analisis terhadap faktor-faktor yang mempengaruhi tingkat pengangguran terbuka (TPT). Dibandingkan dengan metode analisis regresi linier, metode Geographically Weighted Regression (GWR) lebih diunggulkan karena dapat menangani masalah ketidakstasioneran spasial yang biasanya terjadi pada data fenomena sosial. Ketidakstasioneran spasial adalah situasi dimana hubungan antar variabel berbeda-beda secara signifikan di setiap lokasi pengamatan. Ketidakstasioneran spasial ini sering disebut juga dengan heterogen spasial. Heterogenitas spasial mengakibatkan hasil analisis regresi linier menjadi tidak akurat di beberapa lokasi. GWR menangani masalah tersebut dengan membangun model regresi di setiap lokasi pengamatan sehingga memungkinkan parameter regresi menjadi berbeda di setiap lokasi pengamatan. Pendugaan parameter pada model GWR menggunakan pembobot berdasarkan lokasi setiap pengamatan sehingga model yang diperoleh berlaku hanya untuk lokasi tersebut. Penentuan pembobot bergantung pada nilai bandwidth. Bandwidth merupakan lingkaran dengan radius ℎ dari titik pusat lokasi pengamatan yang digunakan sebagai dasar penentuan pembobot setiap lokasi pengamatan. Nilai bandwidth yang sangat kecil akan mengakibatkan variansi yang besar. Hal tersebut disebabkan karena jika nilai bandwidth sangat kecil maka jumlah pengamatan yang berada pada radius h menjadi sedikit, sehingga menyebabkan model yang diperoleh sangat kasar (undersmoothing) karena menggunakan sedikit pengamatan, dan sebaliknya. Oleh karena itu, pemilihan bandwidth optimum sangat penting dalam menentukan pembobot karena dapat mempengaruhi ketepatan model yang terbentuk. Penelitian ini bertujuan untuk mengetahui perbandingan performa model GWR yang menggunakan metode bandwidth CV, AICc, dan BIC dalam pembentukan fungsi pembobot Fixed Gaussian Kernel yang diterapkan pada data pengangguran di kabupaten/kota di Pulau Jawa. Variabel dependen yang digunakan dalam penelitian ini adalah tingkat pengangguran terbuka kabupaten/kota di Pulau Jawa, dan variabel independen yang digunakan adalah kepadatan penduduk, indeks pembangunan manusia, tingkat partisipasi angkatan kerja, upah minimum kabupaten/kota, rata-rata upah sebulan pekerja formal, dan rata-rata pendapatan bersih sebulan pekerja informal. Hasil penelitian menunjukkan bahwa setiap kabupaten/kota memiliki model GWR yang berbeda-beda. Model GWR bandwidth CV lebih baik dalam menjelaskan data pengangguran kabupaten/kota di Pulau Jawa tahun 2020 karena memiliki nilai RMSE paling kecil, yaitu 1,0904 serta nilai R2 dan Adjusted-R2 paling besar, yaitu 0,8539011 dan 0,7937159.

Unemployment is a social phenomenon, a problem faced by every region in Indonesia. One way that can be carried out to reduce the unemployment rate is analyzing the factors that affect the open unemployment rate (TPT). Rather than using linear regression analysis, Geographically Weighted Regression (GWR) was preferable since it gave a better representative model by effectively resolve spatial non-stationary problem which is generally exist in spatial data of social phenomenon. Spatial non-stationary is a situation when the relationship between variables are significantly different in each location of observation point. This spatial non-stationary is often refer to spatial heterogeneity. Spatial heterogeneity show that linear regression analysis will give a misleading interpretation results in some locations. GWR solve this problem by generating a single model in each observation location so the regression parameters can be different at each observation location. Parameter estimation in the GWR model uses weights based on the location of each observation so that the estimate model applies only to this location. The weighting determination depends on the bandwidth value. Bandwidth is a circle with radius ℎ from the center point of the observation location which is used as the basis for determining the weight of each observation location. Smaller bandwidth value will result a large variance. It can happen because when the bandwidth is very small, there will be a small number observations in the radius h, which can makes the estimate model is very rough (undersmoothing) because it uses few observations, and vice versa. Therefore, choosing the optimum bandwidth is very important in determining the weights where it can affect the accuracy of the model formed. This study aims to compare the performance of the GWR model using the CV, AICc, and BIC bandwidth methods in the formation of Fixed Gaussian Kernel weighted function which is applied to unemployment data in districts/cities in Java. The dependent variable used in this study is the district/city open unemployment rate in Java, and the independent variables are population density, human development index, labor force participation rate, district/city minimum wage, the average monthly wage of formal workers, and the average monthly net income of informal workers. The results show that each district/city has a different GWR model. The GWR model with CV bandwidth is better at explaining district/city unemployment data on Java Island in 2020 which it has the smallest RMSE value, 1.0904, and the largest R2 and Adjusted-R2 values, namely 0.8539011 and 0.7937159, respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>