Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 158203 dokumen yang sesuai dengan query
cover
Wahyudi Prasidhatama
"Biomachining diperlukan untuk merekayasa logam dengan bantuan mikroorganisme berupa bakteri, salah satunya adalah Acidithiobacillus ferrooxidans. Bakteri tersebut digunakan untuk merekayasa material tembaga melalui proses biomachining. Tembaga tersebut direkayasa dengan membuat pola agar bakteri memakan tembaga mengikuti pola yang dibuat. Pembuatan pola dilakukan menggunakan gambar yang diproyeksikan menggunakan sinar UV (ultraviolet), metode ini dinamakan maskless photolithography. Penelitian ini berfokus pada tembaga single crystal. Data profil permukaan tembaga hasil biomachining diambil dari data literatur .Pengolahan data dilakukan dengan mencari trendline pada hasil interpolasi tiap data. Trendline tersebut digunakan untuk memperoleh pola pemakanan bakteri dan dapat memprediksi lama waktu biomachining yang dibutuhkan untuk membuat microneedle. Data profil permukaan tersebut juga digunakan untuk mendapatkan perbedaan kekasaran permukaan pada tembaga single crystal dan tembaga polycrystalline yang kemudian digunakan parameter pada pengujian heat exchanger. Hasil yang didapatkan adalah penggunaan tembaga single crystal melalui proses biomachining mungkin dilakukan pada pembuatan microneedle. Sedangkan, penggunaan tembaga single crystal pada pembuatan micro-channel heat exchanger melalui proses biomachining tidak menghasilkan perbedaan yang signifikan dengan tembaga polycrystalline

Biomachining is needed to engineer metals with the help of microorganisms in the form of bacteria, one of which is Acidithiobacillus ferrooxidans. The bacteria are used to fabricate copper material through the process of biomachining. The copper is engineered by making a pattern so that bacteria eat copper following the pattern made. Pattern making is done using images projected using UV (ultraviolet) light, this method is called maskless photolithography. This research focuses on single crystal copper. Copper surface profile data from biomachining results were taken from literature data. Data processing was done by looking for trends in the interpolation results of each data. The trendline was used to obtain bacterial eating patterns and can predict the length of biomachining required to make microneedles. The surface profile data is also used to obtain differences in surface roughness in single crystal copper and polycrystalline copper which are then used parameters in the heat exchanger test. it is possible to use single crystal copper through the process of biomachining in the manufacture of microneedles, whereas the use of single crystal copper in the manufacture of micro-channel heat exchangers through the process of biomachining does not provide a significant difference with copper polycrystalline.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Romi Putra
"Biomachining merupakan salah satu bentuk proses pemesinan dengan menggunakan bakteri lithotroph untuk menghilangkan material logam dari suatu komponen. Bakteri lithotroph sendiri merupakan jenis bakteri yang menggunakan material anorganik sebagai bagian dari metabolismenya dalam menghasilkan energi bagi siklus hidupnya. Jenis bakteri lithotroph yang dirujuk dalam penelitian ini adalah bakteri Acidithiobacillus ferrooxidans. Biomachining dapat dikategorikan sebagai bentuk dari pemesinan mikro serta dapat digunakan untuk meningkatkan kekasaran suatu permukaan logam. Tingkat kekasaran permukaan yang tinggi merupakan properti yang dapat dimanfaatkan dalam beberapa aplikasi teknologi. Salah satu bentuk aplikasi teknologi yang dapat memanfaatkan tingkat kekasaran yang tinggi adalah microchannel heat exchanger (MCHE). Peningkatan nilai kekasaran permukaan dari permukaan channel pada microchannel dapat meningkatkan performa dan koefisien perpindahan panas konveksi secara relatif signifikan. Hipotesa tersebut diuji dengan melakukan analisa numerik terhadap model microchannel yang memiliki nilai kekasaran permukaan yang dapat diproduksi melalui proses biomachining.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Anyes Ardin Bagaswara
"ABSTRAK
Ilmu fabrikasi mikro merupakan ilmu yang saat ini sangat penting untuk dikembangkan. Salah satu metode yang dikembangkan dalam bidang fabrikasi mikro adalah biomachining. Proses ini menggunakan jenis bakteri yang dapat memproses logam, salah satunya adalah bakteri Acidithiobacillus ferrooxidans. Penelitian yang telah dilakukan menunjukkan bahwa bakteri Acidithiobacillus ferrooxidans dapat memproses material tembaga dengan struktur kristal polycrystalline. Karakterisasi profil permukaan benda kerja hasil biomachining pada tembaga polycrystalline juga telah mendapatkan hasil yang jelas. Pada penelitian ini, proses biomachining dilakukan pada tembaga jenis polycrystalline dan single crystal untuk mengetahui perbedaan karakteristik profil permukaan yang dihasilkan. Benda kerja diberi pola 3 buah channel dengan lebar 500 μm menggunakan proses photolithography dan dimasukkan ke dalam kultur bakteri Acidithiobacillus ferrooxidans agar terjadi proses biomachining. Proses ini dilakukan dengan variasi waktu total pemakanan yaitu selama 12 jam, 24 jam, 36 jam, dan 48 jam. Data profil permukaan diperoleh menggunakan alat ?SURFCOM?, mikroskop ?Dino-Lite? dan SEM. Hasil dari penelitian ini adalah karakteristik profil permukaan hasil biomachining tembaga polycrystalline cenderung isotropic dan pada tembaga single crystal cenderung anisotropic. Hasil lain yang diperoleh dari penelitian ini antara lain nilai Ra yang terbukti berbeda signifikan, sedangkan MRR dan SMRR tidak signifikan perbedaannya

ABSTRACT
Micro fabrication is a science that is very important to be developed. One of the methods developed in micro fabrication is biomachining. This process uses a type of bacteria that can process metal, one of which is Acidithiobacillus ferrooxidans bacteria. Research has shown that Acidithiobacillus ferrooxidans bacteria can process copper material with polycrystalline structure. Surface profile characteristic of the biomachined polycrystalline copper also has a clear result. In this study, biomachining process was done on polycrystalline and single crystal copper to find the difference of the resulting surface profile characteristic. The workpiece was coated with a pattern of 3 channels with a width of 500 μm using photolithography process and then dipped into Acidithiobacillus ferrooxidans bacterial culture for biomachining process. This process was carried out with total of 4 variations, 12 hours, 24 hours, 36 hours and 48 hours of machining time. Surface data was obtained using ?SURFCOM?, ?Dino-Lite? microscope, and SEM. The results of this study are the surface profile characteristics of the biomachined polycrystalline copper tends to be isotropic and single crystal copper tends to be anisotropic. Other results obtained from this study are the value of Ra is shown to vary significantly, while MRR and SMRR has insignificant differences.
"
2016
S65447
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Najih Amin
"Hingga saat ini, mikrofabrikasi sudah terus berkembang hingga beragam jenis dan tekniknya. Salah satunya adalah mikrofabrikasi dengan memanfaatkan mikroorganisme (bakteri), dimana teknik ini dikenal dengan sebutan biomachining. Terdapat beberapa jenis bakteri yang dapat dimanfaatkan untuk teknik tersebut, salah satunya adalah Acidithiobacillus ferrooxidans. Bakteri ini dapat melakukan pemakanan terhadap beberapa material, dimana salah satunya adalah material nikel.
Material nikel terbukti dapat dimanfaatkan untuk berbagai macam bidang, salah satunya adalah bidang kedokteran, lebih spesifik lagi adalah untuk pembuatan microneedle. Pada penelitian sebelumnya telah dilakukan rekayasa pembentukan microneedle dengan parameter waktu 24 jam dan 48 jam, dimana hasil dari diameter dan ketinggian microneedle yang dihasilkan belum maksimal, sehingga tidak bisa didapatkan prediksi aspek rasio yang maksimal.
Maka dari itu pada penelitian kali ini akan dicoba parameter waktu yang lain yaitu 48 jam dan 72 jam, serta parameter ukuran pola yang dicetak 750 µm dan 1000 µm. Pola microneedle dicetak diatas permukaan benda kerja dengan metode maskless photolithography, kemudian benda kerja dimasukkan dalam cairan medium kultur bakteri selama 48 jam, dan 72 jam. Data profil, diameter serta ketinggian yang didapat dengan alat SURFCOM kemudian dibandingkan dengan hasil biomachining dengan parameter 24 jam dari hasil penelitian sebelumnya. Hasil penelitian ini yaitu sampel dengan waktu pemakanan 48 jam dan 72 jam dapat menghasilkan ketinggian yang lebih dari penelitian sebelumnya. Tren untuk ketinggian yang dihasilkan yaitu sampel 72 jam>48 jam>24 jam dan 1000>750>300 µm.

Microfabrication has develop into many different types and methods. One of them is microfabrication with microorganism, known as biomachining. There are several bacteria that can be utilized for this method, one of them is Acidithiobacillus ferrooxidans. This bacteria can do the fabrication process at some materials, one of which is nickel.
Nickel has been proven to be used at various field, one of them is medical field, specifically to microneedle manufacturing process. From recent research, microneedle has been engineered with process time parameter 24 hours and 48 hours, but the results was not satisfying. Therefore, in this research, another process time parameter will be tried, 48 hours and 72 hours, and the patten dimensions parameter, which are 750 µm and 1000 µm.
The microneedle pattern printed on the material surface with maskless photolithography method, and then dipped on bacteria medium for 48 hours and 72 hours. Surface countour, diameter and height of the microneedle will be obtained with SURFCOM, where the datas will be compared to recent research. The result is with more time process, the height of the microneedle obtained will be higher. The trend for the height of microneedle is 72 hours sample>48 hours>24 hours.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59801
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhil Ramadhan Masthofani
"Minichannel heat exchanger (MCHE) merupakan alat penukar kalor skala mini yang memiliki kanal-kanal mini sebagai saluran fluida. Parameter yang mempengaruhi performa kerja adalah konfigurasi fin, diameter channel, dan kekasaran permukaan. Dengan meningkatnya kekasaran permukaan akan memperbesar luas area alir fluida dan meningkatkan performa kerja. Proses pemesinan alternatif yang digunakan untuk memodifikasi permukaan tersebut adalah proses biomachining. Salah satu keunggulannya adalah ramah lingkungan dan dapat didaur ulang. Penelitian ini bertujuan untuk mengetahui performa MCHE dengan variasi konfigurasi fin berupa jarak antar fin menggunakan proses biomachining. Pengujian dilakukan untuk mendapatkan data temperatur serta tekanan pada bagian inlet dan outlet yang diambil secara bersamaan menggunakan sensor. Data menunjukkan bahwa kominasi proses milling dan biomachining dapat meningkatkan performa kerja MCHE karena luas permukaan yang dihasilkan lebih besar dibandingkan dengan proses milling saja. Desain MCHE dengan jarak antar fin 2,5 mm memiliki nilai efektivitas yang paling tinggi. Semakin kecil jarak antar fin yang digunakan akan mengurangi pusaran aliran yang terjadi di antara fin dan membuat konveksi termal rendah. Jarak fin yang besar dapat menghasilkan pencampuran fluida yang baik namun intensitas turbulensi menjadi rendah sehingga mengurangi performa perpindahan kalor. Pengaruh meningkatnya pressure drop yang terjadi diakibatkan oleh kecilnya jarak antar fin pada desain minichannel heat exchanger.

Minichannel heat exchanger (MCHE) is a mini-scale flow exchanger that has mini channels as fluid channels. Parameters that affect performance are fin configuration, channel diameter, and surface roughness. Increasing the surface roughness will increase the fluid flow area and improve the performance. The alternative machining process used to modify the surface is the biomachining process with Acidithiobacillus Ferooxidan bacteria. The advantage of biomachining is environmentally friendly and can be recycled. This study aims to determine the performance of MCHE with variations in fin configurations in the form of distance between fins using the biomachining process. Tests are carried out to obtain temperature and pressure data at the inlet and outlet sections which are taken simultaneously using sensors. The data shows that the combination of milling and biomachining process can improve the performance of MCHE because the surface area produced is larger than just milling process. The MCHE design with 2.5 mm fin spacing has the highest effectiveness value compared to 1.5 mm and 2.5 mm distances. The smaller the distance between fins will reduce the eddies that occur between the fins and make thermal convection low. Meanwhile, with the increasing distance between fins will produce a good fluid mixing but the turbulence intensity is low, thereby reducing the heat transfer performance. The effect of increasing pressure drop that occurs is caused by the small distance between the fins in the minichannel heat exchanger design."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Haikal
"Microneedle adalah teknologi kesehatan berukuran mikro untuk menginjeksikan cairan atau obat ke lapisan luar kulit. Pendekatan hybrid milling dan biomachining diharapkan meningkatkan efisiensi dan presisi dalam pembuatan microneedle dengan dimensi mikro dan akurasi tinggi. Hybrid milling menggabungkan teknik pemesinan konvensional dengan biomachining, menggunakan bakteri Acidithiobacillus ferrooxidans untuk mengurangi dimensi material sesuai rencana. Penelitian ini menguji dua jenis material, tembaga dan nikel, untuk menentukan material optimal berdasarkan aspek rasio (diameter terhadap ketinggian). Hasil menunjukkan bahwa hybrid milling dan biomachining dapat menghasilkan microneedle yang sangat mendekati ukuran ideal pada material tembaga, namun tembaga tidak disarankan untuk aplikasi medis karena mudah korosi, yang dapat membahayakan pasien. Maka dari itu, tembaga hanya digunakan sebagai perbandingan dengan nikel dan cocok untuk proses biomachining. Sebaliknya, nikel menunjukkan performa lebih baik dalam hal kekuatan dan ketahanan korosi, menjadikannya pilihan lebih aman dan efektif. Akan tetapi, hasil penelitian pada material nikel masih kurang maksimal. Penelitian pada proses biomachining dilakukan selama 72 jam dengan ukuran pola dalam proses maskless photolithography sebesar 800 μm. Selanjutnya, terdapat hasil diameter dan ketinggian dari material tembaga setelah dilakukan proses biomachining, yaitu 713 μm dan 1777,625 μm. Selain itu, pada material nikel memiliki hasil diameter dan ketinggian, yaitu 800,21 μm dan 1854,75 μm. Aspek rasio yang dihasilkan pada material tembaga dan nikel, yaitu sebesar 0,401 dan 0,431.

Microneedle technology, designed for micro-scale health applications, injects fluids or drugs into the outer skin layer. The hybrid milling and biomachining approach aims to enhance efficiency and precision in manufacturing microneedles with micro dimensions and high accuracy. Hybrid milling combines conventional machining techniques with biomachining, using Acidithiobacillus ferrooxidans bacteria to reduce material dimensions as planned. This study tests two types of materials, copper and nickel, to determine the optimal material based on the aspect ratio (diameter to height). Results indicate that hybrid milling and biomachining can produce microneedles that closely approach the ideal size in copper. However, copper is not recommended for medical applications due to its susceptibility to corrosion, which can endanger patients. Therefore, copper is used only for comparison with nickel and is suitable for the biomachining process. Conversely, nickel demonstrates better performance in terms of strength and corrosion resistance, making it a safer and more effective choice. However, the results for nickel are still not optimal. The biomachining process was conducted for 72 hours with a pattern size of 800 µm in the maskless photolithography process. The copper material resulted in a diameter and height of  713 µm and 1777,625 µm, respectively, after biomachining. Additionally, the nickel material showed a diameter and height of  800,21 µm and 1854,75 µm. The aspect ratios for copper and nickel materials were 0,401 and 0,431."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohamad Taufiqurrakhman
"Fabrikasi berskala mikro sedang terus dikembangkan sebagai kebutuhan dimasa yang akan datang. Salah satu variasinya menggunakan mikroorganisme bakteri (biomachining). Penelitian sebelumnya telah membuktikan kemampuan jenis bakteri Acidithiobacillus ferooxidans untuk melakukan pemakanan permukaan beberapa material logam, salah satunya yaitu tembaga (Cu). Perkembangan teknologi biomachining akan diterapkan sebagai metode manufaktur beberapa perangkat mikro, seperti micro-needle dan micro-channel. Pada penelitian sebelumnya, didapatkan nilai kekasaran permukaan (Ra) rata-rata hasil proses biomachining pada material tembaga yaitu berkisar antara 5-8 μm. Nilai tersebut tergolong cukup besar dan dimanfaatkan untuk membuat micro-channel.
Micro-channel akan menjadi sebuah komponen dalam sistem penukar kalor berskala mikro, yang lebih dikenal sebagai micro-heat exchanger. Tujuannya, kekasaran permukaan micro-channel dapat memperluas area alir dan membuat fluida kerja lebih turbulen. Parameter tersebut akan mempengaruhi transfer rate sistem micro heat exchanger. Namun, nilai pressure drop pada penelitian ini berbanding lurus dengan tingkat kekasaran channel. Hasil eksperimen perpindahan panas menunjukkan sampel biomachining memiliki nilai perbedaan temperatur (ΔT) lebih besar 22,49% dan 34,34% berurutan menggunakan variasi flow rate 16 mL/min dan 64 mL/min.

Micro-scale fabrication is being continuously developed as the needs of the future. One of the methods uses microorganisms culture (biomachining). The previous research has shown the ability of Acidithiobacillus ferooxidans in the characterization and result of material removal process with copper (Cu) as the workpieces. Biomachining will be applied as a method of micro devices manufacturing, such as micro-needle and micro-channel. In the previous study, obtained the value of surface roughness average (Ra) of biomachining process results in copper material in range from 5-8 μm. This value is quite large and oriented in the making of micro-channel.
Micro-channel will be put in the center structure of micro-heat exchanger system. The major goal is the surface roughness can expands the micro-channel flow area and makes the fluid more turbulent. In addition, these parameters will affect the transfer rate of a micro-heat exchanger system. However, the pressure drop results of this research are proportional to the rate of surface roughness. The experimental results show the biomachining sample heat transfer temperature difference value (ΔT) greater 22.49% and 34.34% using a variation of flow rate 16 mL / min and 64 mL / min respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44452
UI - Tesis Membership  Universitas Indonesia Library
cover
Angga Darmawan
"Teknologi fabrikasi dengan skala mikro saat ini tengah menjadi trend yang berkembang di dunia. Contoh yang nyata adalah pengembangan ukuran channel sebagai media heat transfer dan pengaturan fluida yang kini sudah menjadi microchannel. Salah satu pengembangan pada teknologi fabrikasi mikro yang merujuk pada konsep Green Manufacturing adalah menggunakan mikroorganisme sebagai cutting tools (biomachining) dengan menggunakan bakteri Aciditiobacillus ferroxidans yang menjadikan logam sebagai sumber energinya. Dalam penelitian ini, dilakukan beberapa penambahan parameter pada proses biomachining seperti waktu pemakanan (72, 96, dan 120 jam) untuk mengetahui pengaruhnya terhadap profil dan tingkat kekasaran permukaan, serta kesesuaian geometri microchannel dalam proses manufaktur pada material tembaga. Benda kerja diberi pola microchannel melalui metode photolithography dan dimasukan ke dalam cairan medium kultur bakteri untuk dilakukan pemakanan. Data hasil pengukuran yang diambil dengan mesin SURFCOM menunjukan ukuran channel yang di dapatkan mencapai 200 μm. Selain itu, semakin lama waktu pemakanan, semakin besar pula kedalaman yang dihasilkan dimana didapatkan hasil rata-rata profil kedalaman 179,7 μm pada channel terluardan 42,6 μm pada channel dalam . Begitu juga pada tingkat kekasaran yang dihasilkan. Hal ini berbanding terbalik dengan kesesuaian ukuran microchannel yang dihasilkan, dimana semakin lama waktu pemakanan, semakin berkurang akurasi ukuran microchannel yang dihasilkan. Perbedaan karakteristik ini diharapkan mampu mendukung proses bomachining microchannel kedepannya.

Fabrication of micro-scale technology currently being a growing trend in the world. A real example is the development of the size of the channel as a medium of heat transfer and fluid settings which is now already a microchannel. One of the development on the technology of micro fabrication which refers to the concept of Green Manufacturing is the use of microorganisms as the cutting tools (biomachining) using bacteria Aciditiobacillus ferroxidans makes metal as a source of energy. In this study, done some addition of process parameters on biomachining as time consumption (72, 96, and 120 hours) to know its effects on the profile and level of surface roughness, as well as the suitability of the microchannel geometry in the manufacturing process on copper material. The workpiece is given the pattern of microchannel through photolithography method and entered into the liquid medium cultures of bacteria to do the eating. Results measurement data taken with the engine showed the channel size SURFCOM in the get reaches 200 μm. In addition, the longer the time consumption, the greater the resulting depth where also obtained average results profile depth of 179,7 μm on outer channel and 42.6 μm on the channel. Similarly, at the level of rudeness that is generated. It is inversely proportional to the size of the resulting microchannel suitability, where the longer the time consumption, diminishing the accuracy of microchannel size is generated. The difference of these characteristics are expected to support the process of microchannel bomachining future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59445
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christian Huygans
"Engineering merupakan ilmu yang mempelajari proses merekayasa pembuatan suatu produk sehingga mempunyai fungsi yang bermanfaat sesuai dengan desain yang dirancang. Dalam pembuatan suatu produk pasti menemukan kendala ? kendala tertentu sehingga harus dilakukan analisa kembali dalam menemukan jalan keluar untuk menyelesaikan kendala ? kendala yang ditemui. Salah satu kendala yang sering ditemui dalam proses pembuatan suatu produk adalah adanya efek secara fisik kepada benda kerja yang dilakukan proses permesinan seperti panas maupun tegangan yang dapat mengakibatkan kerusakan pada benda kerja. Peneliti ? peneliti sebelumnya telah melakukan riset jangka panjang dan menemukan salah satu cara yang dapat dijadikan solusi dalam proses permesinan. Alternatif yang ditemukan adalah penggunaan bakteri yang digunakan sebagai cutting tool dalam proses permesinan. Beberapa keunggulan yang dimiliki oleh proses biomachining adalah ramah lingkungan, tidak terjadi thermal damage pada permukaan benda kerja serta hemat energi.
Dalam peneltian sebelumnya telah dilakukan proses kareakterisasi terhadap material nickel dimana terdapat pertambahan kedalaman permesinan seiring dengan bertambahnya waktu proses biomachining, sehingga pada penelitian kali ini peneliti akan melakukan variasi waktu yang lebih lama dan optimalisasi kondisi temperatur lingkungan proses biomachining pada suhu 330C, selain itu bentuk pola yang akan digunakan pada proses biomachining berbentuk lingkaran dengan tujuan untuk melakukan rekayasa dari bentuk microneedle, microneedle merupakakan jarum dalam bentuk micro yang biasa digunakan sebagai alat uji kesehatan dan proses pemberian vaksinasi pada manusia . Proses rekayasa microneedle bermula dari pembuatan pola lingkaran dengan ukuran 3mm hingga kecil 400μm dimana akan dilakukan perbandingan kontur dan sufrace roughness dari setiap hasil lingkaran yang terbentuk pada proses biomachining.

Engineering is a knowledge that studies about makings a product which has usefull function according to design . In makings a product must find some problem that has to be reviewed back by re-analysis to find a way out or find the solution. One of constraint which often been found when creating product is physicall effect when processing engineering machinery that create hot condition and also tension who can damage the object. Previous researcher have research in long time and they found several ways which can be the solution in engineering process. One of the famous alternative is biomachining which used bacteria that is utilized as cutting tool in machinery process. Some reason which had by biomachining process are environmentally-friendly, there were not happening thermal damage on object surface and energy saving.
In previous the researcher did characterisation process to significant nickel characteristic where the result was the depth of material is increased proporsional to increased condition of biomachining time , so this time the researcher will increased time variation and optimalize the condition of temperature in biomachining process which is 33 0 C, on the other side researcher will make a new pattern form that will be used on biomachining process, that new form is a circle that will be used as a microneedle mask, microneedle is several needle which shaped in micro that is different to the ordinary one, microneedle was being utilized as tool for vaccination application on human .Microneedle enineering started from making several pattern with size 3mm until 400μm, until then researcher will do contour and surface roughness comparison of each model which is the result from biomachining process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56549
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>