Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173602 dokumen yang sesuai dengan query
cover
Dinda Rahmadita
"Elektrolisis Amonia adalah metode yang digunakan untuk menghilangkan kandungan berbahaya amonia dalam air limbah dan menghasilkan hidrogen yang dapat digunakan sebagai sumber energi alternatif. Salah satu inovasi untuk meningkatkan reduksi amonia dan produksi hidrogen yaitu dengan sistem Microbial Electrolysis Cell (MEC) merupakan teknologi dengan prospek yang memanfaatkan biomassa atau material organik, termasuk air limbah. Namun, laju reduksi amonia dan produksi hidrogen dengan sistem MEC lebih rendah jika dibandingkan dengan produksi hidrogen menggunakan metode lain. Upaya yang dapat dilakukan untuk optimasi proses reduksi amonia dan produksi hidrogen adalah dengan mengoperasikan MEC menggunakan jenis denitrifier yang tepat, dan memodifikasi elektroda dengan memberi lapisan polimer. Sistem MEC yang digunakan adalah MEC satu kompartemen, dengan kondisi operasi optimum berdasarkan pengujian penambahan variasi jenis konsorsium bakteri, yaitu konsorsium desain terdefinisi (kode: TD) dan konsorsium tak terdefinisi (kode: TT) sebagai peningkat reduksi amonia dan inhibitor metanogen yang dapat mengkonsumsi hidrogen dan mengurangi yield produksi hidrogen. Komposisi gas headspace reaktor diuji dengan menggunakan Gas Chromatography untuk menganalisis kandungan hidrogen,  komposisi ammonia diuji menggunakan Spektrofotometri, serta morfologi elektroda menggunakan Spektroskopi FTIR, dan Scanning Electron Microscope. Konsorsium TD dibandingkan dengan konsorsium TT di MEC skala 100 mL untuk proses simultan reduksi amonia dan produksi hidrogen. Konsorsium TD memberikan hasil terbaik dari segi profil produksi hidrogen dengan Hmax 0,05412 mg L-1, YH2 0,03298 mg g-1, dan Rmax 0,00524 mg L-1 jam-1. Dengan pelapisan polimer MEC mampu meningkatkan konsentrasi maksimum Hmax hingga 27,02%.

Ammonia electrolysis is a method used to remove the dangerous content of ammonia in wastewater and produce hydrogen which can be used as an alternative energy source. One of the innovations to increase ammonia reduction and hydrogen production is Microbial Electrolysis Cell (MEC) system is a technology with prospects that utilize biomass or organic materials, including wastewater. However, the rate of reduction of ammonia and hydrogen production with the MEC system is lower when compared to hydrogen production using other methods. Efforts that can be made to optimize the ammonia reduction process and hydrogen production are by operating the MEC using the right type od denitrifier, and modifying the electrodes by applying a polymer coating. The MEC system used is a one-compartment MEC, with optimal operating conditions based on variations of bacterial consortium, defined design consortium (TD) and undefined consortium (TT) as enhancers of ammonia reduction and methanogen inhibitors that can consume hydrogen and reduce hydrogen production yield. The composition of the reactor headspace gas will be supported by using Gas Chromatography to analyze hydrogen content, ammonia composition will be tested using Spectrophotometry, and the morphology of the electrodes using a FTIR Spectroscopy, and Scanning Electron Microscope. The TD consortium compares the TT consortium on a 100 mL MEC scale for the simultaneous process of ammonia reduction and hydrogen production. TD Consortium provides the best results in terms of hydrogen production profile with Hmax 0.05412 mg L-1, YH2 0.03298 mg g-1, and Rmax 0.00524 mg L-1 hour-1. With MEC polymer coating it can increase the maximum Hmax concentration up to 27.02%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiara Yuniawati
"Pembentukan hidrogen pada proses elektrolisis plasma di sekitar katoda dipengaruhi oleh besarnya energi penguapan. Penggunaan selubung, meminimalkan pendinginan di fasa liquid dan memaksimalkan pendinginan di fasa gas menjadi parameter penting guna meningkatkan efisiensi proses produksi hidrogen. Memaksimalkan pendinginan pada fasa gas akan mengoptimalkan terbentuknya plasma pada katoda sehingga dapat menekan konsumsi energi hingga 50%. Energi yang digunakan akan lebih banyak untuk konversi dibandingkan evaporasi. Penggunaan selubung digunakan untuk melokalisasi panas yang dihasilkan oleh katoda dalam pembentukan plasma. Untuk itu, diperlukan modifikasi reaktor untuk meningkatkan efisiensi proses produksi hidrogen agar dapat menekan jumlah energi yang digunakan dan meningkatkan jumlah produk gas hidrogen. Pada karakterisasi arus dan tegangan, semakin tinggi konsentrasi larutan maka tegangan yang dibutuhkan untuk membentuk plasma akan semakin rendah. Semakin bertambahnya konsentrasi dan tegangan, maka laju produksi, komposisi, dan G (H2) juga meningkat dan dapat menekan konsumsi energi (Wr). Kondisi optimum yang diperoleh dari variasi penggunaan selubung adalah dengan menggunakan panjang selubung 5 cm pada kedalaman katoda 1 cm dibawah permukaan larutan. Untuk mencapai efisiensi proses produksi hidrogen, dapat dilakukan dengan penambahan aditif metanol. Hasil terbaik dari berbagai variasi yang dilakukan, dicapai saat menggunakan aditif metanol 15% volume pada 0,01 M NaOH dengan rasio gas hidrogen tertinggi hasil proses elektrolisis plasma dibandingkan Faraday dengan nilai G (H2) sebesar 151,88 mol/mol, konsumsi energi terendah yaitu 0,89 kJ/mmol, laju produksi hidrogen tertinggi yaitu 31,45 mmol/menit, dan komposisi hidrogen terbesar yaitu 78,6%.

Hydrogen generation of plasma electrolysis process around the cathode is affected by the amount of evaporation energy. Utilization of veil, minimizing cooling in liquid phase, and maximizing cooling in gas phase become important parameters to improve process efficiency of hydrogen production. Maximizing cooling on gas phase can optimize the plasma formed around the cathode that will decrease energy consumption until 50%. Conversion takes more energy than evaporation process. The utilization of veil is used to localize the heat produced by cathode of plasma generation. Therefore, an improvement of electrolysis plasma reactor modification is needed to improve process efficiency of hydrogen production, suppress the amount of energy consumption and improve the amount of hydrogen production. On the characterization of current and voltage, as the concentration gets higher, the voltage needed to form the plasma will be lower. As the concentration and voltage get increasing; the rate of production, composition, and G (H2) also gets increasing while the energy consumption (Wr) is reduced. The optimum conditions obtained from variations of veil is 5 cm of length, when the depth of cathode is 1 cm below the surface of solution. Achieving efficiency process of hydrogen production can be done by adding methanol. The best result is achieved using 15% volumes of methanol additive in 0.01 M NaOH with the highest hydrogen ratio plasma electrolysis process results compared with the Faraday electrolysis, G (H2) is 151,88 mol/mol, the lowest energy consumption is 0,89 kJ/mmol, the highest hydrogen production rate is 31,45 mmol/minute and the highest hydrogen composition is 78,6%."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64978
UI - Skripsi Membership  Universitas Indonesia Library
cover
Johannes Leonardo Sofresid Sasiang
"Produksi hidrogen menggunakan proses elektrolisis plasma sangat potensial untuk dikembangkan karena dapat menjadi alternatif yang praktis demi memenuhi kebutuhan sumber energi. Elektrolisis plasma dapat meningkatkan laju produksi dan efisiensi energi elektrolisis Faraday. Modifikasi reaktor kompartemen ganda dilakukan untuk mencapai kondisi proses pada tegangan listrik yang tinggi namun menekan arus yang mengalir pada sistem sehingga konsumsi energi menjadi rendah. Penelitian ini dilakukan untuk melihat pengaruh tegangan, konsentrasi KOH, penambahan aditif etanol, kedalaman katoda, dan suhu operasi terhadap laju produksi, konsumsi energi, dan efisiensi proses. Produksi hidrogen terbaik diperoleh sebesar 26,50 mmol/menit dengan konsumsi energi sebesar 1,71 kJ/mmol H2. Peningkatan efisiensi terhadap proses elektrolisis mencapai 90 kali lebih besar.

Hydrogen production by plasma electrolysis is potential to be developed for fulfilling alternative energy needs. Plasma Electrolysis can increase the rate of production and energy efficiency of electrolysis. Double compartment modification reactor is designed to achieve the high electrical voltage and reduce the energy consumption. This research was carried for determining the effect of voltage, KOH concentration, addition of ethanol and temperature in hydrogen production, energy consumption, and process efficiency.The highest hydrogen production obtained is 26,50 mmol / min with 1,71 kJ / mmol H2. This experiment can reach up 90 times hydrogen production compared to electrolysis process."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54814
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizka Diva Pratiwi
"Sebuah terobosan ide terbaru untuk memproduksi bahan bakar hidrogen adalah dengan memanfaatkan biomassa dalam sistem bioelektrokimia, salah satunya adalah Microbial Electrolysis Cell (MEC). MEC adalah sebuah metode untuk memproduksi gas hidrogen dari material organik. Selain konsumsi energi yang sangat rendah, sistem MEC ini mampu menggunakan limbah lumpur sebagai substrat bagi komunitas bakteri di dalamnya. Upaya yang dapat dilakukan untuk meningkatkan produksi hidrogen adalah dengan mengoperasikan MEC pada jarak antar elektroda yang optimal. Salah satu masalah besar yang senantiasa timbul dalam penggunaan sistem MEC ialah keberadaan metanogen, yaitu bakteri penghasil metana yang dapat menurunkan yield produksi biohidrogen. Kultur bakteri yang digunakan akan divariasikan, yaitu mixed culture dan bakteri gram negatif. Penelitian ini akan menggunakan metode kontrol biologis dengan bioelektroda yang diperkaya bakteri denitrifier untuk menginhibisi pertumbuhan metanogen. Variasi jarak antar elektroda dilakukan untuk menemukan kondisi yang optimal. Komposisi gas headspace reaktor akan diuji menggunakan Gas Chromatography untuk menganalisis kandungan hidrogen dan metana. Penggunaan bakteri mixed culture sebagai kultur bakteri sistem MEC dapat memproduksi hidrogen 96,8% lebih banyak dibandingkan dengan bakteri gram negatif. Penambahan  isolat Pseudomonas stutzeri terbukti dapat menurunkan kadar metana pada sistem MEC sebesar 83,7% dengan. Berkurangnya jarak antar elektroda dari 1 cm ke 0,5 cm dapat meningkatkan kadar hidrogen 65%.

The latest breakthrough idea for producing hidrogen fuel is by utilizing biomass in bioelectrochemical systems, which is Microbial Electrolysis Cell (MEC). MEC is a method for producing hidrogen gas that is managed from organic materials. In addition to very low energy consumption, the MEC system is able to use sludge waste as a substrate for the bacterial community to be implemented. The rate of hidrogen production with MEC is relatively lower when compared to air fermentation and electrolysis methods. Efforts that can be made to increase hidrogen production are by increasing the MEC at optimal distance between electrodes. One of the major problems that arises from the use of the MEC system is methanogens, the methane-producing bacteria causing loses of biohidrogen production. The bacterial cultures used will be varied, which are  mixed cultures and gram negative bacteria. This study will use biological control methods in bioelectrode forms enriched with denitrifier bacteria to inhibit the growth of methanogens. Variation in the distance between electrodes is done to find the optimal condition. The composition of the reactor chamber gas headspace will be supported by using Gas Chromatography to analyze hydrogen and methane reserves. Using a mixed culture of bacteria as a bacterial culture system MEC can produce hydrogen 96.8% more if compared to gram negative bacteria. The addition of denitrifier isolates was shown to reduce methane levels in the MEC system by 83.7% by using Pseudomonas stutzeri. Reducing the distance between electrodes from 1 cm to 0.5 cm can increase hydrogen levels by 65%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christina Natalia
"Pada penelitian ini dilakukan rancang bangun sistem produksi hidrogen melalui elektrolisis plasma pancaran pijar dengan perubahan variabel proses seperti suhu, tegangan, dan konsentrasi KOH. Selama proses elektrolisis, akan terbentuk spesi- spesi aktif yang akan meningkatkan produksi gas hidrogen. Rasio jumlah mol H2 yang dihasilkan (G(H2)) meningkat dengan meningkatnya tegangan dan konsentrasi KOH. Hal yang sebaliknya terjadi pada jumlah energi yang dibutuhkan untuk menghasilkan sejumlah volum hidrogen pada waktu tertentu (Wr). Pada tegangan 70 volt DC dan konsentrasi KOH 0,08 M, 0,14 M, dan 0,20 M nilai G(H2) masing-masing adalah 1,11 mol.mol-1;1,20 mol.mol-1 dan 1,23 mol.mol-1 sedangkan nilai Wr adalah 550 kJ/L; 514,54 kJ/L dan 504,19 kJ/L.

This paper performed the system design of hydrogen production via glow discharge plasma electrolysis by changing the process variables such as temperature, voltage, and the concentration of KOH. During the electrolysis process, energetic species will form and increase the production of hydrogen. The mole number of hydrogen divided by the Faradaic stipulated yield by passing the given electricity between the two electrodes, G (H2), increases with increasing voltage and concentration of KOH. The opposite occurs in the power depleted divided by the hydrogen volume (Wr). At 70 V DC and the concentration of KOH 0,08 M, 0,14 M, and 0,20 M the value G (H2), respectively, are 1,11 mol.mol-1; 1,20 mol.mol-1 and 1,23 mol.mol-1 while the value of Wr is 550 kJ/L; 514,54 kJ/L and 504,19 kJ/L."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51986
UI - Skripsi Open  Universitas Indonesia Library
cover
Bondan Ariawan
"Hidrogen merupakan salah satu bahan baku pada industri kimia dan juga sebagai bahan bakar kendaraan. Gas hidrogen banyak diperoleh dari proses elektrolisis yang memerlukan energi listrik yang besar. Elektrolisis plasma adalah metode baru yang dapat meningkatan produktivitas hidrogen sekaligus menekan kebutuhan energi listrik. Penelitian ini menguji keefektifan proses elektrolisis plasma yang dinyatakan sebagai jumlah produk hidrogen per energi listrik yang dikonsumsi dengan memvariasikan tegangan listrik dan konsentrasi larutan KOH-Gliserol. Selanjutnya, keefektifan proses ini dibandingkan dengan keefektifan elektrolisis Faraday. Hasil percobaan menunjukkkan kenaikan konsentrasi dan tegangan menyebabkan kenaikan jumlah produk hidrogen. Proses elektrolisis plasma pada penelitian ini dapat meningkatkan keefektifan proses hingga 13,74 kali lipat lebih tinggi dibandingkan dengan elektrolisis Faraday.

Hydrogen is one of chemical industry feedstock and also automobile fuel. Hydrogen is commonly produced by electrolysis. Electrolysis however has several constarints especially to its large energy requirement. Plasma electrolysis is a breakthrough method not only to improve hydrogen productivity but also suppress the energy consumption. This research has been conducted to investigate the effectiveness of plasma electrolysis which is stated as hydrogen product quantity per energy consumption by varying the voltage and KOH-Glycerol concentration. Afterwards, the process effectiveness was then compared to which of Faraday electrolysis. The result of this research shows that the hydrogen quantity produced escalated up to 13 times higher."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51686
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Nanda Faria
"Pengembangan pemanfaatan energi dari sumber energi terbarukan marak dilakukan sebagai bentuk dari gerakan menuju pemanfaatan energi rendah karbon di masa yang akan datang. Salah satu bentuk energi alternatif yang dikembangkan adalah hidrogen yang dihasilkan dengan proses elektrolisis air. Berbagai faktor perlu diperhatikan dalam pengembangan fasilitas produksi hidrogen salah satunya adalah faktor keselamatan, khususnya keselamatan proses. Pertimbangan faktor keselamatan proses adalah untuk melihat sejauh mana potensi kehilangan (losses) yang dapat terjadi jika terjadi kecelakaan yang berhubungan dengan proses sehingga perlu dilakukan kajian terkait risiko keselamatan proses yang akan dilakukan dalam penelitian ini dengan lingkup fasilitas produksi hidrogen dengan proses alkaline electrolyzer. Metode yang dilakukan dalam studi ini adalah secara semi-quantitative dengan memanfaatkan penilaian risiko dengan teknik Hazard and Operablitity Study (HAZOP) serta Layer of Protection Analysis (LOPA). Hasil dari HAZOP dari skenario 22 causes dan 26 consequences pada 7 nodes menunjukkan bahwa keberadaan 29 safeguards dapat menurunkan risiko keselamatan proses pada operasi dari rentang low to very high risk menjadi low to medium risk sedangkan hasil dari 4 skenario LOPA menunjukkan bahwa tidak diperlukan penambahan lapisan proteksi dan sebagai kesimpulan fasilitas produksi hidrogen dapat dioperasikan dengan kategori risiko As Low As Reasonably Practicable (ALARP).

The development of energy use from renewable energy sources is widely carried out as a form of movement towards the use of low-carbon energy in the future. One form of alternative energy being developed is hydrogen which is produced by the electrolysis of water. Various factors need to be considered in the development of hydrogen production facilities, one of which is the safety factor, especially process safety. The consideration of process safety factors is to see the extent of potential losses that can occur in the event of an accident related to the process, so it is necessary to conduct a study related to process safety risks that will be carried out in this study with the scope of hydrogen production facilities with alkaline electrolyzer processes. The method used in this study is semi-quantitative by utilizing risk assessment using the Hazard and Operability Study (HAZOP) and Layer of Protection Analysis (LOPA) techniques. The results of HAZOP from 22 causes and 26 consequences scenarios at 7 nodes shows that the presence of 29 safeguards can reduce process safety risk in operation from low to very high risk to low to medium risk, while the results from 4 LOPA scenarios indicate that no additional layer of protection is required. The study conclude that the hydrogen production facility can be operated under the As Low As Reasonably Practicable (ALARP) risk category."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Fauzi
"Penelitian ini dilakukan untuk memproduksi hidrogen secara intensif melalui sistem elektrolisis plasma dalam larutan NaOH menggunakan reaktor kompartemen ganda. Suhu proses pada penelitian ini dijaga 85-90oC, katode berjenis wolfram berdiameter 3 mm, dan anode berupa koil. Proses elektrolisis plasma menjadi alternatif untuk produksi hidrogen dalam memenuhi kebutuhan energi. Proses elektrolisis plasma lebih efektif dan efisien daripada proses elektrolisis Faraday untuk memproduksi hidrogen. Variasi yang dilakukan pada penelitian ini adalah tegangan listrik 752 dan 801 V, jarak antarkatode 1, 2, dan 3 cm, rekayasa untuk daya yang sama, serta jumlah katode 1, 2, dan 3 katode.
Tujuan utama dari penelitian ini adalah melakukan modifikasi penambahan katode ke dalam sistem untuk meningkatkan efektivitas produksi hidrogen. Pengujian yang dilakukan yakni pengukuran konsentrasi hidrogen menggunakan gas kromatografi, pengukuran laju alir gas menggunakan bubble soap flowmeter, dan pengukuran arus menggunakan multimeter. Produksi hidrogen terbaik diperoleh sebesar 15,56 mmol/menit dan konsumsi energi sebesar 4,24 kJ/mmol. Proses elektrolisis plasma pada penelitian ini menunjukkan peningkatan efektivitas proses sebesar 36,43 kali lipat dibandingkan dengan elektrolisis Faraday yakni dalam konsentrasi NaOH 0,05 M, tegangan 801 V, dan menggunakan 3 katode. Semakin banyak katode yang digunakan, maka semakin efektif dan efisien proses elektrolisis plasma untuk memproduksi hidrogen.

This research is done to produce hydrogen intensively through electrolysis system plasma within the NaOH solution using double compartment reactor. Temperature process in this study is kept 85-90oC, using tungsten cathode with diameter of 3 mm, and the anode in the form of coils. Plasma electrolysis process is an alternative for hydrogen production to fulfill the needs of energy. Plasma electrolysis process is more efficient than electrolysis Faraday process to produce hydrogen. The variation in this study are the electrical voltage 752 and 801 V, the distance between cathodes 1, 2, and 3 cm, engineered to the same power, and the number of cathode are 1, 2, and 3 cathodes.
The main purpose of this study is to modify the addition of cathode which is from tungsten material into the system to improve the effectiveness of hydrogen production. Tests which is conducted in this study are the measurement of the hydrogen concentration using gas chromatography, gas flow rate measurement using bubble soap flowmeter and current measurement using a multimeter. The highest hydrogen production obtained is 15,56 mmol/ min with 4,24 kJ / mmol. This experiment can reach up 36,43 times hydrogen production compared to Faraday electrolysis process. The more cathodes are used, the more effective and efficient for producing hydrogen in plasma electrolysis process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S58856
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mardiansyah
"ABSTRAK
Gas hidrogen banyak diperoleh dari proses elektrolisis yang memerlukan energi listrik
yang besar. Elektrolisis plasma adalah teknologi baru dalam meningkatkan produktifitas
hidrogen sekaligus menekan kebutuhan listrik. Penelitian ini dilakukan untuk menguji
efektivitas proses elektrolisis plasma dengan penambahan aditif (larutan metanol dan
etanol) yang dinyatakan sebagai jumlah produk hidrogen per satuan energi listrik yang
dikonsumsi dengan memvariasikan temperatur, tegangan listrik dan konsentrasi larutan
KOH. Efektivitas proses ini dibandingkan dengan efektivitas elektrolisis Faraday dan
elektrolisis plasma tanpa penambahan aditif. Hasil percobaan menunjukkan kenaikan
konsentrasi KOH dan tegangan listrik menyebabkan kenaikan jumlah produk hidrogen.
Proses elektrolisis plasma pada penelitian ini dapat meningkatkan efektivitas proses
hingga 5 kali lipat lebih tinggi dibandingkan dengan elektrolisis plasma tanpa
penambahan aditif.

ABSTRACT
Hydrogen is commonly produced by electrolysis which consumes a great deal of energy.
Plasma electrolysis is a new technology that can increases hydrogen productivity while
lowering electrical energy needs. This research aimed to test the effectiveness of the
plasma electrolysis process with methanol and ethanol addition which is expressed as the
number of products of hydrogen per unit of electrical energy consumed by investigated
temperature, electrical voltage and the concentration of KOH solution. Then, the
effectiveness of this process compared with the effectiveness of electrolysis Faraday.
Results showed an increase of KOH concentration and the voltage causes an increase in
the hydrogen product. Plasma electrolysis process in this research can improve the
effectiveness of processes to 5 fold higher compared plasma electrolysis without
methanol and ethanol addition."
Fakultas Teknik Universitas Indonesia, 2011
S1156
UI - Skripsi Open  Universitas Indonesia Library
cover
Matthew Hardhi
"ABSTRACT
Penggunaan bahan bakar fosil berujung pada berbagai macam kerusakan lingkungan. Salah satu bahan bakar alternatif potensial untuk menggantikan penggunaan bahan bakar fosil ialah hidrogen, dikarenakan tingginya nilai kalorifik hidrogen dan emisinya yang hanya berupa uap air dan oksigen apabila dikonsumsi sebagai bahan bakar. Namun demikian, mayoritas proses produksi hidrogen masih bergantung pada sumber fosil dan sangat mengonsumsi energi, seperti pirolisis bahan bakar fosil. Selama dua dekade terakhir, penggunaan potensial sistem Microbial Electrolysis Cell MEC telah banyak diteliti sebagai sarana produksi hidrogen. Selain konsumsi energi yang sangat rendah, sistem MEC ini mampu menggunakan limbah lumpur sebagai substrat bagi komunitas bakteri di dalamnya. Satu masalah besar yang senantiasa timbul dalam penggunaan sistem MEC ialah keberadaan metanogen, yaitu bakteri penghasil metana. Metanogen ini mengonsumsi biohidrogen yang diproduksi pada katoda MEC sehingga menurunkan yield produksi biohidrogen. Penelitian ini mengemukakan metode kontrol biologis melalui pengenalan koloni terisolasi bakteri denitrifikasi ke dalam sistem MEC dalam wujud bioelektroda diperkaya sebagai kompetitor alami metanogen, dengan tujuan akhir untuk menginhibisi pertumbuhan metanogen. Penelitian akan dilakukan dalam konfigurasi MEC satu-ruang single-chamber. Komposisi gas headspace reaktor yang diperkaya dengan denitrifier akan dibandingkan dengan reaktor kontrol untuk menguji kebenaran hipotesis. Hipotesis akan diuji melalui analisis komposisi gas masing-masing reaktor. Hasil penelitian menunjukkan bahwa reaktor yang telah diperkaya dengan denitrifier mampu meningkatkan produksi H2 dalam beberapa siklus pengerjaan, dimana pada siklus kedua produksi H2 meningkat sebesar 100 apabila dibandingkan terhadap reaktor kontrol.

ABSTRACT
The intense usage of fossil fuel has led to the release of pollutants that are closely linked with the global warming phenomena, causing a variety of irreconcilable environmental destruction. One potential alternative fuel to replace fossil based fuels is hydrogen, as it possesses high calorific content and only emits water vapor and oxygen on usage. However, the majority of hydrogen production processes still rely on fossil based resources as well as energy consuming such as fossil fuel pyrolysis. In the past two decades, the potential use of microbial electrolysis cell MEC reactor to produce biohydrogen has been continuously researched. Aside from a very low energy input, it can utilize wastewater sludge as a feed for the bacterial community. A persistent problem present in all MEC usage is the presence of methanogens or methane producing bacteria. The methanogens consumes produced biohydrogen at the cathode of the MEC, reducing significant net biohydrogen yield. Numerous methods based on antibiotics, chemicals, and physical manipulations have been attempted. However, biological methods are still left largely unexplored. This research proposes the introduction of biological control method through bioelectrode enrichment with isolated colony of denitrifying bacteria to the MEC system as natural competitor to methanogens, ultimately aiming for inhibition of methanogenic, hydrogenotrophic microbial growth. The research will be done based on a single chambered MEC configuration. Composition of headspace gas in a denitrifier enriched reactor will be compared with control one to confirm the hypothesis. Hypothesis will be tested through analyzing the composition of evolved gas in each reactor. The experiment proves that in several consequent cycles, denitrifier enriched reactor increases H2 production such as in the second cycle, where H2 production increases 100 when compared to control reactor. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>