Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 121362 dokumen yang sesuai dengan query
cover
Akmal Ramadhan Arifin
"Sistem Penilaian Esai Otomatis (SIMPLE-O) dikembangkan oleh Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia untuk ujian bahasa Indonesia. Skripsi ini akan membahas mengenai pengembangan SIMPLE-O untuk penilaian ujian bahasa Indonesia menggunakan metode Siamese Manhattan Long Short-Term Memory (LSTM) dan bahasa pemrograman Python. Terdapat dua dokumen yang akan menjadi input, yaitu jawaban esai dari peserta ujian dan jawaban referensi dari penguji. Kedua jawaban diproses dengan layer LSTM yang sama. Selanjutnya, kemiripan antara keduanya dihitung dengan fungsi persamaan. Pengujian dengan dataset jawaban dummy mendapatkan nilai MAE dan RMSE sebesar 0.0254 dan 0.0346. Kemudia, pengujian dengan dataset jawaban asli mendapatkan nilai MAE dan RMSE terbaik sebesar 0.1596 dan 0.2190. Rata-rata nilai akurasi yang didapatkan adalah 92.82 untuk fase training dan 84.03 untuk validasi.


The Automatic Essay Assessment System (SIMPLE-O) was developed by the Department of Electrical Engineering, Faculty of Engineering, University of Indonesia for the Indonesian language test. This thesis will discuss the development of SIMPLE-O for the assessment of Indonesian language tests using the Siamese Manhattan Long Short-Term Memory (LSTM) method and the Python programming language. There are two documents that will be input, essay answers from examinees and answer answers from examiners. Both answers are processed with the same LSTM layer. Next, the similarity between the two is calculated by the similarity function. Testing with dummy answer dataset produces MAE and RMSE values of 0.0254 and 0.0346. Then, testing with the real answer dataset produces MAE and RMSE values of 0.1596 and 0.2190. The average accuracy value obtained was 92.82 for the training phase and 84.03 for validation.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Athina Maria Angelica
"Skripsi ini membahas penerapan Long Short Term Memory RNN dan Manhattan Distance untuk membuat rancangan Sistem Penilaian Esai Otomatis (SIMPLE-O). SIMPLE-O adalah sistem yang sedang dikembangkan Departemen Teknik Elektro UI untuk menilai esai secara otomatis. Sistem ini menggunakan Recurrent Neural Network dengan arsitektur Long Short Term Memory untuk memberikan nilai pada esai Bahasa Jepang. Dari beberapa variasi yang diuji, model yang paling stabil adalah model yang memiliki layer LSTM, Manhattan Distance, dan Dropout dengan dropout rate sebesar 0.3, di-train selama 25 epoch dengan loss function crosscategorical entropy dan optimizer adam, dengan input model ditokenisasi per karakter dengan rata-rata akurasi sebesar 79.93%.

This thesis will explore the application of Long Short Term Memory RNN and Manhattan Distance in designing the Automatic Essay Grading System (SIMPLE-O). SIMPLE-O is a system currently being developed by Departemen Teknik Elektro UI for automatically scoring Japanese essay exams.  Out of the variations tested, the most stable model is the model with the layers LSTM, Manhattan distance, and Dropout with a dropout rate of 0.3, trained for 25 epochs with the loss function cross categorical entropy and adam optimizer, and the model's input being tokenized by character with the highest average accuracy of 79.93%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhio Makarim Utomo
"Sistem Penilaian Esai Otomatis (SIMPLE-O) dikembangkan oleh Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia untuk ujian bahasa Indonesia. Skripsi ini akan membahas mengenai pengembangan SIMPLE-O untuk penilaian ujian bahasa Indonesia menggunakan metode Gated Recurrent Unit (GRU) dan bahasa pemrograman Python. Terdapat dua dokumen yang akan menjadi input, yaitu jawaban esai dari peserta ujian dan jawaban referensi dari penguji. Kedua jawaban diproses dengan layer GRU yang sama. Selanjutnya, kemiripan antara keduanya dihitung dengan fungsi persamaan. Rata-rata nilai akurasi yang didapatkan adalah 98.84 untuk fase training dan 86.82 untuk validasi

The Automatic Essay Assessment System (SIMPLE-O) was developed by the Department of Electrical Engineering, Faculty of Engineering, University of Indonesia for the Indonesian language test. This thesis will discuss the development of SIMPLE-O for the assessment of Indonesian language tests using the Gated Recurrent Unit (GRU) method and the Python programming language. There are two documents that will be input, essay answers from examinees and answer answers from examiners. Both answers are processed with the same GRU layer. Next, the similarity between the two is calculated by the similarity function. The average accuracy value obtained was 98.84 for the training phase and 86.82 for validation"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fika Fikria Riasti
"Skripsi ini membahas mengenai pengembangan Sistem Penilaian Esai Otomatis (SIMPLE-O) untuk ujian esai berbahasa Indonesia. Sistem ini dirancang dengan menggunakan Stacked Bidirectional LSTM dan menggunakan dua jenis similarity measurement, yaitu Manhattan Distance dan Cosine Similarity, untuk mencari model dengan performa paling optimal dan selisih terbaik dari tiap jenis similarity measurement. Sistem ini menggunakan bahasa pemrograman Python, dan terdiri atas tahap preprocessing, word embedding, training menggunakan deep learning, testing, dan similarity measure untuk menghitung kemiripan antar kata pada input. Input yang digunakan pada sistem ini adalah jawaban dosen sebagai kunci jawaban dan jawaban mahasiswa. Fase training menggunakan data augmentasi dan fase testing menggunakan jawaban mahasiswa asli. Pengujian sistem ini dilakukan dengan menggunakan 7 jenis skenario. Dengan hasil selisih akhir dari model untuk fase training dan testing pada Manhattan Distance sebesar 1.871 dan 7.808, dan Cosine Similarity sebesar 2.31 dan 7.635.

This thesis discusses the development of an Automated Essay Scoring System (SIMPLE-O) for Indonesian-language essay exams. This system is designed using Stacked Bidirectional LSTM and uses two types of similarity measurement, which are Manhattan Distance and Cosine Similarity, to find the model with the most optimal performance and the best difference from each type of similarity measurement. The system uses Python programming language, and the system's stages consist of preprocessing, word embedding, training using deep learning, testing, and similarity measuring to calculate the similarity between words on the input. The inputs used in this system are lecturers' answers as answer keys and students' answers. The training phase uses augmented data, and the testing phase uses original student answers. To test this system uses 7 types of scenarios. The final difference results of the model for the training and testing phases are 1.871 and 7.808 on Manhattan Distance and 2.31 and 7.635 on Cosine Similarity."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadhifa Khalisha Anandra
"Skripsi ini membahas mengenai pengembangan Sistem Penilaian Esai Otomatis (SIMPLE-O) yang dirancang dengan menggunakan hybrid CNN dan Bi-LSTM dan Manhattan Distance untuk penilaian esai Bahasa Jepang. Sistem dirancang dengan menggunakan bahasa pemrograman Python. Sistem melalui tahapan pre-processing, feature extraction dan word embedding yang dilanjutkan dengan proses deep learning serta pengukuran dengan menggunakan manhattan distance. Hasil akhir dari sistem dibandingkan dengan penilaian manual oleh dosen. Model yang paling stabil dan terbaik ditraining dengan menggunakan hyperparameter dengan kernel sizes bernilai 5, jumlah filter atau output CNN sebesar 64, pool size sebesar 4, Bidirectional LSTM units 50, batch size sebesar 64. Model deep learning ditraining dengan menggunakan optimizer Adam dengan learning rate 0,001 , epoch sebanyak 25 dan menggunakan regularizer L1 sebesar 0,01. Rata-rata error yang diperoleh adalah 29%
This thesis discusses the development of an Automatic Essay Grading System (SIMPLE-O) designed using hybrid CNN and Bidirectional LSTM and Manhattan Distance for Japanese essay grading. The system is designed using Python programming language. The system goes through the stages of pre-processing, feature extraction and word embedding followed by deep learning process and measurement using Manhattan Distance. The final result of the system is compared with manual assessment by lecturers. The most stable and best model is trained using hyperparameters with kernel sizes of 5, number of filters or CNN outputs of 64, pool size of 4, Bidirectional LSTM units of 50, batch size of 64. The deep learning model is trained using the Adam optimizer with a learning rate of 0.001, epoch of 25 and using an L1 regularizer of 0.01. The average error obtained is 29%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yireh Anugerah Nanang Sukabhakti
"Departemen Teknik Elektro sebelumnya sudah mengembangkan sistem penilai esai otomatis (SIMPLE-O) yang berbasis algoritma winnowing dan diterapkan pada bahasa Jepang. Sistem penilai esai otomatis tersebut menggunakan algortima winnowing yang berbasiskan fingerprint dan hashing untuk mendeteksi tingkat kemiripan teks. Sistem tersebut memiliki rata-rata akurasi nilai total seluruh data hingga 90.92% dengan akurasi nilai total perpeserta ujian dapat mencapai 99.91% dan akurasi perjawaban untuk tiap peserta ujian berkisar dari 60.19% hingga 100%. Penelitian kali ini berusaha untuk mencoba untuk menaikkan akurasi tersebut. Cara yang digunakan ialah menganti hashing yang digunakan dari Rolling Hash ke MD5 dan mengimplementasi synonym recognition. Hasil percobaan ini memiliki rata-rata tingkat akurasi 85.61% dengan akurasi perjawaban untuk tiap perserta ujian berkisar 68.44% hingga 99.96%

Departement of Electrical Engineering has already developed automatic essay grading system (SIMPLE-O) which utilize winnowing algorithm which is a fingerprint-based and hash-based algorithm for detecting similarity between texts. The system have result of average of total score for all students is 90.92% with accuracy for each student is up to 99.91% and accuracy for each problem ranged from 60.19% to 100%. This research will try to raise the accuracy. The proposed method is by changing the hashing used by the system from Rolling Hash to MD5 and implementing synonym recognition. The result of conducted experiment has the average of accuracy of 85.61% and the accuracy for each problem ranged from 68.44% to 99.96%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dyah Lalita Luhurkinanti
"ABSTRACT
Algoritma winnowing merupakan algoritma yang berbasiskan fingerprint untuk mendeteksi tingkat kemiripan teks. Penelitian ini akan membahas pengembangan sistem penilai otomatis SIMPLE-O yang dikembangkan Departemen Teknik Elektro berbasis algoritma winnowing dan diterapkan untuk bahasa Jepang. Pada input bahasa Jepang diterapkan proses romanisasi untu mengubah karakter ke bentuk romaji. Penelitian dilakukan untuk mencari parameter terbaik dengan nilai akurasi atau agreement with human rater tertinggi. Dari hasil percobaan diketahui jika parameter untuk tiap-tiap input disesuaikan, secara keseluruhan sistem dapat memiliki rata-rata akurasi nilai total seluruh data hingga 90.92 dengan akurasi nilai total perpeserta ujian dapat mencapai 99.91 dan akurasi perjawaban untuk tiap peserta ujian berkisar dari 60.19 hingga 100.

ABSTRACT
Winnowing Algorithm is a fingerprint based algorithm for detecting similarity between texts. This research will talk about the development and application of automatic essay grading system SIMPLE O, developed by Department of Electrical Engineering with winnowing algorithm for Japanese language. On the Japanese language input, romanization is implemented to change the input to romaji. The purpose of this research is to find the best parameter with the highest accuracy or agreement with human rater. The result of the conducted experiment shows that with customized parameter for each input, the average of total score for all students is 90.92 with accuracy for each student is up to 99.91 and accuracy for each problem ranged from 60.19 to 100."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Helmi Arrazy
"SIMPLE-O atau Sistem Penilaian Esai Otomatis merupakan sebuah proyek yang dikembangkan oleh Departemen Teknik Elektro, Universitas Indonesia sejak tahun 2007. Penelitian ini membahas penerapan algoritma winnowing dan algoritma ASCII-Based Hashing pada pengembangan SIMPLE-O untuk ujian bahasa Jepang. Sistem dikembangkan dengan menggunakan bahasa pemrograman Python. Beberapa penelitian sebelumnya pernah menggunakan algoritma winnowing untuk mengembangkan SIMPLE-O. Namun yang membedakannya pada penelitian ini adanya penggantian algoritma hashing yang biasa digunakan, yaitu dari Rolling Hash menjadi algoritma ASCII-Based Hashing. Algoritma hashing tersebut termasuk kedalam algoritma LSH (Locality-sensitive hashing). Proses penilaian membutuhkan dua data input, yaitu jawaban mahasiswa (peserta ujian) dan kunci jawaban dosen. Kedua data input yang masih dalam bahasa Jepang akan diromanisasi menjadi teks romaji (huruf latin), setelah itu akan diproses oleh algoritma winnowing dan algoritma hashing untuk menghasilkan fingerprint. Maksud dari penelitian ini adalah untuk mencoba mendapatkan akurasi sistem yang paling tinggi. Dari hasil penelitian, didapatkan rata-rata akurasi nilai total sistem sebesar 87.10% jika parameter winnowing untuk setiap data input diseragamkan (n = 2 dan w = 2). Akurasi tersebut mengalami peningkatkan sebesar 0.24% dari hasil penelitian sebelumnya yang bernilai 86.86%. Namun jika parameter winnowing disesuaikan menggunakan nilai kombinasi yang paling terbaik, maka rata-rata akurasi nilai total sistem yang didapatkan adalah 92.74%. Akurasi tersebebut mengalami peningkatan sebesar 1.82% dari hasil penelitian sebelumnya yang bernilai 90.92%. Untuk akurasi total per mahasiswa dapat mencapai 99.95%, dan akurasi pernomor untuk tiap sampel mahasiswa berkisar dari 69.55% hingga 100%.

SIMPLE-O or Automated Essay Grading System is a project developed by the Department of Electrical Engineering, University of Indonesia since 2007. This research discusses the implementation of the winnowing algorithm and the ASCII-Based Hashing algorithm in the development of SIMPLE-O for the Japanese language exam. The system was developed using the Python programming language. Several previous research have used the winnowing algorithm to develop SIMPLE-O. But what distinguishes it in this research is the replacement of the hashing algorithm that is commonly used, namely from Rolling Hash to ASCII-Based Hashing algorithm. ASCII-Based Hashing is one of the LSH (Locality-sensitive hashing) algorithm. The grading process requires two input data, namely the examinee's answers and lecturers' answer keys. The two-input data that are still in Japanese will be romanized into romaji text (Latin letters), after that it will be processed by the winnowing algorithm and hashing algorithm to generate fingerprints. The purpose of this research is to try to get the highest system accuracy. From the research results. The average accuracy of the total system value is 87.10% if the winnowing parameters for each input data are equated (n = 2 and w = 2). The accuracy increased by 0.24% from the results of previous research which were worth 86.86%. However, if the winnowing parameter is adjusted using the best combination value, then the average accuracy of the total system value obtained is 92.74%. The accuracy has increased by 1.82% from the results of previous research which were worth 90.92%. The total accuracy of each student can reach 99.95%, and the accuracy of each number for each student sample ranges from 69.55% to 100%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Weldaline Zafira Winarto
"ABSTRAK
Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia telah mengembangkan sistem penilaian esai otomatis (SIMPLE-O) untuk ujian bahasa Jepang. Skripsi kali ini akan membahas pengembangan SIMPLE-O dalam
mengoreksi ujian bahasa Jepang dengan menggunakan metode N-Gram dan Latent Semantic Analysis (LSA) dan bahasa pemrograman Python dengan tujuan untuk mencapai nilai akurasi yang maksimal. N-Gram digunakan untuk mengoreksi pola kalimat data yang diuji dengan referensi, serta LSA dan Frobenius Norm untuk pemrosesan teks dan pemeriksaan kesamaan teks. Dari pengujian yang telah dilakukan, SIMPLE-O dengan N-Gram dapat mencapai rata-rata akurasi sebesar88,09%.

ABSTRACT
Department of Electrical Engineering, Faculty of Engineering, University of Indonesia has developed a system to grade Japanese examination essay automatically. This thesis will discuss about the development of SIMPLE-O in grading Japanese examination essays using N-Gram and Latent Semantic Analysis (LSA) using Python programming languageto reach the maximum accuracy level. N-Gram is used to score the answer based on the words and the pattern of the sentence of key answer. LSA and Frobenius Norm are used toprocess the text and to check the similarity of both text. From the test that has been done, SIMPLE-O using N-GramandLSAis able to obtain an average rate of accuracy of 88,09%."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aljundi
"Skripsi ini membahas mengenai pengembangan sistem ujian lisan Bahasa Jepang yang dirancang dengan mengintegrasikan automatic speech recognition dengan sistem penilaian esai otomatis. Sistem yang dikembangkan menggunakan arsitektur client-server. Client merupakan aplikasi yang dikembangkan menggunakan cross-platform framework Flutter dan dapat dijalankan pada platform web maupun Android. Back-end server pada cloud dibangun menggunakan bahasa pemrograman Python dengan database PostgreSQL serta memanfaatkan teknologi kontainerisasi dengan Docker. Sistem speech recognition yang digunakan adalah DeepSpeech dengan model di-training untuk dapat mengubah pengucapan dalam bahasa Jepang menjadi teks dengan huruf hiragana. Model yang dihasilkan memiliki rata-rata WER sebesar 20,6%. Sistem plenilaian esai otomatis yang digunakan adalah SIMPLE-O dengan metode LSA. Uji coba dilaksanakan secara online pada 36 responden dengan tingkat kefamiliaran terhadap bahasa Jepang yang bervariasi. Hasil uji coba mendapatkan nilai rata-rata sebesar 49,62 dari nilai maksimum sebesar 100. Akurasi sistem penilaian ujian lisan bahasa Jepang ini didefinisikan sebagai nilai rata-rata hasil uji coba, dibagi dengan akurasi speech recognition, yaitu sebesar 62,5%.

This thesis discusses about the development of a Japanese language verbal exam system designed by integrating automatic speech recognition with an automatic essay scoring system. The system developed uses a client-server architecture. The client is an application developed using the cross-platform framework Flutter and can be run on the web or Android platforms. Back-end servers in the cloud are built using the Python programming language with the PostgreSQL database and utilize containerization technology with Docker. The speech recognition system used is DeepSpeech with a training model to be able to convert Japanese pronunciation into text using hiragana letters. The resulting model has an average WER of 20.6%. The automatic essay scoring system used is SIMPLE-O with the LSA method. The trial was carried out online with 36 respondents with different levels of familiarity with Japanese language. The test results obtained an average score of 49.62 out of a maximum score of 100. The accuracy of the Japanese verbal exam scoring system is defined as the average value of the test results, divided by the accuracy of speech recognition, which is equal to 62.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>