Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160516 dokumen yang sesuai dengan query
cover
Irfan Abdurahman Setiawan
"Dengan berbagai kemajuan teknologi, transportasi tetap bertanggung jawab sebagai penyumbang polusi udara terbesar khususnya emisi CO2. Dampak emisi CO2 ini sangat berbahaya bagi kesehatan dan lingkungan. Sudah ada beberapa cara yang dilakukan untuk mengurangi dampak yang dihasilkan emisi CO2 pada kendaraan roda empat. Salah satunya dengan melakukan tes emisi. Prosedur tes emisi ini dilakukan dengan perilaku berkendara tetap yang menyebabkan tes ini tidak representative terhadap keadaan nyata di jalan, oleh karena itu dibutuhkan monitoring langsung pada perilaku berkendara yang berbeda-beda. Dengan memanfaatkan teknologi OBD II dan konsep IoT (Internet of Things), peneliti dapat melakukan pengembangan ke arah monitoring. Pengembangan dilakukan dengan cara menghubungkan OBD II dan Raspberry Pi ke kendaraan roda empat. Perhitungan emisi CO2 dilakukan dengan memanfaatkan data MAF yang diperoleh dari OBD II. Hasil perhitugan tersebut dikirim ke aplikasi Android melalui Cloud Server agar dapat dibaca oleh pengguna aplikasi Android tersebut. Untuk memverifikasi model perhitungan, pengetesan dilakukan pada Nissan Juke tahun 2015 dengan melakukan uji jalan sejauh 300km pada tiga perilaku berkendara yang berbeda. Emisi CO2 yang dihasilkan diukur menggunakan Portable CO2 Meters Detector Tvoc Hcho AQI Monitor dan dibandingkan dengan hasil uji pada aplikasi. Nilai error verifikasi pengukuran pada masing-masing perilaku berkendara yaitu 11,65 % untuk eco, 7,38% untuk Normal, dan 49,56% untuk Sport. pengetesan yang dilakukan juga menunjukkan bahwa model perilaku berkendara Eco memiliki tingkat emisi terendah dibanding dua perilaku berkendara lainnya dengan jumlah emisi CO2 yang dihasilkan sebesar 33.401,25 g sedangkan untuk Normal dan Sport masing-masing secara berurutan menghasilkan emisi CO2 sebesar 56.250,26 g dan 123.122,99 g. Kemudian apabila dihubungkan dengan parameter perilaku berkendara, perilaku berkendara Eco dengan interval nilai Accelerator Position 4,63% – 10,99% menghasilkan CO2 per detiknya sebesar 0,57 g/s – 1,93 g/s, perilaku berkendara Normal dengan interval nilai Accelerator Position 16,23% – 24,15% menghasilkan CO2 per detiknya sebesar 3,37 g/s – 5,09 g/s, dan perilaku berkendara Sport dengan interval nilai Accelerator Position 71,89% – 78,39% menghasilkan CO2 per detiknya sebesar 13,00 g/s – 14,24 g/s.

With various technological advances, transportation remains responsible as the biggest contributor to air pollution, especially CO2 emissions. The impact of CO2 emissions is very dangerous for health and the environment. There have been several ways to reduce the impact of CO2 emissions on four-wheeled vehicles. One of them is by conducting emission tests. This emission test procedure is carried out with a fixed driving behavior which causes this test not to be representative of the actual situation on the road, because of that we require direct monitoring of different driving behaviors. By utilizing OBD II technology and collaborating with the concept of IoT (Internet of Things) Researchers can make development towards monitoring. Development is carried out by connecting the OBD II and Raspberry Pi that has been programmed to calculate CO2 emissions. The calculation of CO2 emissions is done by calculating the MAF data that can be obtained from OBD II. The results of these calculations are sent to the Android application via Cloud Server so that they can be read by the application's users. To verify the calculation model, testing was done on the 2015 Nissan Juke by conducting a road test on three different driving behaviors. The resulting CO2 emissions are measured using Portable CO2 Meters Detector Tvoc Hcho AQI Monitor and compared with test results on the application. The verification error measurement value on each driving behavior is 11,65% for Eco, 7,38% for Normal, and 49,56% for Sport. The testing also shows that the Eco-driving behavior model has the lowest emission level compared to the other two driving behaviors with the amount of CO2 emissions produced of 33.401,25 g while for Normal and sport respectively produced CO2 emissions of 56.250,26 g and 123.122,99 g. Then when connected with driving behavior parameters, Eco-driving behavior with an interval value of Accelerator Position 4.63% - 10.99% produces CO2 per second of 0.57 g/s - 1.93 g/s, Normal driving behavior with an interval value Accelerator Position 16.23% - 24.15% produces CO2 per second of 3.37 g/s - 5.09 g/s and Sport driving behavior with an interval of Accelerator Position 71.89% - 78.39% produces CO2 per second of 13.00 g/s - 14.24 g/s."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darfian Ruswifaqa
"Konsumsi bahan bakar pada kendaraan roda empat tidaklah terlalu efisien. Salah satu alasan di balik kurang efisiennya penggunaan bahan bakar adalah perilaku berkendara yang tidak tepat karena didasar pada perasaan pengemudi. Hal ini menghasilkan efisiensi konsumsi BBM rendah. Untuk mengatasi masalah tersebut, dibutuhkan suatu sistem di mana perilaku berkendara seorang pengemudi dan konsumsi bahan bakar yang dihasilkan dapat dinilai dan dikalkulasikan. Penelitian ini mencoba untuk mengembangkan sistem di mana data dari On-Board Diagnostics-II (OBD-II) Port diambil oleh Raspberry Pi dan dikalkulasikan untuk mendapat angka konsumsi BBM, dan dikirim ke backend cloud storage untuk disimpan. Data tersebut didapatkan melalui serangkaian kegiatan berkendara yang dimonitor untuk mengembangkan aplikasinya dengan mengambil data accelerator pedal position dan fuel economy, sebelum akhirnya menggunakan data sesungguhnya dari kegiatan berkendara biasa. Hasil yang didapat adalah, fuel economy perilaku berkendara sport bernilai 0,4-5,9 km/L, normal 4,8-8,5 km/L, eco 8,5-11,1 km/L. Data accelerator pedal position perilaku berkendara eco 6-12%, normal 12-24%, sport 24-45%. Data ini kemudian ditampilkan melalui telepon genggam Android melalui serangkaian protokol yang mengambil data yang sudah dikalkulasikan dari cloud storage dan menyajikannya dalam format yang lebih mudah dimengerti bagi penggunanya. Lalu dilakukan validasi konsumsi BBM melalui aplikasi dengan metode full-to-full yang menghasilkan angka Mean Absolute Percentage Error (MAPE) sebesar rata-rata 13,1%. Angka ini merupakan angka kesalahan rata-rata aplikasi.

Fuel consumption in automobiles are not particularly efficient. One of the reasons behind the inefficiency is improper driving behavio due to the usage of feeling and judgment. To mitigate this problem, there needs to be a system where driver's driving behavior and the car's fuel consumption can be assessed and calculated. This research tried to develop a system where data from car's OBD-II Port are taken by Raspberry Pi, sent to cloud database, where it is then calculated to acquire the driving behavior and fuel consumption. The data are first obtained through a series of monitored driving to develop the application, before using real data from usual driving activity. The results are driving behavior's fuel consumption figure which is sport 0,4-5,9 km/L, normal 4,8-8,5 km/L, sport 8,5-11,1 km/L. The accelerator pedal position figures fore eco is 6-12%, 12-24%, and sport 24-45%.  This data is displayed on an Android phone through sets of protocol that collect the calculated data from cloud database and serve it in a more understandable manner in order for users to acquire useful information regarding the fuel consumption and driving behavior. The final application's fuel economy figures are then validated using full-to-full method to produce Mean Absolute Percentage Error (MAPE) which is 13,1%. This is the application's average fuel consumption reading's figure."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
David Edika Atmaja
"Pelumas mesin adalah zat kimia berbentuk cairan yang diberikan diantara dua benda yang bergerak untuk mengurangi gaya gesek yang terjadi. Pelumas mesin perlu diganti secara berkala untuk menjaga keawetan mesin kendaraan roda empat. Produsen pabrikan kendaraan roda empat sudah memberikan jangka waktu penggantian pelumas kepada konsumen, namun jangka waktu tersebut hanya berupa acuan. Tujuan dari penilitian ini adalah mempelajari metode perhitungan untuk menemukan waktu penggantian pelumas yang tepat beserta parameternya, mempelajari hubungan dan karakteristik antara temperatur pelumas mesin dengan temperatur coolant, serta mempelajari hubungan perilaku berkendara terhadap penurunan kondisi pelumas mesin. Penilitian ini dilakukan dengan mengambil data temperatur pelumas mesin dan coolant menggunakan Ancel kemudian dilakukan analisis untuk mendapatkan rumus penentuan temperatur pelumas mesin dan didapati mean absolute error sebesar 0 hingga 3,60. Penilitian ini dilakukan dengan melakukan pengujian perilaku berkendara eco, normal, dan sport sejauh 300 km tiap perilaku berkendara. Pada penelitian ini, data kecepatan putaran mesin dan temperatur coolant diambil melalui OBD II lalu diolah menggunakan Raspberry Pi menjadi RPS dan temperatur pelumas mesin kemudian diolah lebih lanjut oleh backend kemudian data tersebut dikirimkan ke Android. Pada aplikasi Android, output dari hasil pengolahan data tersebut ditampilkan menjadi persentase kondisi pelumas mesin, jarak sisa tempuh pelumas mesin, dan waktu sisa tempuh pelumas mesin. Hasil pengujian menunjukkan bahwa pada perilaku berkendara sport, kondisi pelumas mesin mengalami penurunan paling besar di angka 3,9% diikuti dengan normal sebesar 3,18% dan yang mengalami penurunan paling sedikit adalah eco dengan 2,39%.

Engine oil is a liquid chemical that is given between two moving objects to reduce the frictional force that occurs. Engine lubricant needs to be replaced periodically to maintain the durability of four-wheeled vehicles. Manufacturers of four-wheeled vehicle manufacturers have given the lubricant replacement period to consumers, but this time period is only a reference. The purpose of this research is to study the calculation method to find the right time to replace the lubricant along with its parameters, study the relationship and characteristics between engine lubricant temperature with coolant temperature, and study the relationship of driving behavior to decrease engine lubricant conditions. This research was carried out by taking data on engine lubricant temperature and coolant using Ancel and then analyzing it to get the formula for determining engine oil temperature and found the mean absolute error of 0 to 3.60. This research is done by testing the driving behavior of eco, normal, and sport as far as 300 km for each driving behavior. In this study, engine speed and coolant temperature data are taken through OBD II and then processed using Raspberry Pi into RPS and engine lubricant temperature then further processed by the backend then the data is sent to Android. On the Android application, the output of the data processing results is displayed as a percentage of engine lubricant conditions, engine lubricant remaining distance, and engine lubricant remaining time. The test results show that in sports driving behavior, the condition of engine lubricants decreased the most at 3.9% followed by normal at 3.18% and the lowest decreased was eco with 2.39%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Akha Dewantoro
"ABSTRAK
Industri 4.0 telah membuat industri otomotif di dunia mengalami pertumbuhan dan lebih memperhatikan pengemudi yang diklasifikasikan sebagai generasi muda atau modern. Hal tersebut telah mendorong industri otomotif Indonesia sebagai produsen terbesar kedua setelah Thailand di Asia Tenggara untuk mempertimbangkan minat pengemudi generasi muda dalam teknologi digital untuk mengakses data kendaraan, memeriksa dan mendiagnosis kondisi komponen. Internet of Things sebagai istilah dalam teknologi digital memiliki dampak pada pengurangan biaya pemeliharaan dan meningkatkan siklus hidup kendaraan yang merupakan kegiatan penting bagi kendaraan. Salah satunya adalah penggunaan algoritma machine learning yang telah banyak digunakan dalam mendiagnosis masalah kendaraan. Untuk menjadwalkan kegiatan pemeliharaan, algoritma machine learning yang digunakan adalah metode regresi yang akan diperbandingkan dengan perhitungan empirikal rumus. Sebuah perangkat diagnosa dibuat untuk memberikan informasi kendaraan secara real-time menggunakan sambungan yang sudah tersedia pada kendaraan. Informasi tersebut kemudian digunakan
untuk memprediksi kondisi komponen pada kendaraan. Perangkat terhubung dan menyimpan data di cloud. Kemudian pengemudi dapat mengawasi kondisi kendaraan secara langsung melalui smartphone dengan hasil perhitungan baik secara empirikal maupun menggunakan machine learning yang telah diverifikasi oleh uji verifikasi untuk memperbarui program perhitungan dalam mengurangi nilai kesalahan. Perhitungan pada aplikasi tersebut diperoleh dengan melakukan pengujian berdasarkan perilaku berkendara. Kondisi komponen yang diamati memberikan penurunan sebesar 1.35% - 2.38% untuk komponen penyaring udara dengan nilai MAE dan MSE berturut-turut
sebesar 0.117 dan 0.017 yang terbesar terjadi pada perilaku Eco. Komponen pelumas juga mengalami penurunan sebesar 2.38% - 36.32% dengan nilai MAE dan MSE secara berturut-turut adalah 0.237 dan 0.082 yang terbesar terjadi pada perilaku Normal. Secara menyeluruh, aplikasi dapat dipercaya memprediksi kondisi komponen dengan tingkat kesalahan pada komponen penyaring udara dan pelumas berturut-turut adalah 0.3163% dan 0.2367%.

ABSTRACT
Industry 4.0 has made the automotive industry in the world experience growth and pay more attention to drivers who are classified as young or modern generation. This has pushed the Indonesian automotive industry as the second largest producer after Thailand in Southeast Asia to consider the interest of young generation drivers in digital technology to access vehicle data, examine and diagnose component conditions. Internet of Things as a term in digital technology has an impact on reducing maintenance costs and increasing vehicle life cycles which are important activities for vehicles. One of them is the use of machine learning algorithm which has been widely used in diagnosing vehicle problems. To schedule maintenance activities, the machine learning algorithm used is a regression method that will be compared with the empirical calculation of the formula. A diagnostic device is made to provide vehicle information in real-time using the connection
that is already available on the vehicle. The information is then used to predict the condition of the components on the vehicle. The device is connected and stores data in the cloud. Then the driver can monitor the condition of the vehicle directly through a smartphone with the results of calculations both empirically and using machine learning that has been verified by a verification test to update the calculation program in reducing the error value. Calculations in the application were gained by doing test based on driving behavior. Observed component condition had decreasing value around 1.35% - 2.38% for air filter component with MAE and MSE number 0.117 and 0.017 respectively which the
biggest error occurred at Eco behavior. Engine lubricant also experienced decreasing value around 2.38% - 36.32% with MAE and MSE number 0.237 and 0.082 respectively which the biggest error occurred at Normal behavior. Overall, the application can reliably
predict component conditions with an error rate in the air filter and lubricant components respectively 0.3163% and 0.2367%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Enggar Handarujati
"

Dalam kendaraan bermotor terdapat sistem yang sangat kompleks, termasuk sistem lubrikasi. Fungsi utama lubrikasi adalah mencegah overheat yang dapat berakibat pada terkuncinya bagian yang bekerja akibat berlebihnya friksi. Minyak pelumas akan mengalami penurunan kualitas selama kendaraan digunakan. Oleh karenanya minyak pelumas disarankan untuk diganti secara berkala. Namun terdapat kebingungan untuk menentukan kapan minyak pelumas harus diganti, jarak yang sudah ditempuh dalam satuan kilometer atau waktu sejak minyak pelumas terakhir diganti dalam satuan bulan. Mengganti minyak pelumas terlalu cepat akan atau telat mengganti minyak pelumas dua-duanya akan berdampak buruk. Sehingga dikembangkan aplikasi android yang dapat melakukan prediksi sisa masa pakai minyak pelumas. Perilaku berkendara yang berbeda-beda pada tiap pengendara juga merupakan faktor yang berpengaruh dalam menentukan masa pakai komponen kendaraan bermotor. Penulis melakukan verifikasi secara laboratoris terhadap prediksi aplikasi. Parameter pengujian laboratorium yang dicari adalah TBN, Viskositas Kinematik pada suhu 40ºC dan 100ºC, serta. Verifikasi dilakukan dengan menghitung MAE dan MSE dari persentase keluaran aplikasi terhadap hasil regresi hasil pengujian laboratorium yang dilanjutkan dengan mencari faktor pengali untuk persentase aplikasi. MAE dan MSE dari persentase keluaran aplikasi pada masing masing perilaku berkendara adalah: eco: 2,39 dan 8,83; normal: 5,78 dan 51,69; sport: 16,24 dan 409,71. Setelah faktor pengali digunakan, MAE dan MSE dari persentase keluaran aplikasi pada masing masing perilaku berkendara turun menjadi: eco: 0,036 dan 0,02; normal: 0,309 dan 0,114; sport: 0,272 dan 0,079.

 


In motorized vehicles there are very complex systems, including lubrication systems. The main function of lubrication is to prevent overheating which can result in the locking of the working part due to excessive friction. Lubricating oil will experience a decrease in quality during vehicle use. Therefore lubricating oils are advised to be replaced periodically. But there is confusion in determining when the lubricating oil must be replaced, the distance traveled in kilometers or the time since the last lubricating oil was replaced in months. Replacing the lubricating oil too soon will or late to replace the lubricating oil will both have a bad impact. So that an android application is developed that can predict the remaining life of the lubricating oil. Different driving behavior of each driver is also an influential factor in determining the life span of motor vehicle components. The author verifies the application prediction with laboratory test. The laboratory testing parameters sought were TBN, Kinematic Viscosity at temperatures of 40ºC and 100ºC, and Viscosity Index. Verification is done by calculating MAE and MSE from the percentage of application output to the regression results of laboratory test results, followed by finding multipliers for the percentage of applications. MAE and MSE of the percentage of application output on each driving behavior are: eco: 2.39 and 8.83; normal: 5.78 and 51.69; sport: 16.24 and 409.71. After the multiplier is used, MAE and MSE from the percentage of application output in each driving behavior drops to: eco: 0.036 and 0.02; normal: 0.309 and 0.114; sport: 0.272 and 0.079.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aviliani Pramestya
"Di awal tahun 2020, banjir beberapa kali menggenangi sebagian besar wilayah Jakarta dan sekitarnya. Ribuan warga harus mengungsi ke tempat lain karena air yang masuk dan menggenangi rumah mereka. Fenomena baru yang banyak terjadi pada saat banjir awal tahun ini adalah maraknya warga yang menggunakan media sosial untuk mencari berbagai jenis bantuan, mulai dari bantuan evakuasi atau pun bantuan seperti makanan dan medis. Fenomena tersebut melatarbelakangi adanya penelitian ini, yaitu untuk mengembangkan aplikasi berbasis Android bernama Res-Q yang dapat memfasilitasi para korban banjir mencari berbagai jenis bantuan. Melalui aplikasi Res-Q, para korban banjir dapat mengirimkan lokasi terbaru beserta dengan jenis bantuan yang diinginkan agar dapat diketahui oleh pihak tim penolong. Korban banjir yang masih dapat melakukan evakuasi mandiri juga dapat mencari posko bantuan dan penampungan terdekat beserta informasi seputar posko tersebut. Aplikasi Res-Q yang telah dikembangkan dievaluasi menggunakan pengujian task scenario dan kuesioner System Usability Scale (SUS). Skor yang didapatkan pada pengisian kuesioner SUS adalah 87 yang berarti aplikasi Res-Q termasuk acceptable dengan grade A. Sementara itu, dari pengujian task skenario didapatkan beberapa masukan terkait tampilan dan juga fungsionalitas beberapa fitur tertentu.

In the early 2020, Jakarta and its neighborhood suffered from floods several times. Thousands of people had to be evacuated since their dwellings were flooded. This sudden emergence of repeating floods incited the society to use social media platforms to seek for help such as food supply, evacuation, and medical support. The urge of people using the social media platforms to help fulfilling their needs is the main background why this research is conducted, which is developing an Android-based application called Res-Q. This application works for those people who seek for several kind of aids. By using the application, the user is able to send their location along with the kind of aids they need. The floods victim who is still capable to independently evacuate themselves is also possible to find the closest aid post along with its detailed information. Res-Q application that has been developed is evaluated by task scenario test and System Usability Scale (SUS) questionnaire. The research reveals that the final score earned in SUS questionnaire is 87, which shows how the Res-Q application is acceptable with the A grade. On the other hand, the task scenario test received several feedbacks in regards of its display and its functional features. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2011
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosenbaum, Daniel J.
Berkeley, California: McGraw-Hill, 1988
001.642 ROS u;001.642 ROS u (2)
Buku Teks  Universitas Indonesia Library
cover
Nino, Jaime
New York: John Wiley & Sons, 2005
005.265 NIN i
Buku Teks SO  Universitas Indonesia Library
cover
Adi Nugroho
"Perkembangan teknologi komputer telah berkembang sedemikian cepatnya sehingga berbagai persoalan dalam berbagai bidang sangat dibantu dengan keunggulan keunggulan yang dimiliki komputer. Beberapa contoh perangkat lunak seperti Microsoft Word, Microsoft Excel, Harvard Graphic, dan lain-lain termasuk program aplikasi yang lebih khusus pada bidang-bidang tertentuseperti Matlab, MathCAD, AutoCad, juga relatif akrab dalam lingkungan perguruan tinggi. Ruang lingkup riset dan pengembangan ilmu dan teknologi telah lama menggunaan komputer sebagai alat bantu, khususnya dalam memecahkan masalah-masalah yang berkaitan erat dengan matematika. Kehadiran suatu perangkat lunak yang telah didukung dengan munculnya perangkat keras Home PC (Personal Computer) atau komputer desktop yang telah dikenal dalam kehidupan sehari-hari menjadi cukup mendesak untuk demi membantu perkembangan ilmu dan teknologi. Perancangan perangkat lunak untuk memanipulasi data hasil pengujian tarik ini merupakan salah satu langkah awal untuk tujuan tersebut di atas dimana dalam lingkup Jurusan Metalurgi Fakultas Teknik Universitas Indonesia khususnya, pemanfaatan teknologi komputer masih relatif kurang. Perancangan perangkat lunak ini menggunakan metode Holomon, Ludwik dan Swift. Metode Holomon merumuskan persamaan tegangan dan regangan sesungguhnya untuk material yang tidak mengalami deformasi atau perlakuan apapun. Metode Ludwik membuat perumusan untuk menyempurnakan persamaan Holomon dimana pengaruh tegangan luluh diperhitungkan dalam tinjauan matematisnya. Metode Swift membuat perumusan yang mirip dengan metode Ludwik, yaitu dengan memperhitungkan regangan awal yang menunjukkan material telah mengalami perlakuan sebelumnya."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S41953
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harahap, Achmad Rivai
"Dalam proses perancangan, pemrograman dan konsep arsitektur merupakan dua unsur yang berbeda, dimana keduanya harus dipadukan oleh seorang arsitek. Pemrograman sebagai unsur objektif dan konsep arsitektural sebagai unsur subjektif dalam diri perancang, harus dapat menunjukan hubungan yang saling mengisi / memperkuat satu sama lainnya.
Dalam skripsi ini penulis membangun suatu pemikiran dari difinisi-difinisi dan teori-teori yang ada, mengenal 'apa', 'bagaimana' dan 'mengapa', pemrograman dan konsep arsitektural dilakukan dalam proses perancangan. Untuk membuktikan dan mengembangkan lebih lanjut pemikiran tersebut penulis melakukan analisa dari proses perancangan yang pernah dilakukan, dimana pemrograman dan konsep arsitektur selalu digunakan. Dari analisa yang dilakukan didapat suatu kesimpulan mengenai hubungan kedua unsur tersebut.
Dasar permasalahan yang harus dijawab adalah bagaimana seorang arsitek dapat memadukan kedua unsur tersebut, dalam upaya menyusun suatu program (berdasarkan data yang akurat) dan mengembangkan konsep yang baik, sehingga menghasilkan suatu karya arsitektur yang dapat dipertanggungjawabkan secara ilmiah."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S48190
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>