Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 155485 dokumen yang sesuai dengan query
cover
Bariq Bagawanta
"Kebutuhan energi terus meningkat mengikuti pertumbuhan ekonomi, penduduk, harga energi, dan kebijakan pemerintah. Biomassa memiliki potensi untuk menjadi salah satu sumber energi utama dimasa mendatang, dan modernisasi sistem bioenergi disarankan sebagai kontributor penting bagi pengembangan energi berkelanjutan dimasa depan, khususnya bagi pembangunan berkelanjutan di negara-negara industri maupun di negara-negara berkembang. Kayu di Indonesia merupakan biomassa yang sudah lama dikenal oleh masyarakat dan merupakan sumber energi terbarukan. Untuk mempermudah penggunaan biomasssa kayu sebagai sumber energi atau bahan bakar adalah dengan mengolahnya dalam bentuk pelet. Penelitian ini bertujuan untuk melakukan pengujian pengeringan sampah biomassa dengan menggunakan pengering tipe rotari (rotary dryer) serta mengatahui efisiensi kinerja dari alat pengering rotari berdasarkan variabel yang ditentukan. Variabel yang dilakukan dalam pengujian alat pengering rotari ini menggunakan ukuran pelet kayu diameter 8mm dengan laju konsumsi 48 gram/menit, putaran drum pengering 1; 1.25; dan 1.5 rpm beserta laju aliran udara pengering 33435.8; 57346.1; dan 75139.8 lpm.

Energy demand continues to increase along with economic growth, population, energy prices, and government policies. Biomass has the potential to become one of the main energy sources in the future, and the modernization of the bioenergy system is proposed as an important contributor to future energy development, specifically for sustainable development in industrialized countries or in developing countries. Wood in Indonesia is a biomass that has long been known by the community and is a renewable energy source. To facilitate the use of wood biomass as a source of energy or fuel by processing it in the form of pellets. This study aims to test the drying of rubbish by using a rotary dryer type (rotary dryer) and know the efficiency of the performance of a rotary dryer based on the variables needed. The variables carried out in this rotary dryer test use a size of 8 mm diameter wood pellets with a consumption rate of 48 grams / minute, drum dryer rotation 1; 1.25; and 1.5 rpm with a drying air flow rate of 33435.8; 57346.1; and 75139.8 lpm."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harry Hafitara
"Pertumbuhan ekonomi dan populasi penduduk di Indonesia akan menyebabkan pemenuhan kebutuhan terhadap energi terus mengalami peningkatan. Pemilihan jenis bahan bakar dan teknologi yang digunukan akan berdampak pada pertambahannya emisi gas CO2 yang dihasilkan dari pembakaran sumber energi menuju atmosfir dan dalam jumlah tertentu hal tersebut akan berdampak terhadap pemanasan global. Pemanfaatan energi terbarukan seperti biomass langkah pemerintah dalam konservasi bahan bakar dan mengurangi jumlah pemakaian energi fosil agar berkurangnya efek dari rumah kaca. Sumber energi biomassa mempunyai beberapa kelebihan antara lain merupakan sumber energi yang dapat diperbaharui sehingga dapat menyediakan sumber energi secara berkesinambungan dan dapat mengurangi emisi gas CO2. Biomassa harus mengalami proses pengolahan terlebih dahulu sebelum dapat digunakan sebagai sumber energi. Pada proses pengolahan biomassa, pengeringan merupakan salah satu tahap yang sangat penting untuk menghasilkan kualitas bahan bakar biomassa yang baik. Penelitian ini akan menyelidiki mesin pengering rotari dengan bahan bakar pelet biomassa untuk mengeringkan limbah organik. Variabel yang dilakukan dalam pengujian alat pengering rotari ini menggunakan ukuran pelet kayu diameter 8mm dengan laju konsumsi 123 gram/menit, putaran drum pengering 1; 1.25; dan 1.5 rpm beserta laju aliran udara pengering 33435.8; 57346.1, dan 75139.8 lpm.

Economic growth and population in Indonesia will cause the fulfillment of energy needs to continue to increase. The choice of fuel and technology used will have an impact on the increase in CO2 emissions resulting from the burning of energy sources into the atmosphere and in certain amounts it will have an impact on global warming. Utilization of renewable energy such as biomass is a step of the government in conserving fuels and reducing the amount of fossil energy use so that the greenhouse effect is reduced. Biomass energy sources have several advantages including being a renewable energy source so that it can provide a sustainable energy source and can reduce CO2 gas emissions. Biomass must undergo processing before it can be used as an energy source. In the process of biomass processing, drying is one of the most important steps to produce good quality biomass fuel. This research will investigate a rotary drying machine with biomass pellet fuel to dry organic waste. The variables carried out in this rotary dryer test using a diameter of 8mm wooden pellets with a consumption rate of 123 grams / minute, a drum rotation speed of 1; 1.25; and 1.5 rpm along with a drying air flow rate of 33435.8; 57346.1; and 75139.8 lpm."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daragantina Nursani
"Penggunaan biomassa sebagai sumber energi atau bahan bakar dalam bentuk pelet memiliki banyak keunggulan, diantaranya mudah untuk disimpan, didistribusikan, serta membuat proses pembakaran lebih sempurna dan stabil. Dalam proses pembuatan pelet, biomassa perlu dikeringkan terlebih dahulu untuk menghindari kontaminasi jamur yang dapat menurunkan nilai kalor. Jenis pengering yang biasa digunakan untuk pengeringan biomassa adalah tipe rotari, karena memiliki kapasitas tinggi, mudah dalam pengoperasian dan pemeliharaan.
Penelitian ini bertujuan untuk melakukan optimasi proses pengeringan dengan menginvestigasi laju penurunan kadar air sampah biomassa pada ruang pengering, menginvestigasi sebaran energi pada ruang pengering, serta menginvestigasi pengaruh debit dan suhu udara pengering serta residence time material terhadap efisiensi energi sistem pengering rotari.
Penelitian ini dilakukan secara experimental dengan mengukur suhu, kelembaban, kecepatan udara, kecepatan putar, dan bobot produk dan pelet pada berbagai variasi yaitu variasi debit udara pengering 0,6, 1, dan 1,25 m3/s, variasi kecepatan putar 1, 1,25 dan 1,5 RPM dan variasi laju konsumsi pelet 48 g/min dan 123 g/min. Data hasil experimen dianalisa dengan menggunakan analisa heat dan mass tranfer untuk menghitung sebaran penurunan kadar air dan energi pindah panas, serta analisa energi input dan output untuk perhitungan efisiensi energi sistem pengering.
Hasil analisa menunjukkan bahwa laju penurunan kadar air sangat dipengaruhi oleh laju aliran udara pengering, penurunan kadar air tertinggi pada variasi 1,25 m3/s. Penurunan kadar air tertinggi terjadi pada awal masuk material ke ruang pengering dan semakin melandai saat material menuju pengeluaran drum pengering. Perpindahan panas pada drum pengering terjadi paling tinggi di titik Q 4-5 (ujung drum pengering/arah pemasukan material). Rata-rata nilai energi perpindahan panas ini lebih tinggi pada laju aliran udara pengering yang lebih tinggi. Efisiensi sistem memiliki trend meningkat seiring dengan peningkatan debit udara pengeringan, efisiensi sistem bervariasi dari 8,91% hingga 26,84%.

The use of biomass as an energy source or fuel in the form of pellets has many advantages, including being easy to store, distribute, and make the combustion process more perfect and stable. In the pellets processing, biomass needs to be dried to avoid fungal contamination which can reduce the caloric value. The type of dryer that is normally used for biomass drying is the rotary type, because it has a high capacity, easy to operate and maintain.
This study aims to optimize the drying process with investigate the rate of decrease in water content of biomass waste in the drying chamber, investigate the distribution of energy in the drying chamber, and investigate the effect of discharge and temperature of the drying air and residence time material on the energy efficiency of a rotary drying system.
This research was carried out experimentally by measuring temperature, humidity, air velocity, rotational speed, and weight of products and pellets at various variations, namely variations in the drying air discharge of 0.6, 1, and 1.25 m3/s, variations in rotational speed of 1, 1.25 and 1.5 RPM and the variation of pellet consumption rate is 48 g/min and 123 g/min. Experimental data were analyzed using heat and mass transfer analysis to calculate the distribution of water content reduction and heat transfer energy, input and output energy analysis for the calculation of the energy efficiency of a drying system.
The results of the analysis show that the rate of decrease in water content is strongly influenced by the rate of drying air flow, the highest decrease in water content at a variation of 1.25 m3/s. The highest decrease in water content occurs at the initial entry of material into the drying chamber and increasingly sloping as the material leads to the drying drum dryer. Heat transfer in the drying drum occurs highest at Q points 4-5 (end of the drying drum/direction of material entry). The average value of this heat transfer energy is higher at higher drying air flow rates. System efficiency has an increasing trend along with an increase in drying air discharge, system efficiency varies from 8.91% to 26.84%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Manurung, Efendi
"Kebutuhan energi di perdesaan dapat dihasilkan turbin gas berbahan bakar bioenergi mengingat bahan baku bioenergi cukup tersedia , sehingga dengan tersedianya energi di perdesaan tercipta kegiatan yang sifatnya produktif untuk membuka lapangan kerja dan mengurangi kemiskinan. Sektor properti di perkotaan yang merupakan salah satu penyerap energi terbanyak dapat juga menggunakan turbin gas berbahan bakar bioenergi sehingga tercipta bangunan yang dapat mencukupi kebutuhan energinya sendiri dari sumber energi terbarukan, hal ini merupakan konsep Zero Energy Building. Turbin gas yang diharapkan mengatasi ketersediaan energi mempunyai keunggulan yakni intalasi cepat, ukuran sistem, massa, dan biaya investasi relatif lebih rendah; dapat dioperasikan dalam keadaan dingin ; getaran yang dihasilkan jauh lebih kecil; pelumasan yang lebih sederhana; efisiensi mekanis lebih baik; dapat menggunakan bermacammacam bahan bakar; gas buangnya bersih; serta gas buang dari turbin gas dapat dimanfaatkan untuk melakukan destilasi bioetanol. Tetapi, turbin gas juga mempunyai kelemahan-kelemahan, diantaranya efisiensi termal yang rendah; degradasi komponen yang terlalu cepat; dan bencana kegagalan sistem. Kelemahan tersebut diakibatkan ketidakstabilan pembakaran yang disebabkan oleh panas yang dihasilkan oleh ruang bakar tidak tetap. Sehingga muncul pertanyaan apakah bahan bakar yang ada di dalam ruang bakar tersebut sudah terbakar maksimal; karakteristik gas yang dihasilkan oleh proses pembakaran pada ruang bakar; besarnya thermal stress yang dialami oleh ruang bakar tersebut. Metodologi yang dilakukan menjawab pertanyaan tersebut adalah melakukan percobaan dengan menggunakan turbin gas mikro Proto X-1, membuat pemodelan dan simulasi dari ruang bakar, kemudian hasil percobaan tersebut dijadikan sebagai input simulasi model ruang bakar dengan menggunakan perangkat lunak CFDSOF. Sehingga diketahui karakterisitik distribusi temperatur, distribusi bahan bakar, distribusi udara dan distribusi produk gas.

Energy need in rural area can be filled with the use of bioenergy gas turbine, considering the bioenergy fuel availability with its raw material, which the production of bioenergy fuel can also reduce poverty by employing local laborer. Also, bioenergy gas turbine can also supply the energy need in urban property sector ? the most energy absorber. This condition help the building to meet its own energy needs with renewable energy source, called Zero Energy Building Concept (ZEB). With its advantages, i.e. quick installation, system dimension, weight, low investment cost, cold operation, lower lubricating parts, better mechanical efficiency, fuel variations operating, cleaner exhaust gas, the gas turbines are expected to carry the energy availabilities. Besides, high temperature of the exhaust gas can be used for bioethanol distillation system. However, the gas turbine also have weakness, i.e. low thermal efficiency, rapid components degradation, and system failure which caused by instability combustion as a result of unstable combustor temperature. This conditions arises whether the existing fuel in the combustion chamber is converted to fire; exhaust gas characteristics; thermal stress magnitude of the combustion chamber. A Prototype of Micro Gas Turbine Proto X-1 is designed and combustion CFD simulation has done to answer. Experimental results from the Proto X-1 are used as the input of the combustion CFD simulation which done by CFDSOF software resulting the temperature distribution, fuel distribution, air distribution, and exhaust gas distribution. "
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29553
UI - Tesis Open  Universitas Indonesia Library
cover
"One of the current issues in Indonesia is the scarcity of fossil fuel availability in such a way that the alternative renewable energy sources need to be explored....."
JUPEPEP
Artikel Jurnal  Universitas Indonesia Library
cover
Resiana Winata
"Kompor biomassa konvensional yang ada saat ini masih memiliki permasalahan dengan emisi gas CO yang tinggi dibandingkan kompor LPG. Pada penelitian ini, dirancang suatu kompor gas-biomassa menggunakan prinsip Top- Lit Up Draft Gasifier yang diharapkan menghasilkan emisi gas CO yang rendah dengan membakar gas pirolisis dari pelet biomassa. Kompor memiliki diameter dalam sebesar 15 cm, diameter luar 20 cm, tinggi reaktor gasifikasi 51 cm, dan tinggi keseluruhan 95 cm. Kompor menggunakan pelet biomassa dari limbah bagas yang mengandung volatile matter tinggi. Dengan memvariasikan rasio antara laju alir udara sekunder dan udara primer, didapatkan emisi gas CO ratarata terendah, 16,4 ppm (dengan emisi gas CO maksimum yang diperbolehkan adalah 25 ppm), yang terjadi pada rasio 11:1. Perbandingan antara nilai rasio tersebut menunjukkan suhu api maksimum tertinggi yang dicapai adalah 544,44°C pada rasio 6:1. Menggunakan Water Boiling Test, efisiensi termal tertinggi yang dicapai adalah 55%, dimana waktu tersingkat untuk mendidihkan 1 L air adalah 6 menit. Api kompor berwarna kuning menunjukkan pembentukan jelaga.

Nowadays conventional biomass stoves still have a problem of having high CO gas emission compared to LPG stoves. In this research, a biomass-gas stove has been designed using Top-Lit Up Draft Gasifier principle, which had been expected to have low CO gas emission by burning pyrolysis gas from biopellets. The stove has 15 cm inner diameter, 20 cm outer diameter, 51 cm gasification reactor height, and 95 cm overall height. The stove uses biopellet made of bagasse waste, which have high volatile matters content. By varying the ratio of secondary air flow to primary air flow, it was found that the lowest CO gas emission, 16,4 ppm (with maximum CO gas emission allowable is 25 ppm), occurred at the ratio of 11:1. Comparison of different values of the ratio shows that the highest maximum flame temperature achieved was 544,44oC occurring at the ratio of 6:1. Using Water Boiling Test, the highest thermal efficiency achieved was 55%, which corresponds to the shortest time to boil 1 L of water (6 minutes). The stove has yellow flame that indicates the formation of soot."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43082
UI - Skripsi Open  Universitas Indonesia Library
cover
Farah Inayati
"Mekanisme pembakaran pada kompor biomassa yang menyertakan pembakaran fasa padat dengan 1 blower pemasok udara masih menghasilkan CO di atas ambang batasnya, 25 ppm. Peneliti merancang kompor gas-biomassa dengan mekanisme pembakaran fasa gas saja menggunakan 2 blower pemasok udara primer dan sekunder, mengakomodasi preheating udara sekunder dan efek turbulensi. Penelitian bertujuan mendapatkan rancangan kompor biomassa dengan rasio udara terbaik sehingga dihasilkan emisi CO rendah dan warna api biru. Penelitian diawali dengan perancangan kompor lalu membakar gas pirolisis yang dihasilkan dari devolatilisasi biomassa. Kondisi terbaik kompor berdiameter dalam ruang pembakaran 15 cm dengan tinggi ruang pembakaran 58 cm adalah pada rasio aliran udara sekunder terhadap udara primer 6,29 dengan emisi CO rata-rata 14 ppm dan efisiensi termal 52,8 %.

Existing biomass stoves using combustion in solid phase with 1 blower as an air supplier produce CO well above the minimum allowable CO emission (25 ppm). In this research, combustion mechanism occurs only in gas phase, the stove uses 2 blower as primary and secondary air supplier, accommodates preheating secondary air and turbulency effect. The objective of this research was to get biomass-gas stove design with the best air ratio that produces low CO emission and blue flame. First step of this research is to design he stove and then to burn pyrolysis gas produced of biomass devolatilization. The best condition of the biomass gas stove, which has dimension 15 cm inner diameter for combustion chamber and 58 cm height of combustion chamber is that the flow ratio of secondary air to primary air is 6,29 which has average CO emission at 14 ppm and thermal efficiency at 52,8%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42561
UI - Skripsi Open  Universitas Indonesia Library
cover
Matthias Guenther
"Renewable energy resources are increasingly being used to cover the demand in the electricity grids in many countries. A question that is currently for most grids rather theoretical, although interesting in introducing a long-term perspective, pertains to what an energy supply from exclusively renewable energy resources could look like. This question has to be answered individually for each grid. The objective of the present paper is to scrutinize the specific challenges that a 100% renewable energy scenario brings for the Java-Bali grid. This objective is achieved by designing power generation time series such that they match a given load time series. An important challenge for a 100% renewable energy supply is the very high dependency on solar energy, which generates an enormous primary power generation fluctuation on both a daily and an annual timescale. In particular the seasonal fluctuations come along with high storage demand, which is the greatest challenge involved in a 100% renewable energy supply. There are strategies that may be used to considerably reduce the storage demand: the installed photovoltaic (PV) capacity can be increased, bioenergy can be used for seasonal balancing, and special long-term storage can be added. These options are considered in the present paper."
Depok: Faculty of Engineering, Universitas Indonesia, 2018
UI-IJTECH 9:2 (2018)
Artikel Jurnal  Universitas Indonesia Library
cover
Catur Wahyu Prasetyo
"Penelitian ini dilakukan untuk mengkaji pemanfaatan gas biometan sebagai bahan bakar Bis Transjakarta berdasarkan potensi sampah organik Pasar Induk Kramat Jati dan dari aspek lingkungan dan aspek ekonomi. Berdasarkan hasil perhitungan dan analisis, dengan potensi sampah organik di Pasar Induk Kramat Jati sebesar 40.763 ton/tahun, dapat dihasilkan potensi biogas sebesar 5.656.040 m3/tahun, dan potensi gas biometan yang dapat dimanfaatkan sebagai bahan bakar Bis Transjakarta sebesar 2.381.680 m3/tahun, dengan potensi pengurangan emisi karbon sebesar 2.927,89 tCO2/tahun. Sedangkan berdasakan analisis kelayakan keuangan diperoleh nilai NPV sebesar Rp. 6.313.952.701,-, Payback period sebesar 7,49 tahun, dan nilai IRR sebesar 13,02%, maka dapat dikatakan pemanfaatan gas biometan sebagai bahan bakar Bis Transjakarta layak untuk dilaksanakan.

This research aimed to analyze the use of biomethane gas as transjakarta bus fuel based on the organic waste potential at Pasar Induk Kramat Jati, its environment and the economy aspects. The findings demonstrate that, from 40,763 tons/year organic waste at Pasar Induk Kramat Jati, one can generate 5,656,040 m3/year biogas potential, and 2,381,680 m3/year biomethane gas that can be used as transjakarta bus fuel, with carbon emission reduction of 2.927,89 tCO2 per year. While from financial feasibility analysis, it results NPV as much as Rp. 6.313.952.701,-,with 7,49 year payback period and 13,02% IRR. It can be concluded that the use of biomethane gas as transjakarta bus fuel is highly feasible to implemented."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T40897
UI - Tesis Open  Universitas Indonesia Library
cover
R. Febry Rizqiardihatno
"Biomassa merupakan salah satu sumber energi terbarukan. Biomassa dapat dijadikan bahan bakar yang antara lain: kayu, arang, kotoran hewan, dan limbah pertanian. Untuk kebutuhan domestik di Indonesia, pemakaiannya lebih sebagai bahan bakar kompor masak dengan kayu yang dibakar langsung. Permasalahan yang sering timbul yaitu efisiensi termal yang rendah sehingga menghabiskan banyak bahan bakar yang dapat memperparah deforestasi, tingginya tingkat emisi CO, hidrokarbon, dan partikulat yang dapat menyebabkan polusi udara.
Penelitian ini dilaksanakan untuk merancang, membuat, dan menguji suatu kompor biomassa berbasis bahan bakar serbuk kayu yang dipeletasi, dengan menitikberatkan pada pengambilan kembali panas yang terbuang pada cerobong asap agar menghasilkan efisiensi termal yang cukup tinggi dan emisi zat berbahaya yang rendah. Dengan tahap penelitian yang diawali perancangan, meliputi perhitungan dan desain dimensi kompor. Tahap fabrikasi, membuat kompor dengan bahan, komponen, dan ukuran sesuai rancangan.
Tahap pengujian, memvariasikan kondisi start-up, jarak garangan dan laju masuk udara untuk menguji efisiensi termal menggunakan metode Water Boiling Test, lalu melakukan uji emisi CO dengan parameter zat polutan menggunakan alat CO Detector 7701. Hasil yang didapatkan dari desain adalah kompor berdiameter dalam 300 mm dan luar 400 mm serta tinggi keseluruhan kompor 700 mm. Untuk sistem perpipaan menggunakan pipa 1.5 inci dan pipa 3 inci. Untuk kinerja kompor, efisiensi termal kompor antara 33-38 % dan emisi CO sebanyak 19-51 ppm yang lebih baik dibandingkan kompor biomassa yang sudah ada.

Biomass is one of Renewable Energy resources. Kinds of biomass which can be used as a fuel are: wood, char, dung and agricultural waste. For Indonesian domestic needs, biomass usually used as a cook stove fuel by burning the wood directly but, the thermal efficiency for direct use process is low and emission of carbon monoxide, hydrocarbon, and particulate matters is high. This research's goal are designing, fabricating and testing a pellet biomass cookstove which focus on extracting flue gas heat from exhaust chimney for giving high thermal efficiency and depositioning dangerous emission.
Step of this research start from designing step, covering calculation and designing stove dimension. Fabrication step is making the stove with material, component and dimension appropriate with the design. Testing step is varying start up condition, distance of grate, and air flow velocity to observe the influence of those parameters to thermal efficiency and CO emission.
Thermal efficiency testing was done using Water Boiling Test method and CO Detector 7701 device for CO emission testing. The results of designing step are ID = 300 mm, OD = 400 mm and total height = 700 mm. For piping system, using 1.5 inch (37.5 mm) pipe as an air inlet pipe and 3 inch (75 mm) pipe as an outlet flue gas pipe. Thermal efficiency of this cookstove is approximately 33-38% with 19-51 ppm CO emission, which better than existing biomass cookstove."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52184
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>