Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 116463 dokumen yang sesuai dengan query
cover
Ambar Winansi
"Pada kondisi operasi normal fasilitas nuklir berpotensi melepaskan zat radioaktif ke badan air yang disebut dengan pelepasan rutin. Transfer radionuklida pada lingkungan sangat kompleks sehingga dibuat penyederhanaan dengan pendekatan model matematis menggunakan perangkat lunak Surface Water Modelling Systems yang menyelesaikan persamaan differensial hidrodinamika dengan metode elemen hingga. Penyebaran polutan sangat dipengaruhi oleh proses adveksi dan difusi. Tujuan dari penelitian ini adalah untuk memodelkan distribusi radionuklida pada Kali Cisalak yang terletak di sekitar Kawasan Nuklir Serpong. 60Co merupakan radionuklida paling dominan yang terkandung pada lepasan efluen radioaktif. Pada penelitian ini simulasi dibagi ke dalam dua tahap yaitu simulasi model hidrodinamika menggunakan modul Resources Management Associates-2 (RMA-2) untuk memodelkan arus dan RMA-4 untuk memodelkan sebaran 60Co. Sedangkan nilai dosis efektif pada kelompok kritis dihitung menggunakan software PC-Cream 98. Pada analisis sensitivitas, koefisien kekasaran manning dan koefisien viskositas Eddy tidak memberikan pengaruh yang signifikan terhadap pola sebaran konsentrasi 60Co di Kali Cisalak. Sedangkan koefisien diffusi dan settling velocity memiliki pengaruh yang cukup signifikan. Dari hasil pemodelan didapatkan konsentrasi 60Co tertinggi sebesar 5,38 Bq/L pada jarak 10 m dari titik pelepasan, sedangkan konsentrasi terendah sebesar 0,0005 Bq/L terdeteksi pada jarak 540 m. Perhitungan dosis individu orang dewasa akibat jalur paparan akuatik yaitu 14,094 μSv/tahun.

Under normal operating conditions nuclear facilities have potential release of radioactive substances into water bodies called routine releases. Radionuclide transfer in the environment is very complex so that simplification is made with a mathematical model approach using the Surface Water Modeling Systems 10.1 software that resolves hydrodynamic differential equations with the finite element method. The goal of this research is to model the distribution of 60Co radionuclides in Cisalak River located around Serpong Nuclear Area. 60Co is the most dominant radionuclide contained in radioactive effluent discharges. In this research the simulation is divided into two stages, they are the simulation of the hydrodynamic model using the Resources Management Associates-2 (RMA-2) module to model the flow and continued using RMA-4 to model the distribution of 60Co. Whereas the effective dose in the critical group was calculated using PC-Cream 98 software. In the sensitivity analysis, the manning roughness coefficient and Eddy viscosity coefficient did not have a significant effect on the distribution pattern of 60Co concentrations in Cisalak River. But the diffusion coefficient and settling velocity have a significant influence. The result of modeling obtained the highest 60Co concentration of 5,38 Bq/L at a distance of 10 m from the release point, while the lowest concentration of 0,0005 Bq/L was detected at a distance of 540 m. Calculation of adult individual doses due to aquatic exposure pathways is 14,094 µSv/year."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nila Yudhita
"Kota dengan laju pertumbuhan penduduk yang tinggi umumnya bermasalah dengan penyediaan air baku sebagai sumber air bersih. Penyediaan air baku ini terkait erat dengan permasalahan kualitas air baku yang terus menerus mengalami degradasi. Untuk mengatasi permasalahan degradasi kualitas air baku, perlu dilakukan pengendalian dinamika kualitas air sungai dari waktu ke waktu. Untuk dapat melakukan pengendalian, perlu dilakukan pemantauan berupa pengambilan sampel di lapangan untuk kemudian menggunakan data berupa sampel tersebut dalam melakukan prediksi kualitas air sungai.
Terdapat dua cara yang dapat dilaksanakan dalam rangka memprediksi kualitas air, yaitu memanfaatkan data eksisting melalui pengambilan sampel di lapangan, dilanjutkan penggunaan metode regresi sehingga trend yang terbentuk dapat dianalisa lebih lanjut. Hanya saja metode regresi ini memiliki kekurangan, karena hanya dapat memprediksi situasi dan kondisi apabila tidak terdapat perubahan kebijakan dari pemerintah sehubungan dengan berbagai hal yang berpotensi memberi pengaruh pada kualitas air.
Diperlukan alat prediksi yang mampu mengakomodir berbagai parameter yang berpotensi menyebabkan perubahan pada kualitas air sungai dengan lebih baik. Demi tujuan tersebut, maka dipakai cara kedua, yaitu pengembangan model yang lebih kompleks dari sekedar penggunaan metode regresi, berupa model matematis yang dalam pengembangannya akan mempertimbangkan mekanisme adveksi dan disperse dalam aliran sungai.
Model adveksi-dispersi yang telah dikembangkan akan diperbandingkan dengan model eksisting yang telah ada dan dianggap telah mapan. Validasi logis dilakukan untuk membuktikan bahwa model adveksi-dispersi cukup valid dan memiliki tingkat kehandalan baik karena trend konsentrasi BOD pada model tersebut memberikan hasil yang tidak jauh berbeda dari trend konsentrasi BOD model eksisting, yaitu model QUAL2K, dengan catatan nilai parameter berupa selang waktu (?t) dan selang jarak (?x) cukup kecil, sehingga osilasi yang terjadi tidak signifikan dan hasil simulasi yang diperoleh cukup akurat serta dapat diandalkan.

Regions with high population?s growth rate mostly have problems with finding raw water intake to provide clean water for its own population. The problem about raw water availability has a correlation with the problem of raw water quality that continuously decreasing. Therefore, controlling the dynamics of the quality of the river stream routinely is necessary to solve the problems. These controlling activities can be done by taking some samples from the field to be able to predict the stream water quality in the future.
There are two ways that can be done to predict the water quality. First is by using the existing samples data collected from the field, and then utilizing regression method to generate the data trend. However, this regression method has a major limitation because it could only predict the situation and condition where there is no regulation change from the government involving things that could potentially give influences to water quality.
The more complex prediction tools are needed to accommodate many parameters that could potentially affect the water quality of the streams. In order to accomplish the work, the regression models are no longer in use and are replaced by the second way of predicting the water quality, which is the complex ones that could cover more of scenarios of water quality formulation. This complex predicting tool is the mathematic model that its development will involve observing advection and dispersion mechanism on each element of the streams.
The advection-dispersion model that has been developed will be compared to the existing models that are considered well-working before. The advection-dispersion methods will be as valid as the existing model and have an excellent quality if the BOD concentration?s trend produced by the mathematic model is not much different from that of the existing model, QUAL2K, with notes that the magnitude of step time (?t) and step length (?x) are not significantly large, so that the oscillation caused by the use of numerical formulation is also not significant, and makes the model output is accurate and reliable.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S35268
UI - Skripsi Open  Universitas Indonesia Library
cover
Chevy Cahyana. author
"ABSTRAK
Pengoperasian suatu instalasi pembangkit listrik tenaga termal, baik yang berbahan bakar batubara, minyak bumi maupun energi nuklir, umumnya menggunakan air laut sebagai pendingin. Air pendingin yang masuk kembali ke laut memiliki temperatur di atas temperatur ambien air laut. Masuknya limbah air panas dari kanal pendingin ke laut (thermal pollution) dalam jumlah besar dapat memberikan dampak negatif bagi kehidupan biota laut di sekitarnya. Pengkajian tentang pola sebaran polutan panas dari kanal pendingin pembangkit listrik perlu dilakukan untuk dapat mengetahui luas daerah yang terkena dampak dan berapa besar perubahan temperatur yang terjadi. Simulasi sebaran panas di laut dilakukan dengan mengasumsikan pembangkit listrik
tenaga nuklir dengan kapasitas 7000 MWe beroperasi di Semenanjung Muria Jepara sebagai calon tapak PLTN di Indonesia. Hasil simulasi menunjukkan temperatur sebesar 34-360C menyebar sejauh 115 m, sementara temperatur sebesar 31-330C menyebar sejauh 1048 m dari outlet kanal pendingin.

ABSTRACT
The operation of a thermal power plant, including coal-fired, oil and nuclear energy, use sea water as coolant. Cooling water back into the sea has a temperature above the ambient temperature of sea water. The entry of warm water waste from the cooling canal to the sea (thermal pollution) in large quantities may cause negative impact on marine biota around the canal outlet. Assessment of heat pollutant dispersion pattern from power plant cooling canal needs to be done in order to know the area affected and how much the temperature changes that occur. It is assumed that 7000 MWe nuclear power plant is operated to simulate heat dispersion to ocean water body at Muria peninsula, Jepara as a candidate site of nuclear power plant at Indonesia. The simulation results show that temperature of 34-360C disperse along 115 meters,
meanwhile temperature of 31-330C disperse along 1048 meters from cooling canal outlet."
2011
T 29864
UI - Tesis Open  Universitas Indonesia Library
cover
Novrikasari
"[ABSTRAK
Konsep penanggulangan bencana saat ini adalah paradigma pengurangan risiko.Setiap individu, masyarakat di daerah diperkenalkan dengan berbagai ancaman (hazards) dan kerentanan (vulnerability) yang dimiliki, serta meningkatkan kemampuan (capacity) masyarakat dalam menghadapi setiap ancaman. Sehingga studi ini bertujuan mengkaji model pengendalian risiko dispersi gas amonia.
Disain studi adalah cross sectional. Analisis model pengukuran dan struktural menggunakan comfirmatory factor analysis (CFA). Nilai validitas dan reliabilitas hasil uji kesesuaian/Goodness of Fit (GOF) adalah good fit untuk konstruk dari model.Kuesioner disebarkan secara cluster, terdapat 626 responden (area risiko 0- 2600 meter). Dibagi menjadi 293 responden pada zona dalam (area risiko 0-1300 meter) dan 333 responden zona luar (area risiko >1300-2600 meter).
Model pengukuran menghasilkan 5 variabel eksogen (kondisi lingkungan, sosial, ekonomi, biologi dan kapasitas) yang saling berhubungan langsung membentuk variabel endogen risiko dispersi gas amonia. Faktor kondisi lingkungan terdiri dari zona bahaya dan jarak rumah ke jalan raya.Faktor sosial yaitu pelatihan dan pekerjaan.Faktor ekonomi yaitu kecukupan akomodasi, pendapatan, asuransi dan pendidikan.Faktor kapasitas yaitu pengetahuan tentang bahaya, pengetahuan tentang peringatan dini, pengetahuan tentang evakuasi dan perilaku tanggap darurat. Faktor biologi yaitu usia> 65 tahun, anggota keluarga dengan penyakit kronis dan anggota keluarga berkebutuhan khusus. Risiko dispersi gas amonia pada rumah tangga area risiko 0-2600 meter ada pengaruh kontribusi dari 47% faktor sosial, 37% faktor ekonomi, 29% faktor kapasitas dan 9% faktor kondisi. Risiko dispersi gas amonia zona dalam (area risiko 0-1300 meter ada pengaruh kontribusi darifaktor sosialberkontribusi 63%, faktor ekonomi 64%, faktor kapasitas 57% dan biologi 2,3%. Selanjutnya risiko dispersi gas amonia pada rumah tangga area risiko >1300-2600 meter ada pengaruh kontribusi dari 2 (dua) faktor yaitu faktor kondisi 99% dan faktor kapasitas (12%).
Penelitian ini menyimpulkan model risiko dispersi gas amonia dalam penelitian ini menunjukkan faktor yang berkontribusi membentuk risiko dispersi gas amonia sehingga dapat menjadi upaya pengendalian dengan memperhatikan faktor yang berkontribusi tersebut. Rekomendasi kepadaPemerintah Daerah untuk menetapkan peta rawan bencana menjadi peraturan daerah yang berkekuatan hukum dan pemberlakuan peraturan tentang tata ruang (daerah pemukiman), standar keselamatan (pemantauan penggunaan teknologi) dan penerapan sanksi terhadap pelanggar. Mengkoordinasi antara Satuan Kerja Perangkat Daerah
ix
(SKPD), Dinas Pemadam Kebakaran/ Badan Penanggulangan Bencana Daerah (BPBD), dan dinas terkait untuk evakuasi (akomodasi), kelancaran akses jalur evakuasi. Menyelenggarakan sosialisasi, pendidikan dan pelatihan mengenai kesiapsiagaan bencana dispersi gas amonia kepada masyarakat melalui perkumpulan/organisasi di masyarakat. Rekomendasi kepada perusahaan antara lain : Membuat peta rawan bencana dan Emergency Respon Plan (ERP) baik internal maupun eksternal; Melakukan perawatan dengan inspeksi rutin berbasis risiko untuk memastikan kehandalan peralatan sistem pendingin amonia; Semua pekerja dalam operasional tangki sistem pendingin amonia selalu dilakukan dengan mengikuti Standard Operating Procedure (SOP), peraturan keselamatan, audit keselamatan; Mengingat sifat gas amonia yang tidak berwarna tetapi sangat beracun serta luasan area risiko yang berdampak perlu adanya sensor untuk gas amonia sebagai alat ukur dan monitoring. Selanjutnya rekomendasi kepada masyarakat agar mengembangkan dan berperan aktif dalam desa siaga bencana (kesiapsiagaan bencana berbasis masyarakat);

ABSTRACT
The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness).;The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness).;The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness)., The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness).]"
2015
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
cover
Dian Sulistiyowati
"ABSTRAK
Data dan informasi yang akurat, lengkap, dan tepat waktu sangat dibutuhkan
dalam menentukan kebijakan, strategi, dan operasional untuk mendukung
pembangunan kesehatan yang efektif dan efisien. Berbagai metode untuk menilai
kualitas data telah banyak dikembangkan, diantaranya Routine Data Quality
Asessment (RDQA) yang metode dan toolsnya sederhana dan telah diadopsi dan
dikembangkan oleh beberapa penelitian untuk mengukur kualitas data. Dimensi
kualitas data menurut kerangka konsep RDQA adalah akurasi, reliabilitas,
kelengkapan, ketepatan waktu, dan integritas. Pada penelitian ini, kualitas data pada
Program Kesehatan Ibu dan Kesehatan Anak dinilai melalui pendekatan kerangka
kerja RDQA. Kualitas data yang dinilai pada akhirnya hanya mencakup
Kelengkapan, Akurasi, dan Konsitensi. Hasil yang didapatkan melalui model
penelitian ini, Indikator Kesehatan Ibu yang datanya paling berkualitas adalah
Cakupan Kunjungan Ibu Hamil K4 dan Indikator Kesehatan Anak yang datanya
paling berkualitas adalah Cakupan Imunisasi Campak. Manajemen data menjadi
penyebab permaslahan kualitas data.

ABSTRACT
Data and information is accurate, complete, and timely manner is needed to
determine the policy, strategy, and operations to support the development of effective
and efficient health care. Various methods for assessing the quality of data has been
developed, including the Data Quality Audit (DQA), which the tools and the method
is simple and has been adopted and developed by several studies to measure the
quality of data. Eventually, quality of data assessed only completeness, accuracy, and
consistency. The results of this research are the indicator of maternal health for
which data are most qualified is maternal coverage visit for anti natal care (K4) and
fpr child health indicator is measles immunization coverage. Management data is the
problem that affect the quality of data."
Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pandu Dewanto
"Pembangunan Near Surface Disposal (NSD) Limbah Radioaktif di Indonesia perlu dilakukan dengan semakin meningkatnya limbah radioaktif aktivitas rendah (low level radioactive waste). Akan tetapi analisis dan kajian terhadap dampak radiologis lingkungan pada Demonstration Plant NSD limbah radioaktif yang akan dibangun sampai saat ini belum dilakukan. Persyaratan terkait dampak radiologis yang ditimbulkan mengacu pada Peraturan Kepala BAPETEN Nomor 7 Tahun 2013 tentang Nilai Batas Radioaktivitas Lingkungan dan Peraturan Kepala BAPETEN Nomor 4 tahun 2013 tentang Proteksi dan Keselamatan Radiasi dalam Pemanfaatan Tenaga Nuklir.
Pada penelitian ini, metode yang diterapkan berupa studi non-eksperimental. Dimana analisis terkait dampak radiologis akibat lepasan radionuklida dalam air dan tanah menggunakan perangkat lunak PRESTO (Prediction of Radiological Effects Due To Shallow Trench Operations) yang merupakan suatu model komputer untuk mengevaluasi paparan radiasi dari lapisan tanah yang terkontaminasi. Penerapan skenario yang dipilih dalam pengkajian keselamatan ini adalah skenario migrasi radionuklida Co-60 dan Cs-137 melalui jalur air tanah mengikuti pola aliran air tanah dangkal di daerah tapak NSD. Selain itu dengan menggunakan perangkat lunak SigmaPlot ditentukan pula suatu persamaan guna menentukan besarnya konsentrasi dalam air sumur maupun air sungai.
Hasil akhir menunjukkan konsentrasi radionuklida dalam sumur dan aliran sungai jauh di bawah ambang baku mutu yaitu konsentrasi aktivitas radionuklida di sumur berkisar antara 10-10 Bq/m3 sampai 100 Bq/m3 dan di sungai berkisar antara 10-15 Bq/m3 sampai 10-1 Bq/ m3. Dampak dari limbah radioaktif akan menurun mendekati radioaktivitas latar pada jarak kurang dari 10 m dan penetrasi radionuklida Co-60 dan Cs-137 ke dalam lapisan jenuh sampai dengan kedalaman 4 m. Selain itu dosis ekivalen yang memenuhi ketentuan 50mSv/tahun untuk masyarakat di sekitar tapak berada pada jarak sumur acuan di atas 15 m (>15m) yaitu 1,87x100 mSv/tahun sampai 2,38x10-14 mSv/tahun. Pada penelitian ini diperoleh suatu persamaan yang dapat memperkirakan pola konsentrasi radionuklida berdasarkan jarak dan kedalaman dari permukaan tanah terhadap waktu beroperasi fasilitas.

Near Surface Disposal (NSD) for Radioactive Waste that should be developed due to the increment of the low level radioactive waste, need to be analyzed and evaluated related to the radiological impact of environment. The provision that should be submissive regarding the radioactive release to the environment are BAPETEN Chairman's Regulation Number 7 Year 2013 on Environmental Radioactivity Limit Values and Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization.
The research method applied is done by modeling the distribution of radionuclide releases process. Analysis related with the releases of radionuclide in water and soil is using PRESTO (Prediction of Radiological Effects Due to Shallow Trench Operations) which is a computer model for evaluating radiation exposure from contaminated soil layers. The application scenarios selected in this safety assessment is the migrations of Co-60 and Cs-137 scenario through the groundwater follow the shallow groundwater flow pattern in the NSD site. The SigmaPlot software is also used to determine the concentration equation in well water and river water.
The final results showed the concentration of radionuclide in wells and streams below the provision. Radionuclide activity concentrations in well ranged from 10-10 Bq/m3 to 100 Bq/m3 and in the river ranged from 10-15 Bq / m3 to 10-1 Bq / m3. The impact of radioactive waste of radionuclide Co-60 and Cs-137 will decrease to the background radiation level at a distance less than 10 m and penetrate into the saturated layer up to 4 m. Meanwhile, the equivalent dose around the site is 1,87x100 mSv/year until 2,38x10-14 mSv/year for a reference well distance above 15 m (> 15m). In this study have been obtained an equation that can predict radionuclide concentration patterns based on the distance and the depth of the ground surface against to the facility operation time.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43071
UI - Tesis Membership  Universitas Indonesia Library
cover
Elizabeth Tia Putri Octaviani Halim
"QUAL2K merupakan pemodelan numerik yang biasa digunakan untuk badan air permukaan. Model ini dinilai sederhana dengan hasil yang didapat cukup akurat. Walau cukup sederhana, variabel yang diperlukan untuk QUAL2K cukup banyak, sehingga pada umumnya parameter yang digunakan sudah bersifat default. Dimana hal ini menyebakan tidak diketahuinya sensitivitas atau seberapa berpengaruhnya suatu parameter terhadap objek studi. Penelitian ini bertujuan untuk mensimulasikan kualitas dan perubahan amonia, total nitrogen, BOD, dan DO pada Sungai Ciliwung dari hulu ke hilir dengan aplikasi QUAL2K dan menganalisis hubungan antara sensitivitas parameter laju reaksi kinetik dan variabel input terhadap kualitas amonia, total nitrogen, BOD, dan DO pada Sungai Ciliwung. Metode yang digunakan untuk analisis pada penelitian ini adalah metode QUAL2K. Melalui simulasi pada kondisi eksisting, diketahui bahwa untuk konsentrasi amonia hanya segmen satu yang memenuhi baku mutu PP No.22 Tahun 2021. Seluruh segmen pada untuk parameter total nitrogen memenuhi baku mutu. Untuk konsentrasi dari BOD hanya segmen satu yang memenuhi baku mutu kelas IV. Dan terakhir untuk DO hanya ada segmen satu memenuhi baku mutu untuk kelas II, III, dan IV. Berdasarkan hasil analisis sensitivitas diketahui untuk amonia paling sensitif dengan konsentrasi amonia, debit diffuse source, koreksi temperatur reaerasi oksigen. Untuk total nitrogen paling sensitif dengan konsentrasi amonia, debit diffuse source, dan koreksi temperatur nitrifikasi amonia. BOD paling sensitif dengan koreksi temperatur CBOD Fast, konsentrasi BOD diffuse source, debit diffuse source. Parameter yang terakhir yaitu DO paling sensitif dengan koreksi temperatur reaerasi oksigen, air temperature, koreksi temperatur CBOD Fast. Sehingga berdasarkan analisis sensitivitas, parameter debit diffuse source dan koreksi temperatur paling sensitif terhadap seluruh parameter.

QUAL2K is a numerical model commonly used for surface water bodies. This model is regarded as being clear, and the outcomes are relatively accurate. Although QUAL2K is very basic, there are a number of variables that must be used, hence default values are typically used. Where this results in undetermined sensitivity or how important a parameter is to the study's subject. The purpose of this study is to use the QUAL2K application to simulate the quality and change of ammonia, total nitrogen, BOD, and DO in the Ciliwung River from upstream to downstream and to examine the relationship between the sensitivity of the kinetic reaction rate parameters and input variables on the quality of ammonia, total nitrogen, BOD, and DO on the Ciliwung River. The method used for analysis in this study is the QUAL2K method. Through simulations under existing conditions, from ammonia concentration only segment one meets PP No. 22 of 2021 quality standards. For the total nitrogen, all segments meet the quality standards. For the concentration of BOD, only segment one meets class IV quality standards. And finally, for DO there is only segment one that meets the quality standards for class II, III and IV. Based on the results of the sensitivity analysis, it is known that ammonia is most sensitive to ammonia concentration, diffuse source discharge, oxygen reaeration temperature correction. While for total nitrogen, the parameter is sensitive to ammonia concentration, diffuse source discharge, and ammonia nitrification temperature correction. For the next parameter which is BOD is sensitive the most to temperature correction CBOD Fast, diffuse source BOD concentration, diffuse source discharge. And the final parameter is DO that is sensitive to oxygen reareration temperature correction, air temperature, CBOD Fast temperature correction. Therefore, based on the study, diffuse source discharge and temperature correction will be the most dependent on water quality parameters."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Arie Sadewo
"ABSTRAK
Penelitian ini melakukan simulasi gangguan lepasnnya suplai daya yang diterima oleh PT Bukit Asam Unit Pertambangan Tanjung Enim sehingga terjadi gangguan beban lebih didalam sistem. Penelitian ini menggunakan metode pelepasan beban berdasarkan prioritas sehingga frekuensi sistem kembali kedalam rentang operasi frekuensi yang diijinkan. Terdapat dua skenario gangguan yang dilakukan pada yakni 1 terputusnya suplai yang diberikan oleh pembangkit listrik negara PLN sehingga sistem disuplai oleh 3 unit Generator dan 2 terputusnya suplai yang diberikan oleh PLN disertai hilangnya salah satu unit Generator. Diperoleh nilai frekuensi pada saat skenario 1 yaitu 48.74 Hz. Pada saat skenario 2 diperoleh nilai bervariasi akibat unit Generator yang ikut terputus bervariasi dari sistem yaitu, skenario 2 terputusnya PLN dengan Generator 1 sehingga frekuensi sistem 42,46 Hz,PLN dengan Generator 2 sebesar 42,46 Hz,serta PLN dengan Generator 3 sebesar 42,42 Hz.Dilakukan metode pelepasan beban sehingga didapat nilai frekuensi pada skenario 1 yaitu 49,8 Hz . Selain itu skenario 2 dengan terputusnya PLN dengan Generator 1 sebesar 50 Hz,PLN dengan Generator 2 sebesar 49,53 Hz,dan PLN dengan Generator 3 sebesar 49,51 Hz. Dengan melakukan simulasi gangguan beban lebih dengan penanggulangannya maka PT Bukit Asam Unit Pertambangan Tanjung Enim dapat memperoleh solusi apabila terjadi gangguan tersebut didalam sistem.

ABSTRAK
This study simulated the disruption of loss of power supply received by PT Bukit Asam Unit Pertambangan Tanjung Enim causing overload in system. This study uses a method of priority load release so that the frequency of the system back into the permitted operating frequency range. There are two interruption skenarios performed on 1 disconnection of supply supplied by state power plant PLN so that the system is supplied by 3 Generator units and 2 disconnection of supply provided by PLN accompanied by loss of one Generator unit. Obtained a frequency value at the time of skenario 1 is 48.74 Hz. At the time of skenario 2, the value varies due to the interrupted Generator unit varies from the system that is, the 2nd skenario of PLN interruption with Generator 1 so that the system frequency is 42.46 Hz, PLN with Generator 2 is 42.46 Hz, and PLN with Generator 3 is 42 , 42 Hz. Conducted the method of load release so that the frequency value obtained in skenario 1 is 49.8 Hz. Besides, skenario 2 with PLN breakdown with Generator 1 of 50 Hz, PLN with Generator 2 equal to 49,53 Hz, and PLN with Generator 3 equal to 49,51 Hz. By simulating more load disturbances with mitigation then PT Bukit Asam Unit Pertambangan Tanjung Enim can obtain solutions if it rsquo s happen on the system."
2017
S68040
UI - Skripsi Membership  Universitas Indonesia Library
cover
Herjuna Rahman
"Air hujan dapat dinilai merugikan bagi suatu lingkungan perkotaan dalam tingkat yang besar, tetapi juga dapat bernilai bermanfaat, jika dikelola dengan baik untuk meningkatkan pemanfaatan kembali air oleh alam, dengan tujuan jangka panjang yaitu untuk dapat dimanfaatkan oleh masyarakat yang hidup pada daerah yang mengalami hujan tersebut. Oleh karena itu, program - Water Balance Model - (WBM) yang dikembangkan oleh Pemerintah Daerah British Colombia, Kanada, digunakan untuk membandingkan antara volume air antara air hujan (total rainfall) dengan limpasannya (discharge) , begitu juga dengan jumlah infiltrasi yang dapat dihasilkannya, yang dapat ditingkatkan oleh penerapan teknologi Surface Enhancements dan Source Controls dari aplikasi Manajemen Air Hujan Perkotaan (Urban Rainwater Management).
Tujuan dari studi ini adalah untuk menguji kemampuan program WBM, yang hanya dapat diakses dari situs www.waterbalance.ca, dengan mengikuti semua tahapan yang diperlukan oleh program tersebut. Sebelum program WBM ini dapat diuji, diperlukan terlebih dahulu untuk mencari berbagai macam data yang dibutuhkan untuk dapat mengoperasikan program dengan benar, seperti antara lain data hujan, topografi, jenis tanah, penggunaan lahan (tipe & luas), dan penutup permukaan lahan, untuk dapat mewakili daerah yang akan ditinjau tersebut, dalam hal ini daerah perwakilan untuk Sub-DAS Sugutamu. Data-data lain yang diperlukan adalah juga data mengenai teknologi source controls dan surface enhancements, dari teknologi Best Management Practice (BMP) yang mendukung konsep Low-Impact Development (LID), yang sudah tersedia oleh program WBM ini. Setelah pengumpulan semua data tersebut, program dapat digunakan dengan memasukkan semua data yang sudah diperoleh kedalam program WBM melalui situs program, dan melihat hasil yang keluar setelah program dijalankan, untuk selanjutnya dapat dianalisa.
Hasil yang diperoleh dari seluruh perhitungan di dalam program akan berupa beberapa macam grafik. Ada dua macam grafik yang dihasilkan tersebut, yaitu grafik Exceedance Summary, yaitu grafik yang menunjukkan jumlah limpasan yang terjadi dalam suatu jenjang waktu tertentu, dan juga Volume Sumamry, yaitu grafik yang memperlihatkan perbandingan antara volume limpasan total (Total Discharge) , dengan kehilangan total (Total Losses) , infiltrasi DAS (Catchment Infiltration) , dan infiltrasi dari teknologi source control (Source Control Infiltration) . Oleh karena program WBM ini masih di dalam masa percobaan, maka semua hasil yang diperoleh hanya berupa suatu hasil rekayasa saja untuk menguji kemampuan yang dimiliki oleh program WBM tersebut.

Rainwater can be considered harmful for an urban environment in excess amounts, but can also become valuable, if well managed to enhance the natural restoration of water within the environment, with the long-term objective for the restored water to be used by the local community living within the area of this rainfall. Therefore, the 'Water Balance Model' (WBM) program which was developed by the Local Government of British Colombia, Canada, is used to compare the volume of water between total rainfall and its discharge, along with the total infiltration which it can produce, which can be enhanced by applying Surface Enhancement and Source Control technology through the application of Urban Rainwater Management.
The main objective of this study is to test the abilities of the WBM program, which can only be accessed through 'Water Balance Model' website, which is www.waterbalance.ca, by following the specific steps needed by the program itself. Before the WBM program can be tested, several types of data is needed to properly operate this program, such as rainfall data, topographic data, soil type data, land use data (type & area), and surface type data, which can represent the area in which is to be observed, in this case the representation area of the Sugutamu Sub-River Basin. Other data which is needed include data regarding source control and surface enhancement technology, from Best Management Practice (BMP) technology which supports the Low-Impact Development concept, which is already provided by the WBM program. After gathering all of the data, the program can be used by inputing all the required data into the WBM program through the program website, and seeing the results which are produced after the program is run, to be used for further analysis.
The results which are produced from all calculations in the program are in the form of several different types of graphs. There are two different types of graphs which are produced, which are the Exceedance Summary graph, which shows the amount of runoff which occurs in a certain time frame, as well as the Volume Sumamry graph, which shows the comparison between volumes of the Total Discharge, with the Total Losses, Catchment Infiltration, and Source Control Infiltration. Because the WBM program is still under testing, therefore all the results produced are only engineered results, to test the abilities of this WBM program.
"
2008
S35328
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>