Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 157189 dokumen yang sesuai dengan query
cover
Simamora, Ebsan
"ABSTRAK
Litium titanat (Li4Ti5O12)/LTO merupakan senyawa yang digunakan sebagai anoda baterai litium ion. Untuk meningkatkan performa baterai litium ion maka dilakukan material komposit pada LTO yaitu LTO nanorod/Sn-grafit. Penelitian ini membahas pengaruh variasi temperatur hidrotermal pada Li4Ti5O12 nanorod dan variasi persen berat timah (Sn) pada Li4Ti5O12 nanorod/Sn -grafit sebagai anoda baterai litium. Variasi temperatur hidrotermal pada sintesis LTO nanorod adalah 2000 C, 2200 C, dan 2400 C. Variasi komposisi persen berat Sn adalah 5%, 7,5%,dan 10%. Sementara persen berat grafit adalah konstan sebesar 10%. Karakterisasi material dilakukan dengan XRD dan SEM. Analisis performa baterai dilakukan dengan pengujian EIS, CV, dan CD. Hasil pengujian XRD menunjukkkan terdapat senyawa LTO nanorod, TiO2 rutile, Li2TiO3, Sn dan grafit. Hasil pengujian SEM menunjukkan tidak ada aglomerasi yang terbentuk dan semakin tinggi temperatur hidrotermal maka bentuk LTO nanorod semakin jelas. Hasil pengujian EIS menunjukkan penambahan persen berat Sn menurunkan nilai konduktivitas. Nilai konduktivitas berbanding terbalik dengan nilai resistivitas (Rct). Nilai konduktivitas tertinggi pada sampel L240Sn5
dengan nilai Rct 58,04 Ω . Hasil pengujian CD menunjukkan bahwa material Sn pada komposit meningkatkan nilai kapasitas baterai. Tetapi penambahan persen berat Sn akan menurunkan nilai kapasitas baterai secara drastis seperti terlihat di nilai C-rates sampel. Hasil pengujian CV menunjukkan nilai kapasitas yang paling tinggi adalah 179,38 Mah/g yaitu pada sampel L220Sn7,5. Nilai sampel paling rendah adalah 130,02 Mah/g pada sampel L200Sn7,5. Tegangan kerja yang paling baik adalah 1,5585 V pada sampel L240Sn5. Tegangan kerja pada sampel ini mendekati tegangan kerja nominal LTO yaitu 1,55V. Variasi Sn pada komposit LTO nanorod/Sn-grafit yang paling baik adalah 5 % (L240Sn5-G10).

ABSTRACT
Lithium titanate (Li4Ti5O12) / LTO is a compound used as an anode for lithium ion batteries. To improve the performance of lithium ion batteries, composite materials are carried out on LTO, namely LTO nanorod / Sn-graphite. This study discusses the effect of hydrothermal temperature variations on Li4Ti5O12 nanorods and variations in the weight percent of Sn on Li4Ti5O12 nanorod / Sn-graphite as an lithium battery anode. Hydrothermal temperature variations in the synthesis of LTO nanorods are 2000 C, 2200 C, and 2400 C. The variation of the composition of weight percent Sn is 5%, 7.5%, and 10%. While graphite weight percent is constant at 10%. Material characterization is done by using XRD and SEM. The performance analysis of the battery is done by testing the EIS, CV, and CD. The XRD test results showed that there are compounds of LTO nanorod, rutile TiO2, Li2TiO3, Sn and graphite. SEM test results show that no agglomerates are formed and the higher the hydrothermal temperature, the more clear the shape of the LTO nanorod. The EIS test results show that the addition of weight percent Sn decreases the conductivity value. The conductivity value is inversely proportional to the resistivity value (Rct). The highest conductivity value in the L240Sn5 sample with an Rct value of 58.04 Ω. The CD test results show that the Sn material on the composite increases the value of the battery capacity. But the addition of weight percent Sn will reduce the value of battery capacity drastically as seen in the sample C-rates. The CV test results show the highest capacity value is 179.38 Mah / g, ie in the L220Sn7.5 sample. The lowest sample value is 130.02 Mah / g in the L200Sn7.5 sample. The best working voltage is 1.5585 V in the L240Sn5 sample. The working voltage in this sample approaches the nominal working voltage of LTO which is 1.55V. The best variation of Sn in LTO nanorod / Sn-graphite composites is 5% (L240Sn5-G10)."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aisha Betalia
"LTO atau Li4Ti5O12 litium titanat merupakan suatu senyawa yang digunakan sebagai komponen anoda dalam baterai Li-ion. Anoda LTO digunakan karena memiliki sifat zero strain dan juga tidak menghasilkan SEI Solid Electrolyte Interphase yang dimana menyebabkan rendahnya performa baterai. Namun, LTO juga memiliki masalah yaitu kapasitasnya yang rendah. Untuk mengatasi masalah ini, LTO perlu dikombinasikan dengan material lain yang memiliki kapasitas tinggi seperti karbon aktif dan Sn. Selain itu, dengan membuat LTO menjadi bentuk nanorod pun juga akan meningkatkan performa baterai. LTO nanorod disintesis dengan metode hidrotermal di dalam larutan NaOH 4 M. Kemudian LTO nanorod yang telah disintesis dicampur dengan Sn yang bervariasi, yaitu 5, 10, dan 15 wt , serta 5 wt karbon aktif. Komposit LTO nanorod/Sn-CA tersebut kemudian dikarakterisasi menggunakan XRD, SEM-EDS, dan BET. Performa baterai juga diuji menggunakan pengujian EIS, CV, dan CD. Hasil penelitian menunjukkan bahwa kapasitas tertinggi didapatkan oleh LTO nanorod/15 Sn-CA yaitu sebesar 127,24 mAh/g. Dari penelitian ini dapat disimpulkan bahwa LTO nanorod/15 Sn-CA dapat digunakan sebagai alternatif untuk komponen anoda.

LTO or Li4Ti5O12 lithium titanate is a compound that is used as an anode component in lithium ion battery. LTO anode is used because it has zero strain properties and doesn rsquo t produce SEI solid electrolyte interphase which cause low battery performance. However, LTO also has a problem, which is its low capacity. To overcome this problem, the LTO needs to be combined with other materials that have high capacity, which, in this case, are active carbon AC and Sn. Making the LTO to be nano sized can also improve the performance of the battery, thus we tried to synthesize LTO in nanorods form. LTO nanorods is synthesized by hydrothermal in NaOH 4 M solution. The LTO nanorods is mixed with various Sn 5wt , 10wt , and 15wt and 5wt activated carbon. LTO nanorods Sn AC composite was characterized using XRD, SEM EDS, and BET and the battery performance was analyzed by EIS, CV, and CD. The results showed that the highest capacity was obtained at LTO nanorods AC 15wt Sn with 127.24 mAh g. This result shows that LTO nanorods AC 15wt Sn could be used as an alternative for anode component."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salivian Selwyn
"Penelitian ini dimaksudkan untuk mengetahui proses sintesis Li4Ti5O12 dengan struktur nanorod dan metode pembuatan komposit dari LTO nanorod dan unsur Sn dengan variasi jumlah Sn sebesar 5 , 10 , 15 . Sintesis LTO dilakukan dengan mensintesis TiO2 prekursor menggunakan proses sol ndash; gel, kemudian prekursor sol ndash; gel yang diperoleh akan dilakukan perlakuan hidrotermal dengan larutan NaOH 10M pada suhu 180oC selama 24 jam untuk memperoleh struktur nanorod, prekursor TiO2 nanorod akan dicampur dengan LiOH agar membentuk LTO nanorod. LTO nanorod kemudian dicampur dengan Sn untuk meningkatkan konduktivitas dan kapasitas LTO. Serbuk ini akan menjadi material aktif untuk anoda baterai litium ion. Untuk mengkarakterisasi produk sintesis dilakukan pengujian XRD, SEM EDS, dan pengujian performa baterai EIS, CV, dan CD.
Hasil pengujian SEM menunjukan produk yang diperoleh memiliki struktur nanopartikel hasil struktur nanorod yang rusak akibat proses sintesis yang dilakukan, sedangkan pengujian CV menunjukan terjadi pergeseran nilai tegangan dan peningkatan nilai kapasitas LTO dibanding penelitian sebelumnya, peningkatan ini disebabkan struktur nano yang dimiliki sampel, sedangkan pergeseran nilai tegangan mengindikasikan terjadi microalloying yang akan meningkatkan voltase sel baterai.

This research purpose is to know the process for synthesizing Li4Ti5O12 with nanorod structure and the method to create the composite of this Li4Ti5O12 with Sn powder with variation in the added amount of Sn powder is 5 , 10 , and 15 wt. Synthesis of Li4Ti5O12 is done through synthesizing TiO2 precursor with sol gel method, then these obtained precursors is treated hydrothermally in NaOH 10M solution for 24 hours at 180oC. This treatment purpose is to obtain nanorod structure in TiO2. The obtained nanorod precursor then mixed with LiOH to obtain Li4Ti5O12 with nanorod structure. These nanorod is mixed with Sn to improve the conductivity and capacity of Li4Ti5O12. The obtained powder then become the active material for Lithium Battery Anode. To characterize the synthesis products, several testing is done, which include XRD characterization, SEM EDS characterization, and battery performance testing, which consist of EIS, CV, and CD.
The result of SEM characterizations shows that the obtained product has nanoparticle structure which originated from damaged nanorod structures, this damage is caused by synthesis process done to the samples. Meanwhile the cyclic voltammetry testing shows a shift in reaction voltage and improvement in capacity compared to previous research, this improvement is caused by nano structure owned by the samples in current research, meanwhile the shift in voltage indicate microalloying is happened and will result in bigger battery cell voltage.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thalhah Hanif Ramadhan
"ABSTRAK
nergi merupakan dasar dari pertumbuhan ekonomi dalam kehidupan manusia. Ketergantungan terhadap energi tak terbarukan seperti batu bara, minyak bumi, dan gas bumi menghasilkan siklus eksploitasi energi yang semakin lama akan berkurang. Hal ini mendorong penemuan yang mengarah kepada pembentukan dan penggunaan sumber energi baru. Penelitian ini ditujukan untuk mempelajari proses sintesis Li4Ti5O12 yang memiliki struktur nanorod dan pembuatan komposit dari anoda LTO nanorod dengan unsur Sn nano yang diberikan karbon aktif dengan variasi jumlah Sn nano sebesar 10 , 15 , dan 20. Sintesis LTO nanorod diawalkan dengan proses sol ndash; gel, yang kemudian dilanjutkan dengan proses hidrotermal dengan larutan NaOH 10M pada suhu 180oC selama 24 jam untuk memperoleh struktur nanorod. Serbuk TiO2 nanorod hasil hidrotermal dicampur degan sumber litium yaitu LiOH menggunakan alat ball mill untuk menghasilkan serbuk LTO nanorod dan dilakukan sintering pada suhu 750oC. Karbon aktif hasil penggerusan di aktivasi menggunakan larutan NaOH 1M yang diaduk selama 3 jam lalu dipanaskan selama 4 jam pada suhu 110oC dalam oven vakum. Hasil pemanasan pada oven lalu dipanaskan kembali pada tube furnace dengan suhu 700oC untuk menghilangkan zat pengotor. Serbuk LTO hasil sinter dan serbuk karbon aktif yang telah diaktivasi dicampur pada agate untuk menghasilkan LTO/AC. Serbuk Timah nano dengan kemurnian 99.9 dicampurkan untuk mendapatkan komposit LTO/AC/Sn nano. Serbuk ini akan menjadi material aktif untuk anoda baterai litium ion. Untuk mengkarakterisasi produk sintesis dilakukan pengujian XRD, SEM-EDS, BET dan pengujian performa baterai EIS, CV, dan CD. Hasil XRD menunjukkan beberapa fase pengotor seperti TiO2 Brookite, TiO2 Rutile, dan Li2Ti3O7. Hasil SEM menunjukkan terbentuknya produk partikel nanorod pada masing sampel dengan aglomerasi terjadi dari hasil proses mekanokimia. Hasil BET menunjukkan peningkatan luas permukaan dengan penambahan karbon aktif. Hasil uji performa baterai menunjukkan peningkatan kapasitas discharge seiring dengan penambahan unsur Sn pada uji CV, sedangkan uji EIS menunjukkan konduktivitas yang dimiliki oleh 3 sampel dipengaruhi oleh persebaran unsur dan morfologi pelapisan koin baterai.

ABSTRACT<>br>
Energy is one of the basic needs for economic growth and human life. The dependence towards non renewable energies like coal, crude oil, and others becomes a cycle of exploitation that soon will come to an end. This problem pushes innovation and advancements through renewable energies. This research was conducted to understand the process of LTO synthesis that has a nanorod structure and the synthesis of anode composite of LTO and nano Tin that was given activated carbon where the variation of Tin addition were 10 , 15 , and 20 . The synthesis of LTO nanorod began with the sol ndash gel process, and proceeded by hydrothermal process which adds NaOH 10M that was heated at 180oC in a 24h period to achieve nanorod structure. TiO2 nanorod powder which was the product of hydrothermal reaction was mixed with LiOH as Lithium source with ball mill and then sintered at 750oC in a tube furnace to achieve better crystallinity. Activated carbon was achieved by grinding of coarse carbon and activated by NaOH 1M as a reagent that was mixed for 3h and heated for another 4h at 110oC in a vacuum oven to destroy volatile elements. LTO nanorods that were sintered and activated carbon powder are mixed together on an agate to achieve a mix of LTO AC. Tin nano powder with a 99.9 purity level was mixed to achieve LTO AC Sn nano composite. This powder was used as an active material for lithium ion battery anode. Sample characterization used XRD, SEM EDX, BET and performance tests using CV, CD, and EIS. XRD results showed impurities such as TiO2 Brookite, TiO2 Rutile, and Li2Ti3O7. SEM results showed formation of nanorod structures on each sample, with agglomeration happening as a result of mechanochemical reaction. BET results showed the improvement of surface area for each sample which shows the effect of activated carbon on all samples. Performance test on anode showed an increase of discharge capacity through the increasing addition of Tin nano powder through CV test, while EIS test shows that morphology of the surface coating on battery coins showed a significant effect on conductivitiy. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widhiatmaka
"[Komposit Li4Ti5O12 dan Sn untuk material anoda baterai lithium-ion dipreparasi dengan 2 rute, yaitu sintesis Li4Ti5O12 (LTO) dengan metode hidrotermal dan mixing LTO dan Sn menggunakan ball mill. Tujuan dari penelitian ini adalah untuk memperoleh suhu kalsinasi yang optimum pembentukan fasa spinel LTO serta penambahan berat serbuk Sn yang tepat untuk memperoleh peningkatan performa LTO. Sampel dikarakterisasi menggunakan DT/TGA, XRD, SEM EDX, dan EIS. Sedang properti elektrokimia dianalisis menggunakan tes charge/discharge battery analyzer. Hasil menunjukkan telah terbentuk fasa spinel
LTO dan butir tumbuh 17, 20, dan 40 nm masing-masing untuk suhu kalsinasi 500, 600, dan 700oC. Foto SEM memperlihatkan butir-butir berbusa dan mengalami aglomerasi yang merupakan efek dari proses sintesis hidrotermal. Dari penelitian ini diperoleh sampel komposit LTO 500oC dan Sn 10% dengan nilai konduktivitas tertinggi yaitu 9,06 x 10-7 S/cm. Uji cyclic voltammetry menunjukkan pasangan anodik-katodik tegangan reduksi-oksidasi LTO 1,5 dan 1,7 V, serta 1,71 dan 2,11 V untuk TiO2. Sedangkan tegangan litiasi Sn terdeteksi0,61 V. Untuk uji charge/discharge komposit LTO 500oC dan Sn 10% memperlihatkan penambahan Sn akan memberi keuntungan saat tegangan rendah
(0,6 V) yaitu komposit masih memiliki kapasitas. Kapasitas spesifik untuk komposit LTO 500oC dan Sn 10% mencapai 110 mAh/g dengan C/3.;Li4Ti5O12 and Sn composites as anode material for lithium-ion battery have been prepared with two routes, ie. synthesis of Li4Ti5O12 (namely LTO) with hydrothermal method and mixing LTO and Sn using mechanical ball milling method. The purposes of this study are to obtain the optimum calcination temperatures LTO spinel phase formation and the precise addition of Sn powder is to obtain the improved performance of LTO. Samples have been characterized by
DT/TGA, XRD, SEM EDX, and ElS. Meanwhile, electrochemical properties were analyzed using a charge-discharge test battery analyzer. Results showed that LTO spinel phase has been formed and the grains growth 17, 20, and 40 nm respectively for calcination temperature 500, 600, and 700°C. SEM photograph showing a grain foaming and run into agglomeration which is the effect of hydrothermal synthesis process. From this study, LTO 500oC and 10%Sn composite has the highest conductivity value ie 9.06 x 10-7 S/cm. Test cyclic
voltammetry showed a couple of anodic-cathodic reduction-oxidation voltage LTO 1.48 and 1.74 V, and 1.65 and 2.11 V for TiO2. Lithiation voltage for Sn at 0.61 V. For test charge/discharge LTO 500oC and 10%Sn composite showed the addition of Sn will benefit current low voltage (0.6 V) is a composite still has capacity. Specific capacity for LTO 500oC and 10%Sn composite up to 110 mAh/g with C/3.;Li4Ti5O12 and Sn composites as anode material for lithium-ion battery have been
prepared with two routes, ie. synthesis of Li4Ti5O12 (namely LTO) with
hydrothermal method and mixing LTO and Sn using mechanical ball milling
method. The purposes of this study are to obtain the optimum calcination
temperatures LTO spinel phase formation and the precise addition of Sn powder is
to obtain the improved performance of LTO. Samples have been characterized by
DT/TGA, XRD, SEM EDX, and ElS. Meanwhile, electrochemical properties were
analyzed using a charge-discharge test battery analyzer. Results showed that LTO
spinel phase has been formed and the grains growth 17, 20, and 40 nm
respectively for calcination temperature 500, 600, and 700°C. SEM photograph
showing a grain foaming and run into agglomeration which is the effect of
hydrothermal synthesis process. From this study, LTO 500oC and 10%Sn
composite has the highest conductivity value ie 9.06 x 10-7 S/cm. Test cyclic
voltammetry showed a couple of anodic-cathodic reduction-oxidation voltage
LTO 1.48 and 1.74 V, and 1.65 and 2.11 V for TiO2. Lithiation voltage for Sn at
0.61 V. For test charge/discharge LTO 500oC and 10%Sn composite showed the
addition of Sn will benefit current low voltage (0.6 V) is a composite still has
capacity. Specific capacity for LTO 500oC and 10%Sn composite up to 110
mAh/g with C/3., Li4Ti5O12 and Sn composites as anode material for lithium-ion battery have been
prepared with two routes, ie. synthesis of Li4Ti5O12 (namely LTO) with
hydrothermal method and mixing LTO and Sn using mechanical ball milling
method. The purposes of this study are to obtain the optimum calcination
temperatures LTO spinel phase formation and the precise addition of Sn powder is
to obtain the improved performance of LTO. Samples have been characterized by
DT/TGA, XRD, SEM EDX, and ElS. Meanwhile, electrochemical properties were
analyzed using a charge-discharge test battery analyzer. Results showed that LTO
spinel phase has been formed and the grains growth 17, 20, and 40 nm
respectively for calcination temperature 500, 600, and 700°C. SEM photograph
showing a grain foaming and run into agglomeration which is the effect of
hydrothermal synthesis process. From this study, LTO 500oC and 10%Sn
composite has the highest conductivity value ie 9.06 x 10-7 S/cm. Test cyclic
voltammetry showed a couple of anodic-cathodic reduction-oxidation voltage
LTO 1.48 and 1.74 V, and 1.65 and 2.11 V for TiO2. Lithiation voltage for Sn at
0.61 V. For test charge/discharge LTO 500oC and 10%Sn composite showed the
addition of Sn will benefit current low voltage (0.6 V) is a composite still has
capacity. Specific capacity for LTO 500oC and 10%Sn composite up to 110
mAh/g with C/3.]"
Fakultas Teknik Universitas Indonesia, 2015
T44341
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Ridho Nugraha
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, LTO/C@ZnO disintesis dengan LTO nanorod dengan metode hidrotermal dari TiO2 xerogel yang dibuat dengan metode sol-gel, litium hidroksida (LiOH), Karbon aktif, dan Zinc Oksida (ZnO) nanorod. Tiga variasi penambahan konten ZnO dalam % berat, yaitu, 4, 7 dan 10%, diberi label sampel LTO/C@ZnO-4, LTO C@ZnO-7 dan LTO/C@ZnO-10. Karakterisasi dilakukan menggunakan XRD, SEM, FE-SEM, dan BET. Ini dilakukan untuk mengamati efek penambahan ZnO pada struktur, morfologi, dan luas permukaan sampel yang dihasilkan. Hasil penelitian menunjukkan bahwa kapasitas optimum dari masing- masing sampel adalah 32,84 mAh/g dalam LTO/C@ZnO-4 dengan ukuran kristal 11,86 nm dan luas permukaan 348,736 m2/g. Dalam pengujian cyclic voltametry, menunjukkan pergeseran dalam tegangan reaksi dan pengurangan kapasitas yang disebabkan oleh penambahan C@ZnO dan kurangnya Li4Ti5O12 yang terbentuk.

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO/C@ZnO was synthesized with LTO nanorod by hydrothermal method using TiO2 xerogel that prepared by the sol-gel method, lithium hydroxide (LiOH), Activated carbon, and Zinc Oxide (ZnO) nanorod. Three variations of ZnO content addition in weight% , i.e., 4, 7 and 10%, labelled as sample LTO/C@ZnO-4, LTO/C@ZnO-7 and LTO/C@ZnO-10, respectively. The characterizations were made using XRD, SEM, FE-SEM, and BET testing. These were performed to observe the effect of ZnO addition on astructure, morphology, and surface area of the resulting samples. Result showed that the optimum discharge capacity from each samples was 32.84 mAh/g in LTO/C@ZnO-4 with the crystallite size of 11.86 nm and the surface area of 348.736 m2/g. In cyclic voltammetry testing, it shows a shift in reaction voltage and reduction in capacity that caused by the addition of C@ZnO and the lack of Li4Ti5O12 that are formed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Winidias Chandra Prameswari
"Litium Titanat Oksida (Li4Ti5O12) adalah kandidat yang menjanjikan sebagai anoda untuk baterai Litium ion. Dalam penelitian ini, Li4Ti5O12 disintesis oleh solid-state dengan kadar ZnO Nanorod yang berbeda. Tiga variasi penambahan kadar ZnO Nanorod yaitu 0%, 4% dan 7% dengan label LTO anoda, LTO/ZnO 4% dan LTO/ZnO Nanorod 7%. Uji karakterisasi terhadap zat yang digunakan adalah SEM dan XRD. Uji karakterisasi bertujuan untuk mengamati terbentuknya ZnO Nanorod dengan metode Chemical Bath Deposition (CBD) dan efek penambahan kadar ZnO Nanorod terhadap LTO pada struktur morfologi sampel.
Hasil penelitian menunjukan bahwa kapasitas optimum masing-masing sampel adalah 127.73 mAh/g untuk LTO anoda, 120.74 mAh/g untuk LTO/ZnO 4% dan 125.00 mAh/g untuk LTO/ZnO 7%. Nilai konduktifitas tertinggi yang didapatkan dari pengujian Electrochemical Impedance Spectrometry (EIS) adalah LTO/ZnO 4%. Berdasarkan hasil XRD, Hasil dari semua variabel dipengaruhi oleh impuritas yang terdapat dalam material aktif yang digunakan.

Lithium Titanate Oxide (Li4Ti5O12) is a promising candidate for an anode material in Lithium-ion battery. In this research, Li4Ti5O12 is synthesized using the solid-state method with the addition of ZnO Nanorod. The variable used for this research are at 0%, 4% and 7% and each sample is labelled as LTO anode, LTO/ZnO 4% and LTO/ZnO 7%. Characterization tests were made to all the sample by using SEM and XRD. Characterizations were done to examine the structure of ZnO Nanorod as well as the effect of the addition of ZnO Nanorod to the sample and the elements consisting in the active material.
Result shows that LTO anode has the highest capacity at 127.73 mAh/g followed by LTO/ZnO 7% at 125.00 mAh/g and LTO/ZnO 7% 120.74 mAh/g. The conductivity tested using Electrochemical Impedance Spectroscopy (EIS) shows that the highest conductivity is possessed by LTO/ZnO 4%. The outcome of the research is affected by the impurities in the active materials as shown in the XRD result.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faizah
"ABSTRAK
Litium titanat (Li4Ti5O12) merupakan salah satu alternatif elektroda anoda yang dapat menggantikan grafit pada baterai Li-ion. Kelebihan litium titanat dibandingkan grafit adalah kestabilan struktur kristal hampir tidak mengalami perubahan selama interkalasi dan de-interkalasi ion Li+. Namun litium titanat memiliki kelemahan yaitu konduktivitas listrik dan difusi ion litium yang rendah. Penelitian ini dilakukan proses sintesis dengan menggunakan metode gabungan hidrotermal dan mekanokimia. Proses fabrikasi baterai dengan penambahan material aditif acetylene black (AB) dengan variasi berat 10%, 12% dan 15%. Tujuan penambahan aditif untuk meningkatkan konduktivitas listrik. Karakterisasi material dengan menggunakan SEM-EDS, XRD dan BET. Hasil karakterisasi SEM-EDS menunjukkan persebaran partikel hampir homogen dengan rata-rata ukuran partikel 0,35 μm. Terbentuk fasa spinel Li4Ti5O12 dan TiO2 rutile hasil XRD dan luas permukaan yang terbentuk dengan pengujian BET adalah 2,26 m2/g. Baterai sel koin dibuat sel setengah dengan menggunakan Li4Ti5O12 sebagai katoda dan logam litium sebagai anoda. Uji performa sel baterai dengan electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) dan charge discharge (CD). Nilai konduktivatas yang besar didapatkan pada kadar AB terbanyak. Sedangkan hasil uji cyclic voltammetry dan charge-discharge didapatkan hasil yaitu semakin banyak penambahan kadar AB yang diberikan maka kapasitas spesifik baterai semakin menurun. Kapasitas terbesar pada rate tinggi 10C didapatkan pada kadar 10% dengan kapasitas spesifik sebesar 40,91 mAh/g.

ABSTRACT
Lithium titanate (Li4Ti5O12) could be used as anode electrode in Li-ion battery, replacement graphite in Li-ion battery application. Crystal structure lithium titanate is more stable than graphite, it doesn?t charge during intercalation and de-intercalation process Li+ ions. However, lithium titanate has good stability, the material has lower electrical conductivity and lower lithium ion diffusion. This research, synthesis process were accomplished by using a combinated of hydrothermal and mechanochemical process. In battery fabrication process with an acetylene black conductive (AB) additive of the mass variation was 10%, 12% and 15% in wt. The purpose of using additive acetylene black to increase the electric conductivity. Materials characterization using SEM-EDS, XRD and BET. SEM characterization result show homogeneous distribution of particle with an average particel size of 0.35 μm. Li4Ti5O12 spinel phase and TiO2 rutile XRD result and the surface area formed by BET is 2.26 m2/g. Made coin cell batteries half cell using Li4Ti5O12 as a cathode and lithium metal as the anode. Test performance battery with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). Conductivity great value obtained at the highest levels of AB. Meanwhile, cyclic voltammetry and charge-discharge testing the result show that higher percentage of AB causing the decrease of battery specific capacity. The capacity specific at a high rate of 10C at a level of 10% with the specific capacity of 40.91 mAh/g.
"
2016
S62870
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Reza Firdaus
"Baterai ion litium merupakan salah satu jenis baterai sekunder yang memiliki keunggulan dibandingkan jenis baterai sekunder lainnya yaitu densitas energi tinggi, ringan, tidak memiliki memory effect, tahan lama, dapat diisi ulang, dan ramah lingkungan. Anoda LTO merupakan anoda yang menjanjikan untuk diaplikasikan pada komponen baterai ion litium karena cycle performance yang baik dan hanya sedikit terjadi perubahan struktural selama proses interkalasi dan deinterkalasi ion litium. Namun, dibalik keunggulannya terdapat kekurangan dari bahan anoda LTO ini yaitu konduktivitas elektron yang rendah, koefisien difusi yang buruk, dan kapasitas baterai yang cukup rendah. Pada penelitian ini cara untuk mengatasi kelemahan tersebut dan meningkatkan kinerja elektrokimia baterai adalah doping struktural dengan co-doping MgFe dan memperkecil ukuran butir dengan penambahan cerasperse (Ammonium Polycarbonate). Proses sintesis LTO co-doping MgFe menggunakan metode solid state dengan bantuan sonikasi. Variasi penambahan cerasperse yang digunakan adalah 0%, 2,5%, 5%, dan 7,5%. Hasil pengujian SEM EDS ditemukan bahwa penambahan cerasperse memiliki kecenderungan untuk memperkecil ukuran butir dan mengurangi terbentuknya aglomersi. Sampel LTO MgFe cerasperse 7,5% menunjukkan morfologi dengan aglomerasi paling sedikit dan distribusi ukuran partikel paling kecil yaitu 0,212 mm. Hasil XRD telah ditemukan adanya senyawa yang mengindikasikan adanya cerasperse pada sampel. Berdasarkan hasil pengujian EIS, CV, dan CD menunjukkan bahwa penambahan ceraspesrse 7,5% pada LTO MgFe dapat menghasilkan konduktivitas paling tinggi dan kapasitas spesifik paling tinggi sebesar 113,23 mAh/g.

Ion lithium battery is a secondary battery type that has several advantages compared to other secondary batteries such as high energy density, lightweight, no memory effect, high durability, can be rechargeable and environmentally friendly. Due to its excellent cycle performance and slightly structural changes that occurred during the lithium-ion intercalation and deintercalation process, anode LTO is a promising anode that can be applicated to the ion lithium battery components. However, there are some disadvantages that LTO anode possessed such as low electron conductivity, poor diffusion coefficient, and low battery capacity. In this study, those disadvantages can be overcome by implementing the structural doping with MgFe co-doping and reducing grain size with the addition of cerasperse (Ammonium Polycarbonate) which can also improve the electrochemical performance of the battery. The MgFe co-doping LTO synthesis process uses the solid-state method with sonication by adding the cerasperse of 0%, 2.5%, 5%, dan 7.5% respectively. The results of the EDS SEM test found that the addition of cerasperse has a tendency to reduce grain size and reduce the formation of agglomerations. The sample of LTO MgFe cerasperse 7.5% showed the morphology with the least agglomeration and the smallest particle size distribution of 0.212 mm. XRD results have found the presence of compounds that indicate the presence of cerasperse in the sample. Based on the results of the EIS, CV, and CD tests, it was shown that the addition of 7.5% cerasperse to LTO MgFe could produce the highest conductivity and the highest specific capacity of 113.23 mAh/g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nita Dianova
"Litium titanat (Li4Ti5O12) merupakan salah satu alternatif elektroda anoda yang dapat menggantikan grafit pada baterai Li-ion. Kelebihan litium titanat dibandingkan grafit adalah kestabilan struktur kristal hampir tidak mengalami perubahan selama interkalasi dan de-interkalasi ion Li+. Namun seiring dengan kebutuhan akan baterai dengan kapasitas yang tinggi, kian mendorong untuk meningkatkan kapasitas baterai Li-ion. Salah satu cara yang dapat dilakukan untuk meningkatkanya adalah dengan menggabungkanya dengan material silikon yang memiliki kapasitas yang tinggi mencapai 4200 mAh/g. Namun ekspansi volume Si menyebabkan keruntuhan elektroda dan hilangnya kapasitas. Oleh karna itu digunakanlah Si nano untuk meminimalisir efek ekspansi volume. Penelitian ini dilakukan proses fabrikasi baterai dengan penambahan Si nano partikel dengan variasi berat 5%, 10% dan 15%. . Karakterisasi material awal Si nano dengan menggunakan TEM-EDS dan XRD menunjukan adanya unsur oksigen dan fasa SiO pada partikel Si nano. Baterai sel koin dibuat sel setengah dengan menggunakan Li4Ti5O12 sebagai katoda dan logam litium sebagai anoda. Uji performa sel baterai dengan electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) dan charge discharge (CD). Nilai konduktivitas semakin menurun seiring dengan peningkatan kadar Si nano, pada hasil pengujian CV menunjukan kapasitas paling tinggi pada penambahan 5% Si nano yaitu mencapai 197,09. Hasil pengujian CD menunjukan semakin meningkatnya kadar Si nano kapasitasnya semakin menurun

Lithium titanate (Li4Ti5O12) could be used as anode electrode in Li-ion battery, replaces graphite in Li-ion battery application. Crystal structure lithium titanate is more stable than graphite, it doesn?t changing during intercalation and de-intercalation process Li+ ions. but along with a high demand for batteries with high capacity, leading to increase the capacity of Li-ion batteries. that can be improved by combining LTO with the silicon material that has a high capacity reached about 4200 mAh/g, but the volume expansion properties of silicon led to collapse and lost its capacity. Therefore nanoscale silicon is used to minimize the effect of their expansion. This research carried out fabrication process li-ion battery with the addition of silicon nano material with variation weight 5%,10% and 15%. First, nano silicon initial material characterization using TEM-EDS and XRD, showed the presence of the element oxygen and SiO phase on Si nano particles. Then charaterized in coin cell types, half cell using Li4Ti5O12 as a cathode and lithium metal as the anode. Furthermore, battery performance tested with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). From EIS testing, the conductivity values descrease along with increasing weight of Si nano particles. The CV showed the highest capacity on the addition of 5% Si nano, reaching 197,09. The CD showed the increasing weight of Si nano, the capacity descrease.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64613
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>