Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11987 dokumen yang sesuai dengan query
cover
Yu, F. Richard
"This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme.
There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results."
Switzerland: Springer Nature, 2019
e20507632
eBooks  Universitas Indonesia Library
cover
Carl, Timo
"Timo Carl presents alternatives to curtain wall facades and other flat boundaries creating autonomous spaces. He investigates facade typologies with multiple material layers to strategize the relationship between buildings and their environment. By revisiting Le CorbusierĀ“s seminal brise soleil an alternative reading of the modern project emerges: one that is not based on classical compositional rules, but instead on the dynamic relationships with environmental forces. Finally, an exciting series of project-based investigations sets out innovative ways in which novel deep skins combine energy-conscious performance with the poetics of architecture."
Wiesbaden, Germany: Springer Nature, 2019
e20507640
eBooks  Universitas Indonesia Library
cover
Pahlavan, Kaveh, 1951-
New York: John Wiley & Sons, 1995
621.381 PAH w (1)
Buku Teks  Universitas Indonesia Library
cover
Dandung Sektian
"Pengendalian ketinggian atau biasa disebut Level Controller adalah hal yang penting di berbagai bidang industri, termasuk industri kimia, industri minyak bumi, industri pupuk, industri otomatif dan lain-lainnya. Pada penelitian ini, dirancang sebuah pengendali non-konvesional menggunakan Reinforcement Learning dengan Twin Delayed Deep Deterministic Polic Gradient (TD3). Agent ini diterapkan pada sebuah miniature plant yang berisi air sebagai fluidanya. Miniature plant ini disusun dengan berbagai komponen yaitu flow transmitter, level transmitter, ball-valve, control valve, PLC, dan pompa air. Kontroler agent TD3 dirancang menggunakan SIMULINK Matlab di computer. Data laju aliran dan ketinggian air diambil melalui flow transmitter dan level transmitter yang dikoneksikan dengan OPC sebagai penghubung antara Matlab ke SIMULINK. Penerapan agent TD3 pada sistem pengendalian ketinggian air digunakan pada dua kondisi yaitu secara riil plant dan simulasi. Dari penelitian ini didapatkan, bahwa kontroler agent TD3 dapat mengendalikan sistem dengan baik. overshoot yang didapatkan kecil yaitu 0,57 secara simulasi dan 0,97 secara riil plant.

In this study, the level controller is the most important in many industry fields, such as chemical industry, petroleum industry, automotive industry, etc., a non-conventional controller using Reinforcement Learning with Twin Delayed Deep Deterministic Policy Gradient (TD3) agent was designed. This agent was implemented in water contain the miniature plant. This miniature plant consists of many components: flow transmitter, level transmitter, ball-valve, control valve, PLC, and water pump. Agent controller was designed using SIMULINK Matlab on a computer, which obtained flow rate and height information comes from flow transmitter and level transmitter connected to OPC that link between Matlab to SIMULINK. Implementation of TD3 to control water level system used two conditions, in real plant and simulation. In this study, we obtain that the TD3 agent controller can control the designs with a slight overshoot value, namely 0,57 in the simulation and 0,97 in the real plant."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sangat kecil dan mendekati 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in coupled tank systems in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be made using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is very small and close to 0%."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sama dengan 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in the coupled tank system in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be created using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is equal to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book is a collection of papers from international experts presented at International Conference on NextGen Electronic Technologies (ICNETS2-2016). ICNETS2 encompassed six symposia covering all aspects of electronics and communications domains, including relevant nano/micro materials and devices. Presenting recent research on wireless communication networks and Internet of Things, the book will prove useful to researchers, professionals and students working in the core areas of electronics and their applications, especially in signal processing, embedded systems and networking."
Singapore: Springer Nature Singapore, 2019
e20518704
eBooks  Universitas Indonesia Library
cover
Nur Fadilah Yuliandini
"Sistem Coupled tank umum digunakan pada bidang industri otomatis, salah satu pengendalian yang umum terjadi pada coupled tank adalah pengendalian ketinggian air. Sistem pengendalian tersebut bertujuan untuk menjaga ketinggian air yang berada pada tangki. Penelitian ini melakukan simulasi pengendalian ketinggian air pada coupled tank dengan menerapkan Reinforcement Learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG). Proses simulasi tersebut dilakukan menggunakan simulink pada MATLAB. Algoritma DDPG melalui serangkaian training sebelum diimplementasikan pada sistem coupled tank. Kemudian pengujian algoritma DDPG dilakukan dengan memvariasikan nilai set point dari ketinggian air dan sistem diberikan gangguan berupa bertambahnya flow in dari control valve lain. Performa dari algorima DDPG dalam sistem pengendalian dilihat dari beberapa parameter seperti overshoot, rise time, settling time, dan steady state error. Hasil yang diperoleh pada penelitian ini bahwa algoritma DDPG memperoleh nilai settling time terbesar sebesar 109 detik, nilai steady state error terbesar sebesar 0.067%. Algoritma DDPG juga mampu mengatasi gangguan dengan waktu terbesar sebesar 97 detik untuk membuat sistem kembali stabil.

The Coupled Tank system is commonly used in the field of industrial automation, and one of the common controls implemented in this system is water level control. The purpose of this study is to simulate water level control in a coupled tank using Reinforcement Learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm. The simulation process is performed using Simulink in MATLAB. The DDPG algorithm undergoes a series of training sessions before being implemented in the coupled tank system. Subsequently, the DDPG algorithm is tested by varying the set point values of the water level and introducing disturbances in the form of increased flow from another control valve. The performance of the DDPG algorithm in the control system is evaluated based on parameters such as overshoot, rise time, settling time, and steady-state error. The results obtained in this study show that the DDPG algorithm achieves a maximum settling time of 109 seconds and a maximum steady-state error of 0.067%. The DDPG algorithm is also capable of overcoming disturbances, with the longest recovery time of 97 seconds to restore system stability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hans Budiman Yusuf
"Sistem pengendalian temperatur dan kelembaban merupakan bagian dari sistem HVAC (Heating, Ventilation, and Air Conditioning) yang merupakan salah satu contoh sistem pengendalian yang banyak digunakan dalam berbagai sektor industri. Pengaturan temperatur dan kelembaban tersebut mempengaruhi kondisi ruangan yang umumnya dalam sektor industri digunakan sebagai tempat penyimpanan. Pengendalian temperatur dan kelembaban yang baik akan menjaga kualitas dari objek yang disimpan. Namun penggunaan sistem HVAC juga memberikan tanggungan biaya yang cukup besar untuk dapat beroperasi, sehingga dibutuhkan suatu sistem yang mempunyai kinerja yang lebih baik dan dapat meminimalisir biaya yang dikeluarkan untuk pengoperasian sistem. Penelitian ini bertujuan untuk melakukan pengendalian temperatur dan kelembaban yang baik dengan menggunakan Agent Reinforcement Learning dengan algoritma Deep Determinisitic Policy Gradient (DDPG) pada perangkat lunak MATLAB dan SIMULINK serta membandingkan hasil pengendalian berupa respon transiennya terhadap pengendalian berbasis pengendali PI. Hasil penelitian ini menunjukan bahwa sistem HVAC dapat dikendalikan lebih baik oleh Agent RL DPPG dibandingkan dengan pengendali PI yang ditandai dengan respon transien seperti settling time yang lebih unggul 55,84% untuk pengendalian temperatur dan 96,49% untuk pengendalian kelembaban. Kemudian rise time yang lebih cepat mencapai < 3 detik untuk mencapai nilai set point temperatur dan kelembaban.

The temperature and humidity control system is a part of the HVAC (Heating, Ventilation, and Air Conditioning) system, which is an example of a control system widely used in various industrial sectors. The regulation of temperature and humidity significantly affects the conditions of indoor spaces commonly utilized as storage areas in industrial settings. Proper temperature and humidity control are essential to maintain the quality of stored objects. However, the use of HVAC systems also comes with substantial operational costs, necessitating the development of a more efficient system that can minimize operational expenses. This research aims to achieve effective temperature and humidity control using the Agent Reinforcement Learning approach with the Deep Deterministic Policy Gradient (DDPG) algorithm implemented in MATLAB and SIMULINK software. The study also compares the control results, particularly the transient response, with those obtained from the Proportional-Integral (PI) controller-based system. The research findings demonstrate that the HVAC system can be better controlled by the Agent RL DPPG, as evidenced by superior transient responses, with a 55.84% improvement in settling time for temperature control and a 96.49% improvement for humidity control. Additionally, the rise time achieved is less than 3 seconds to reach the set point for both temperature and humidity."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deden Ari Ramdhani
"Sistem pengendalian temperatur campuran dan ketinggian air merupakan pengaplikasian yang umum ditemukan dalam bidang industri. Salah satu proses yang menggunakan sistem pengendalian tersebut adalah proses water thermal mixing. Proses tersebut bertujuan untuk menjaga nilai temperatur dan ketinggian air pada nilai yang diinginkan. Hal tersebut dapat diicapai dengan cara mengatur flow input air panas dan air dingin serta mengatur flow out dengan nilai konstan. Pada penelitian ini, diterapkan Reinforcement Learning (RL) dengan Deep Deterministic Policy Gradient (DDPG) Agent untuk melakukan simulasi proses tersebut pada Matlab dan Simulink. Proses training diperlukan untuk memberikan agent pengalaman dalam mengendalikan proses tersebut. Performa dari pengendali RL akan dilihat dari beberapa parameter seperti rise time, settling time, overshoot, dan steady-state error sebagai data kualitatif. Berdasarkan hasil pengendalian, didapatkan nilai overshoot dan steady-state error yang cukup kecil yaitu 1.3% dan 1.76%.

Mixture temperature and water level control systems are common applications in industrial field. One of the process that uses the control system is water thermal mixing process. The goal of the process is to maintain a temperature and water level at expected value. The goal can be achieved by adjusting the input flow of hot and cold water plus adjust flow out on a constant value. In this study, Reinforcement Learning (RL) with Deep Deterministic Policy Gradient (DDPG) agent was applied to simulate the process in Matlab and Simulink. The training process is needed to give agents experience in controlling the process. The performance of the RL controller will be seen from several parameters such as rise time, settling time, overshoot, and steady-state error as qualitative data. Based on the control results, the overshoot and steady-state error values are quite small, namely 1.3% and 1.76%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>