Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 151558 dokumen yang sesuai dengan query
cover
Nikita Christina
"Lapangan geotermal Wayang Windu terletak di Jawa Barat telah beroperasi sejak tahun 2000 dengan total kapasitas produksi sebesar 227 MW dan memiliki 28 sumur produksi dan 5 sumur injeksi. Telah dilakukan pengukuran berulang gravitasi dengan 51 benchmarks pada tahun 2014 dan 2017. Dari hasil pengukuran tersebut terlihat perbedaan anomali gravitasi mikro yang berasosiasi dengan perubahan massa di bawah permukaan. Dari 51 stasiun amat, terjadi perbedaan antara pengukuran pada tahun 2014 dengan tahun 2017 mulai dari -263.1 µGal hingga +47.6 µGal. Di daerah selatan lapangan, terjadi nilai perubahan yang positif dengan indikasi adanya penambahan massa sedangkan pada bagian utara, yang merupakan daerah produksi utama, terjadi nilai perubahan yang negatif dengan indikasi terjadinya mass deficit akibat proses produksi.  Dari nilai anomali gravitasi tersebut, dengan metode gridding menggunakan teorema flux Gauss, ditemukan perubahan massa di reservoir sebesar -32.8 juta ton dengan keterangan pertambahan massa di sebelah selatan sebesar 8.1 juta ton, dan pengurangan massa di sebelah utara sebesar 40.9 juta ton untuk tahun 2014-2017. Dari analisis anomali gravitasi mikro tersebut, dapat diamati juga pola aliran fluida sehingga dapat diketahui ketepatan fungsi sumur injeksi. Dengan bantuan data gempa mikro, dapat terlihat, pola aliran fluida yang mengalir dari sebelah selatan lapangan menuju tengah hingga bagian utara lapangan, serta bagian barat laut menuju timur-tenggara, ke arah zona produksi utama. Hasil yang didapat dari penelitian ini dapat digunakan untuk manajemen reservoir geotermal untuk menciptakan sistem dan produksi uap yang berkelanjutan.

Wayang Windu geothermal field is located in West Java and has been operating since 2000. The field has total production capacity of 227 MW, with the 28 production wells and five reinjection wells. Repeated gravity measurements have been done with 51 benchmarks around the reservoir boundary in 2014 and 2017. There are differences in the gravity value associated with the change of mass in the reservoir. The southern area of the field has positive value of gravity changes (up to +47.6 µgal) which indicates the increased mass due to injection process. The northern area which has vapor dominated system and as the location for most of the production wells, has a negative value of gravity changes (up to -263.1 µgal) with the indication of mass deficit due to the production activity. Using the microgravity anomaly and gridding method of Gaussian flux theorem, the change of mass in the reservoir can be found. There is -32.8 Mt of mass changes in the reservoir with 8.1 Mt mass added at the south of the field and 40.9 Mt of mass loss at the north of the field in 2014 until 2017. According to the analysis of changes in microgravity value, fluid flow patterns can also be observed to find the accuracy of reinjection well function. Using micorearthquake data as the secondary data, found that the fluid flow pattern of the field is from the south of the field to the center and the north of the field, and from NW to East-Southeast. The result of this study can be used for geothermal reservoir management to create a sustainable and renewable geothermal system."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rani Riantika
"Eksploitasi energi panas bumi menyebabkan terjadinya perubahan parameter fisik, seperti perubahan massa di dalam reservoir akibat aktivitas produksi dan injeksi. Aktivitas produksi dan injeksi, seperti ekstraksi fluida, injeksi fluida, serta pengisian fluida secara alami dapat memengaruhi kesetimbangan massa dan aliran fluida di reservoir. Untuk menjaga keberlanjutan eksploitasi energi panas bumi, perlu dilakukan kegiatan monitoring secara berkala untuk memantau kondisi massa dan aliran fluida di reservoir. Salah satu metode yang dapat dilakukan untuk monitoring kondisi reservoir adalah Microgravity 4D. Metode Microgravity 4D dapat mendeteksi perubahan medan gravitasi berdasarkan distribusi variasi densitas batuan baik secara lateral atau horizontal di dalam reservoir. Perubahan medan gravitasi berasoisiasi dengan volume massa batuan di reservoir, yang digunakan untuk menentukan nilai perubahan massa di zona proven produksi dan injeksi. Berdasarkan hasil penelitian ini, kesetimbangan massa fluida di reservoir menunjukkan adanya massa sebesar 17,92 MTon yang diprediksi berasal dari pengisian fluida secara alami yang bergerak melewati zona struktur graben di sekitar lapangan penelitian. Pengisian fluida secara alami tersebut memberikan kontribusi pada reservoir selama periode tersebut.

The exploitation of geothermal energy causes changes in physical parameters, such as changes in mass within the reservoir due to production and injection activities. Production and injection activities, such as fluid extraction, fluid injection, and natural fluid recharge, can affect the mass balance and fluid flow in the reservoir. To maintain the sustainability of geothermal energy exploitation, regular monitoring activities are necessary to observe the mass and fluid flow conditions in the reservoir. One method that can be used for monitoring reservoir conditions is 4D Microgravity. The 4D Microgravity method can detect changes in the gravitational field based on the distribution of rock density variations, both laterally and horizontally within the reservoir. Changes in the gravitational field are associated with the volume of rock mass in the reservoir, which is used to determine the value of mass changes in the production and injection proven zone. Based on the results of this study, the mass balance of fluid in the reservoir indicates a mass of 17.92 MTon, predicted to come from natural fluid recharge moving through the graben structure zone around the research field. This natural fluid recharge contributes to the reservoir during the period studied."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lendriadi Agung
"Ekstraksi dan injeksi fluida di sumur-sumur lapangan geothermal Kamojang pada fase eksploitasi, menyebabkan terjadinya perubahan massa di reservoir. Time-lapse microgravity monitoring dilakukan untuk memantau kesetimbangan massa yang terjadi di reservoir akibat dari proses operasi dan produksi geothermal di Kamojang. Dengan periode monitoring yang optimal, time-lapse microgravity monitoring yang rutin dilakukan setiap tahun di Kamojang sejak tahun 2016 hingga tahun 2021 mampu menggambarkan dinamika perubahan massa fluida secara periodik di reservoir Kamojang. Daerah KWK menjadi daerah yang mengalami kehilangan massa paling besar, dengan area natural recharge di sekitar Barat Laut – Selatan - Tenggara dari tepi reservoir Kamojang. Masuknya fluida natural recharge dan sumur injeksi yang menyebar di area produksi Kamojang, menyebabkan defisit massa yang terjadi di Kamojang tidak sebesar dari yang diperkirakan, rata-rata 4 MTon fluida natural recharge masuk ke reservoir tiap tahunnya, yang menyebabkan kehilangan massa tahunan nya hanya sekitar -7 Mton per tahun. Namun strategi penambahan sumur injeksi di area KWK perlu segera dilakukan untuk menghindari kehilangan massa yang lebih besar yang dapat menyebabkan penurunan produksi yang lebih cepat. Penambahan kuantitas fluida injeksi sekitar 450 ton per jam dapat dilakukan untuk meningkatkan rasio injeksi dari 23% menjadi 58%, sehingga keberlangsungan dan kontinuitas operasi produksi geothermal di Kamojang dapat lebih terjaga dalam jangka panjang

Fluid extraction and injection in the wells of Kamojang geothermal field during exploitation causes mass changes in the reservoir. Time-lapse microgravity monitoring is carried out to monitor the mass balance that occurs in the reservoir as a result of geothermal operations and production in Kamojang. With an optimal monitoring period, time-lapse microgravity monitoring routinely conducted every year in Kamojang from 2016 to 2021 are able to describe the dynamics of fluid mass changes in the Kamojang reservoir.The KWK area is the area that has highest deficit mass loss, with natural recharge areas around the Northwest - South - Southeast from the edge of the Kamojang proven reservoir. The natural recharge fluids and injection wells which spread in the Kamojang production area, causes the mass deficit that occurs in Kamojang less than expected, an average of 4 MTons of natural recharge fluid enters the reservoir each year, which causes an annual mass loss of only approximately -7 Mton per year. However, the strategy of adding injection wells in the KWK area needs to be implemented immediately to avoid greater mass loss which can lead to a faster decline production. The addition of an injection fluid quantity around 450 tons per hour can be done to increase the injection ratio from 23% to 58%, so that the sustainability and continuity of geothermal production in Kamojang can be maintained for the long term production."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gifa Asmahan
"Penelitian ini bertujuan mengidentifikasi aliran fluida produksi dan reinjeksi di lapangan panas bumi melalui metode timelapse microgravity monitoring, untuk memahami dampak ketidakseimbangan fluida terhadap tekanan dan distribusi massa dalam sistem geothermal. Metode ini memungkinkan pendeteksian perubahan densitas di bawah permukaan bumi akibat eksploitasi panas bumi. Simulasi forward modelling dengan data sintetis digunakan untuk memvalidasi pendekatan ini. Hasil menunjukkan bahwa massa yang hilang di reservoir dapat diukur dan dipantau, dengan penurunan massa yang terjadi secara bertahap seiring intensifikasi produksi fluida. Pola aliran fluida dan hilangnya massa bervariasi tergantung pada jenis sumur dan metode ekstraksi. Sumur produksi vertikal menunjukkan hilangnya massa secara lokal, sedangkan sumur produksi deviasi dan deviasi dengan reinjeksi memperlihatkan pola aliran yang lebih kompleks dan terdistribusi. Penelitian ini berhasil memetakan pola aliran fluida secara detail, memberikan pemahaman lebih baik mengenai dinamika reservoir geothermal. Temuan ini dapat membantu merencanakan strategi produksi dan reinjeksi yang lebih efektif dan berkelanjutan, serta menunjukkan potensi metode microgravity sebagai alat pemantauan yang efisien.

This study aims to identify the flow of production and reinjection fluids in a geothermal field using the timelapse microgravity monitoring method, in order to understand the impact of fluid imbalance on pressure and mass distribution within the geothermal system. This method enables the detection of subsurface density changes due to geothermal exploitation. Forward modeling simulations with synthetic data were used to validate this approach. The results indicate that the mass loss in the reservoir can be measured and monitored, with a gradual decrease in mass corresponding to increased fluid production. Fluid flow patterns and mass loss vary depending on the type of well and extraction method. Vertical production wells exhibit localized mass loss, while deviated production wells and deviated wells with injection show more complex and distributed flow patterns. This research successfully maps the fluid flow patterns in detail, providing a better understanding of geothermal reservoir dynamics. These findings can help plan more effective and sustainable production and reinjection strategies, demonstrating the potential of the microgravity method as an efficient monitoring tool."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tavip Dwikorianto
"

Eksploitasi fluida panasbumi akan mengakibatkan terjadinya perubahan fisik maupun kimia reservoir suatu lapangan geothermal. Hal ini terjadi di Lapangan Panasbumi Kamojang yang diproduksikan dalam empat periode, yaitu sebesar 30 MW sejak 1982 dan menjadi 140 MW sejak tahun 1987. Pada tahun 2005 produksinya menjadi 200 MW dan sejak tahun 2015 sehingga sampai saat ini produksi uap Lapangan Kamojang adalah 235 MW. Untuk melihat perubahan kondisi tersebut maka dilakukan survei Microgravity Time-lapse (gravitasi mikro time-lapse) guna mengetahui gambaran perubahan reservoir secara lebih luas berdasarkan perubahan nilai gravitasi reservoir dari waktu ke waktu yang diakibatkan terjadinya pengurangan masa dari kegiatan produksi fluida dan penambahan masa dari kegiatan injeksi fluida dalam reservoir. Secara umum, hasil kajian gravitasi mikro time-lapse dari tahun 1984 sampai 2018 menunjukkan adanya perubahan nilai gravitasi mikro negatif yang lebih banyak yang artinya terjadi defisit masa fluida yang lebih banyak dibanding penambahan masa fluida ke dalam reservoir. Hasil pemodelan 3- Dimensi menghasilkan defisit massa sekitar-168 MTon dan penambahan massa sekitar 33 MTon. Adanya defisit massa yang lebih banyak tersebut maka perlu dibuat konsep pengelolaan reservoir yang baik melalui skenario produksi dan reinjeksi guna pengelolaan Lapangan Panasbumi Kamojang berkelanjutan.

 


Geothermal fluid exploitation is expected to cause physical as well as chemical changes to the reservoir of a geothermal field. This is what happened to Kamojang Geothermal Field which has been producing for four periods, starting from the initial production capacity of 30 MW (1982) which became 140 MW (1987), then 200 MW (2008) and 235 MW since 2015 up to now. To observe changes of subsurface condition, Microgravity Time-Lapse as one of geophysical survey activity is carried out in order to obtain the reservoir changes in a wider view based on the changes of gravity value that due to the extracted and injected fluid mass and it is reflected to the rock density changes. Generally, the microgravity study result from 1984 until 2018 shows the existence of microgravity value changes which correlates to the amount of fluid mass produced is more much than the water mass which was reinjected back into the reservoir. It is proven in 3-D modelling which there is deficit mass around -168 MTon and addition mass around 33 MTon only. By knowing that is important to find good reservoir management through production and reinjection scheme for Kamojang Geothermal Field sustainable development.

 

"
2019
T54382
UI - Tesis Membership  Universitas Indonesia Library
cover
Syaiful Rachman
"Dalam Computational Fluid Dynamics, simulasi dari interaksi fluida-fluida memberikan hasil yang berbeda dibandingkan interaksi fluida-solid. Asumsi yang tepat dan kondisi lainnya dibutuhkan untuk memperoleh simulasi interaksi fluida yang terbaik. Penghitungan yang digunakan adalah metode Smoothed Particle Hydrodynamics SPH berdasarkan persamaan Navier-Stokes, seperti pada penelitian sebelumnya yang dibuat dalam bahasa pemrograman FORTRAN. Sebagai pengembangannya, penelitian ini memodifikasi persamaan gaya viskositas untuk fluida berbeda jenis. Penelitian ini menggunakan dua jenis fluida berbeda massa jenis dan viskositas, dengan skenario fluida yang diam dalam ruang 3 dimensi. Untuk mendapatkan interaksi yang murni dari fluida, pengaruh lain seperti reaksi kimia dan transfer panas diabaikan, serta kedua jenis fluida juga bersifat miscible. Pergerakan partikel, massa jenis, tekanan dan gaya-gaya diteliti dari setiap skenario dan variasi. Simulasi dua jenis fluida yang berbeda pada penelitian ini memperlihatkan perilaku pergerakan partikel yang berbeda tiap skenarionya, namun serupa dengan perilaku sebenarnya.

In Computational Fluid Dynamics, simulation of fluid fluid interaction gives different results than fluid solid interaction. Right assumptions and other conditions is needed to reach best fluid interaction simulation. The computation uses Smoothed Particle Hydrodynamics SPH method based on Navier Stokes equation, as from the previous works in FORTRAN programming language. As the development, this research modifies the term of viscosity force equation to multiple fluid equation. This research uses two different fluids in density and viscosity, and scenarios with fluids at rest in 3 dimensional box. In order to get a pure interaction of fluids, other effects and influence like chemical reaction and heat transfer is neglected, and the fluids are also miscible with each other. Particle movements, density, pressure and forces is observed for every scenarios and variations. The simulation of two different fluids in this research showed different particle movements in each scenario, but similar to its actual behavior. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indra Prayitno Abdullah
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S29428
UI - Skripsi Open  Universitas Indonesia Library
cover
Yayan Sofyan
"Lapangan panasbumi Kamojang sudah memulai eksploitasi dan produksi sejak tahun 1983 dengan produksi uap sampai tahun 2000 telah mencapai 116.78 x 106 ton. Dengan rata-rata produksi dalam sepuluh tahun terakhir adalah 8.746.546 ton uap per tahun diperlukan manajemen reservoar untuk mengelola potensi reservoar secara optimal. Manajemen reservoar ini sangat diperlukan untuk mengatasi masalah penurunan produksi uap yang saat ini terjadi di Lapangan panasbumi Kamojang. Dalam mempertahankan stabilitas produksi, pengelolaan produksi dan reinjeksi sangat diperlukan dengan memperhatikan karakteristik reservoar dan perubahan-perubahannya.
Monitoring geofisika dapat dilakukan untuk memantau kondisi reservoar secara berkala serta perubahan-perubahan yang terjadi. Metode microgravity dan microearthquake merupakan dua metode geofisika yang saling melengkapi dalam memonitor kondisi reservoar geothermal melalui pengukuran perubahan nilai medan gravitasi dan gempa mikro yang terjadi dalam waktu tertentu. Metode microgravity dilakukan untuk mengukur perubahan medan gravitasi antara tahun 1999 dengan tahun 2005 pada 51 titik benchmark gravitasi yang sama. Metode microearthquake dilakukan untuk melihat distribusi gempa mikro yang terjadi antara tahun 2004 sampai 2005 dengan pengamatan data setiap hari.
Hasil interpretasi data microgravity dan microearthquake dari penelitian ini mengidentifikasi kemungkinan arah perubahan massa menuju NW dengan sebaran gempa mikro yang cukup aktif. Arah aliran fluida di dalam reservoar panasbumi diperkirakan cenderung mengarah NW mengikuti sesar normal. Hasil ini digunakan untuk saran penempatan lokasi sumur produksi baru lebih fokus ke arah NW dari pusat reservoar dan reinjeksi fluida pada arah SW di daerah perubahan medan gravitasi negatif.

More than 116.78 x 106 ton of vapor has been exploited from the Kamojang Geothermal Field since 1983 to 2000. Reservoir management is intended to optimize the reservoir potential in order to produce an optimum long time energy production. Reservoir management is used to solve the decline production problem at the Kamojang Geothermal Field and to maintain the stability of the production which is influenced by reservoir material balance.
Microgravity and Microearthquake (MEQ) methods are geophysical monitoring toolss that help the reservoir management to determine the reservoir condition and its changes periodically. Microgravity method is used to measure the changes of the gravity values between 1999 and 2005 with 51 gravity benchmarks. Microearthquake method is used to map the distribution of its hypocenters at Kamojang Geothermal Field occurred between: 2004 to 2005.
The interpretation of the microgravity and microearthquake data at Kamojang Geothermal Field shows the direction of the mass changes to the north-west, the same direction of the distribution of the microearthquake occurrence. Fluid flow direction in the geothermal reservoir is considered trending to the north-west direction following the direction of the main fault. Based on this study it is recommended to locate the new production wells in the north-west direction while the injection wells to the south-west direction.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
T20917
UI - Tesis Membership  Universitas Indonesia Library
cover
Teguh Perdana Putra
"Potensi energi geotermal Indonesia merupakan yang terbesar di dunia, namun kini baru diutilisasi sekitar 4% dari potensi tersebut. Penelitian ini bertujuan mengoptimalkan penempatan sumur produksi geotermal di lapangan X agar risiko aktivitas pengembangan skema produksi dapat diminimalisasi. Pada penelitian ini dilakukan pemodelan dan simulasi reservoir dengan menggunakan data 3G (Geologi, Geofisika dan Geokimia) dari lapangan X dan data dari sumur yang telah ada. Dengan menggunakan TOUGH2, PETRASIM dan GeoSlicer-X, pemodelan forward yang mencakup adjustment dari litologi dan posisi sources dilakukan hingga model reservoir mencapai kondisi natural state.
Data hasil simulasi reservoir kemudian diregresi menggunakan MATLAB serta dilakukan optimasi numerik guna mendapatkan titik-titik penempatan sumur produksi yang diajukan untuk penambahan kapasitas terpasang di lapangan X. Didapatkan hasil penelitian titik optimum penempatan sumur produksi pada koordinat x 3276 m dan y 4262 m dengan nilai entalpi spesifik maksimum 1529,9 kJ/kg; serta 6 titik penempatan sumur produksi dengan nilai entalpi spesifik 1500, 1450 dan 1400 kJ/kg. Dengan demikian, penambahan kapasitas terpasang dari skema produksi tambahan ini diestimasi dapat mencapai 43,5 MWe.

Indonesia has the biggest estimated geothermal energy reserve in the world, but only 4% of that reserve currently utilized to generate electricity. The purpose of this research is to optimize the production well placements at X field to minimize the failure risk of production scheme development. In the research, reservoir modelling and simulation is conducted based on 3G (Geological, Geophysical and Geochemical) data and existing wells data. Forward modelling process, which covers the lithology and sources position adjustment, is executed with TOUGH2, PETRASIM and GeoSlicer-X to validate the reservoir model towards natural state condition.
Using MATLAB, the resulting data is regressed and used to numerically optimize the production well placement decision based on the fluid specific enthalpy. The new production scheme is proposed to further increase the installed capacity in X field. The final result is the optimal point of well placement; which is 3276 m in x coordinate and 4262 m in y coordinate with the maximum specific enthalpy value of 1529,9 kJ/kg and 6 (six) other points with specific enthalpy of 1500, 1450 or 1400 kJ/kg. Thus, the improvement of the installed capacity with the proposed production scheme is estimated to reach 43,5 MWe.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54875
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahrian Elfinurfadri
"Eksplorasi pada daerah prospek geothermal bertujuan untuk mencari zona reservoir, kriteria zona reservoir yang baik yaitu memiliki temperatur, tekanan dan permeabilitas yang tinggi. Penentuan zona reservoir perlu dilakukan kegiatan survei terpadu 3G meliputi survei geologi, geokimia dan geofisika. Pada lapangan geothermal daerah "F" menggunakan metode remote sensing untuk memetakan struktur dan alterasi di permukaaan. Analisis geokimia digunakan untuk mengetahui karakteristik sistem geothermal dan analisis geofisika digunakan untuk memetakan kondisi sistem geothermal di bawah permukaan. Berdasarkan analisis remote sensing dengan menggunakan teknik band combination secara pengamatan manual diketahui bahwa arah utama dari kelurusan daerah penelitian "F" adalah Barat Laut ndash; Tenggara. Kelurusan ini berkorelasi dengan kemunculan manifestasi permukaan.
Analisis data geokimia menunjukkan bahwa pemetaan zona upflow di tunjukkan oleh kemunculan manifestasi Kaipohan dan hot spring tipe sulfat SO4 , sedangkan zona outflow di tinjukkan dengan kemunculan manifestasi hot spring dengan tipe fluida bikarbonat HCO3 . Data geofisika menggunakan 46 data titik ukur magnetotellurik yang selanjutnya di analisis melalui pola kurva splitting, arah elongasi polar diagram serta melakuian inversi 3D. Berdasarkan analisis tersebut maka diketahui struktur lapisan bawah permukaan dari clay cap dengan nilai resistivitas rendah, reservoir dan heat source. Hasil akhir dari penelitian ini juga akan memberikan implikasi terhadap upaya peningkatan Drilling Success Ratio DSR dalam pemboran dan mengurangi risiko pada tahapan eksplorasi.

Exploration in the geothermal prospect area aims to find the reservoir zone, a good reservoir zone criterion are has high temperature, pressure, and permeability. Determination of reservoir zones needs to be carried out by a 3G integrated survey activity covering geological, geochemical and geophysical surveys. In the geothermal field 39 F 39 , survey is conducted using a remote sensing method to map the structure and alteration on the surface. Geochemical analysis is used to determine the characteristics of geothermal systems and geophysical analysis used to map the condition of geothermal systems beneath the surface. Based on remote sensing analysis by using band combination technique by manual observation, it is known that the main direction of research area ldquo F rdquo straightness is Northwest Southeast. This straightness correlates with the appearance of surface manifestations.
Analysis of geochemical data showed that upflow zone mapping was demonstrated by the emergence of kaipohan and hot spring type sulfate manifestations SO4 , while the outflow zone was presented by the appearance of hot spring manifestation with bicarbonate fluid type HCO3 . Geophysical data uses 46 data of magnetotellurik measuring point which then analyzed by splitting curve pattern, direction of polar diagram elongation, and 3D inversion. Based on these analyzes, it is known that the subsurface structure of clay cap has low resistivity value, reservoir, and heat source. The final results of this study will also provide implications for improving Drilling Success Ratio DSR in drilling and reducing risks at the exploration stage.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47880
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>