Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 68117 dokumen yang sesuai dengan query
cover
Nabila Jasmine
"Nanofluida memiliki nilai konduktivitas termal yang baik sehingga baik untuk digunakan sebagai media pendingin bagi perlakuan panas baja. Nanofluida pada penelitian ini akan menggunakan nanopartikel carbon nanotube dan akan ditambahkan surfafktan berupa Sodium Dodecyl Benzene Sulphonate atau SDBS untuk membantu menstabilkan nanofluida. Untuk mengkarakterisasi nanopartikel dilakukan pengujian Field-Emission Scanning Electron (FE-SEM) dan Energy Dispersive X-Ray Spectroscopy (EDS) untuk melihat bentuk struktur carbon nanotube serta mengetahui komposisi dari carbon nanotube dan didapatkan hasil berupa 100% Wt% C. Nanofluida lalu difabrikasi dengan cara menimbang serbuk carbon nanotube as-received dengan variabel konsentrasi 0,01%, 0,03%, dan 0,05% dan dimasukkan ke dalam beaker 100 mL. Variabel dari konsentrasi surfaktan SDBS yang digunakan adalah 0%, 10%, 20%, dan 30%. Dispersi dari nanopartikel lalu dilakukan dengan mencampurkan bahan-bahan berupa nanopartikel dan surfaktan serta air distilasi lalu diultrasonifikasi selama 15 menit untuk melarutkan fluida. Setelah itu dilakukan pengujian konduktivitas termal sebanyak 10 kali menggunakan alat pengukur konduktivitas termal KD2 pada masing-masing variabel lalu dirata-rata. Selain itu dilakukan juga pengujian Zeta Potensial untuk melihat nilai potensial zeta dari nanofluida yang menujukkan kestabilan dari nanofluida sendiri. Semakin stabil suatu nanofluida, semakin baik ia dalam menghantarkan atau mengkonduksi panas.

Nanofluids have good thermal conductivity, so they are good for use as a cooling medium for steel heat treatment. Nanofluids in this research will use carbon nanotube nanoparticles and surfafktan in the form of Sodium Dodecyl Benzene Sulphonate or SDBS will be added to help stabilize the nanofluids. To characterize nanoparticles, Field-Emission Scanning Electron (FE-SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) tests were performed to see the structure of carbon nanotubes and to determine the composition of carbon nanotubes and the results were 100% Wt% C. Nanofluids then fabricated by weighing as-received carbon nanotube powder with variable concentrations of 0.01%, 0.03%, and 0.05% and put into a 100 mL beaker. Variables of SDBS surfactant concentrations used were 0%, 10%, 20%, and 30%. The dispersion of the nanoparticles is then carried out by mixing the materials in the form of nanoparticles and surfactants and distilled water and then ultrasonification for 15 minutes to dissolve the fluid. After that the thermal conductivity test was conducted 10 times using a KD2 thermal conductivity meter on each variable then averaged. Potential Zeta testing is also carried out to see the zeta potential value of the nanofluid that shows the stability of the nanofluid itself. The more stable a nanofluid is, the better it is at delivering or conducting heat."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diffa Sthasyant Nauvalin
"Quenchant dengan konduktivitas termal tinggi dapat meningkatkan laju
pendinginan, sehingga didapat hasil perlakuan panas dengan sifat mekanis yang lebih
baik. Salah satu cara meningkatkan konduktivitas termal adalah dengan membuat
nanofluida. Pada penelitian ini, digunakan nanopartikel berupa Multi-walled Carbon
Nanotubes (MWCNT) as-received. Nanofluida berbasis CNT disintesis menggunakan
metode dua tahap. CNT dengan konsentrasi sebesar 0,1%, 0,3%, dan 0,5%
didispersikan pada fluida dasar berupa air distilasi. Untuk meningkatkan stabilitas
nanofluida, ditambahkan surfaktan Sodium Dodecyl Benzene Sulphonate (SDBS)
sebanyak 3%, 5%, dan 7% serta dilakukan ultrasonikasi selama 15 menit. Nanofluida
tersebut digunakan sebagai quenchant dengan lama imersi 4 menit untuk proses
perlakuan panas baja S45C dengan temperatur austenisasi sebesar 900˚C. Hasil
penelitian menunjukkan bahwa konduktivitas termal nanofluida meningkat seiring
dengan penambahan konsentrasi CNT, kecuali pada sampel tanpa penambahan
surfaktan. Seiring penambahan surfaktan, konduktivitas termal meningkat hingga
mencapai kadar optimum dan kemudian menurun, kecuali pada sampel dengan
penambahan surfaktan sebanyak 3%. Nilai kekerasan baja S45C hasil quenching tidak
dipengaruhi secara linear oleh konduktivitas termal quenchant.

Quenchant with high thermal conductivity could increase the cooling rate;
hence heat treatment results with better mechanical properties are obtained. One
method to increase the thermal conductivity is by creating nanofluids. In this study,
Multi-walled Carbon Nanotubes (MWCNT) as-received were used as nanoparticles.
The CNT-based nanofluids were synthesized using the two-step method. CNTs with
concentrations of 0.1%, 0.3%, and 0.5% were dispersed to the base fluid, distilled
water. To increase the stability of the nanofluids, Sodium Dodecyl Benzene Sulphonate
(SDBS) surfactants as much as 3%, 5%, and 7% were added; further, ultrasonication
was carried out for 15 minutes. The nanofluids were used as quenchants with an
immersion time of 4 minutes for the heat treatment process of S45C steel with an
austenitizing temperature of 900˚C. The results showed that the thermal conductivity of
nanofluids increased with the addition of CNT concentration, except for samples
without the addition of surfactants. On the other side, as more surfactants were added,
the thermal conductivity increased until it reached the optimum level and then
decreased, except for samples with 3% surfactant. The hardness values of quenched
S45C steels are not linearly affected by the thermal conductivity of the quenchants.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elia Tugimin
"Graphene oxide (GO) adalah graphene teroksidasi yang memiliki ikatan dan gugus fungsi. GO memiliki konduktivitas termal yang baik sehingga dapat digunakan dalam aplikasi perpindahan panas, salah satunya nanofluida. Gugus fungsi O pada graphene oxide membuat sifatnya menjadi hidrofilik untuk dispersi terhadap media larutan cair, sehingga dapat diaplikasikan sebagai media quenching. Dalam penelitian ini graphene oxide dikarakterisasi menggunakan Energy Dispersive Spectroscopy (EDS) dan Scanning Electron Microscope (SEM) untuk mengetahui kandungan unsur dan morfologi dari GO. Nanofluida berbasis GO disintesis dengan konsentrasi GO sebesar 0,01%, 0,03% dan 0,05% dengan menambahkan surfaktan Sodium Dodecyl Benzene Sulfonate (SDBS) sebanyak 0%, 3%, 5% dan 7% pada fluida dasar air distilasi. Nanofluida yang diperoleh diultrasonifikasikan selama 15 menit kemudian dilakukan pengujian konduktivitas termal dan zeta potensial. Setelah itu dilakukan proses quenching menggunakan baja S45C dengan nanofluida sebagai media quench dengan suhu austenisasi 900oC dengan waktu tahan selama 1 jam, kemudian dilakukan pengujian metalografi dan kekerasan. Hasil karakterisasi GO menunjukan terdapat gugus O dan hasil pengujian konduktivitas termal menunjukan bahwa nilai konduktivitas termal menurun seiring dengan peningkatan kadar GO dan surfaktan SDBS dan kekerasan optmal baja S45C hasil quenching terdapat pada konsentrasi nanofluida GO 0.05% dan SDBS 5% dengan nilai kekerasan sebesar 48 HRC.

Graphene oxide (GO) is a graphene that has been oxidized and has bonds and functional groups. GO has a high thermal conductivity so that it can be used in heat transfer applications, one of which is nanofluids. The O functional group in graphene oxide makes it hydrophilic for dispersion on liquid solution media, so it can be applied as a quenching medium. In this study, graphene oxide was characterized using Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscope (SEM) to determine the elemental content and morphology of GO. GO-based nanofluids were synthesized with GO concentrations of 0.01%, 0.03% and 0.05% by adding the surfactant Sodium Dodecyl Benzene Sulfonate (SDBS) as much as 0%, 3%, 5% and 7% in distilled water base fluid. The obtained nanofluids was ultrasonified for 15 minutes and then tested for thermal conductivity and zeta potential. After that, the quenching process was carried out using S45C steel with nanofluids as the quenching medium with an austenizing temperature of 900oC with a holding time of 1 hour, then metallographic and hardness tests were performed. The results of GO characterization showed that there was an O group and the results of the thermal conductivity test showed that the value of the thermal conductivity decreased with increasing levels of GO and SDBS surfactant and optmal hardness value of S45C steel as a result of quenching is found in nanofluids concentration of 0.05% GO and 5% SDBS with a hardness value of 48 HRC."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fatih Abdul Syauqi
"Penelitian terkait nanofluida berbasis Graphene Oxide (GO) telah banyak dilakukan akhir-akhir ini terkait dengan sifat konduktivitas termalnya. Pada penelitian ini digunakan Metode Hummers termodifikasi untuk mensintesis GO. Nanopartikel GO kemudian dilakukan karakterisasi melalui pengujian EDS, SEM, serta XRD. Nanopartikel GO kemudian didispersikan ke dalam air sebagai fluida dasar dengan konsentrasi 0,01%, 0,03%, dan 0,05%. Surfaktan Sodium Dodecyl Benzene Sulfonate (SDBS) ditambahkan dengan konsentrasi sebesar 10% dan 20% dimana diharapkan dapat meningkatkan stabilitas dari nanofluida. Pencampuran nanofluida dilakukan dengan ultrasonikasi selama 2 jam. Kemudian Nanofluida dilakukan karakterisasi dengan pengujian Particle Size Analyzer (PSA), zeta potensial, dan konduktivitas termal.  Pada hasil PSA ukuran partikel masih diatas 100nm sehingga fluida ini disebut fluida terdispersi partikel mikro. Hasil penelitian menunjukkan penambahan konsentrasi mikropartikel GO dari 0,01% ke 0,03% tanpa surfaktan mengalami peningkatan konduktivitas termal dan pada konsentrasi 0,05% mengalami penurunan konduktivitas termal dimana aglomerasi dimungkinkan terjadi. Penambahan konsentrasi surfaktan SDBS pada setiap fluida GO mengalami penurunan nilai konduktivitas termal dimana kestabilan dari fluida juga menurun yang tunjukkan pada hasil uji zeta potensial. Sifat dari mikropartikel GO yang hidrofilik dan penambahan surfaktan anionik SDBS memiliki muatan yang sama menyebabkan gaya repulsi elektrostatik sehingga menurunnya kestabilan fluida serta efektifitas transfer panas.

Research regarding Graphene Oxide (GO) based nanofluids was done in this present day because of its thermal conductivity. In this study, modified Hummers Method selected to synthesize GO. GO nanoparticle then characterized by EDS, SEM, and XRD. GO nanoparticle then dispersed in water as its base fluid with concentration of 0,01%, 0,03%, and 0,05%. Sodium Dodecyl Benzene Sulfonate (SDBS) surfactant was added with the concentration of 10% and 20% for a better stability. The mixing process is done by ultrasonication for 2 hours. Nanofluids then characterized by Particle Size Analyzer (PSA), zeta potential, and thermal conductivity. The PSA characterization showed the size of particle is more than 100nm so this fluid is still categorized as microparticles dispersed in fluid. Results showed that increasing of GO microparticle without surfactant at 0,01% to 0,03% enhanced the thermal conductivity of fluids, but at 0,05% the value was decreased with possibility of agglomeration. The increase of SDBS concentration at all fluids showed the decrease of thermal conductivity value. The property of GO microparticle which hydrophilic and anionic SDBS surfactant have a mutual charge which tend to make electrostatic repulsive force so the stability of the fluid and its heat transfer effectivity was decreased."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dania Haidi Ramdhony
"Pada penelitian nanofluida yang dilakukan akhir-akhir ini molekul Carbon Nanotube (CNT) merupakan salah satu molekul nano yang sering digunakan, hal ini karena CNT memiliki nilai konduktivitas termal yang tinggi dan memiliki karakterisasi yang unggul, CNT sendiri dibagi menjadi dua jenis berlapisan tunggal atau single-walled CNT (SWCNT) dan multi-walled (MWCNT). Dalam penelitian ini menggunakan MWCNT as-received yang dikarakterisasi dengan menggunakan Energy Dispersive Spectroscopy (EDS) dan Scanning Electron Microscope (SEM). Nanofluida berbasis CNT disintesis dengan menambahkan konsentrasi CNT sebesar 0,1%, 0,3%, dan 0,5% serta surfaktan sodium dodecylbenzenesulfonate (SDBS) sebanyak 10%, 20%, dan 30% pada fluida dasar yaitu air distilasi yang kemudian didispersikan menggunakann alat ultrasonikasi selama 15 menit. Kemudian nanofluida akan dikarakterisasi nilai zeta potensial dan konduktivitas termalnya di suhu ruang (25oC). nanofluida sebanyak 100ml yang sudah dikarakterisasi kemudian akan digunakan untuk proses quenching atau perlakuan panas pada baja S45C, sebelumnya baja S45C sudah diaustenisasi di suhu 900oC. Baja S45C hasil perlakuan panas akan dikarakterisasi menggunakan mikroskop optik dan rockwell hardness C. Penambahan konsentrasi CNT tanpa surfaktan pada nanofluida menaikan konduktivitas termal nanofluida, namun penambahan surfaktan konsentrasi tinggi (10%, 20%, dan 30%) pada nanofluida menurunkan konduktivtas termal nanofluida. Nilai zeta potensial dari nanofluida meningkat seiring dengan bertambahnya konsentrasi surfaktan, zeta potensial dapat mengukur stabilitas nanofluida. Hubungan konduktivitas termal dan kekerasan baja S45C hasil perlakuan panas menggunakan nanofluida tidak dapat dihubungkan secara linier walaupun terlihat tren semakin tinggi konduktivitas termal, maka nilai kekerasan akan semakin tinggi. Hal tersebut terjadi karena proses perlakuan panas dilakukan di temperatur tinggi yang dapat mempengaruhi stabilitas nanofluida. Mikrostruktur Baja S45C hasil perlakuan panas dengan media quench dengan konsentrasi SDBS 0% hingga 10% memiliki mikrostruktur yang didominasi martensite, sedangkan untuk konsentrasi SDBS 20-30% mikrostruktur baja didominasi dengan pearlite, ferrite dan sedikit widmanstätten ferrite.

In recent nanofluid research, Carbon Nanotube (CNT) are one of the nano-molecules that are often used in studies, this is because CNT’s have a high thermal conductivity value and have superior characterization. There are two kinds of CNT, Single-walled CNT (SWCNT) and multi-walled (MWCNT). In this study, the as-received MWCNT is characterized by using Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscope (SEM). CNT-based nanofluids were synthesized by adding 0.1%, 0.3%, and 0.5% CNT and as much as 10%, 20%, and 30% surfactant sodium dodecylbenzenesulfonate (SDBS) in the base fluid, namely distilled water which was then dispersed. using ultrasonication tool for 15 minutes. Then the nanofluid will be characterized by its zeta potential value and thermal conductivity at room temperature (25oC). 100ml of nanofluid that has been characterized will then be used for the quenching process or heat treatment on S45C steel, previously S45C steel has been austenized at 900oC. Heat treated S45C steel will be characterized using an optical microscope and rockwell hardness C. The addition of CNT concentrations without surfactants in nanofluids increased the thermal conductivity of nanofluids, but the addition of high concentrations of surfactants (10%, 20%, and 30%) in nanofluids decreased the thermal conductivity of nanofluids. The zeta potential value of nanofluids increases with increasing surfactant concentration, the zeta potential can measure the stability of nanofluids. The relationship between thermal conductivity and hardness of the heat treated S45C steel cannot be linearly related, although the trend is that the higher the thermal conductivity, the higher the hardness value. This happens because the heat treatment process is carried out at high temperatures which can affect the stability of the nanofluid. The microstructure of the heat treated S45C steel with nanofluids quenchant with a concentration of 0% to 10% SDBS has a predominantly martensite microstructure, while for an SDBS 20-30% concentration the steel microstructure is dominated by pearlite, ferrite and a little widmanstätten ferrite."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eddie Susanto
"Peningkatan kekerasan pada material baja karbon dapat dilakukan dengan perlakuan panas quenching, pada baja karbon menengah hanya sedikit waktu yang diizinkan untuk mencapai fasa martensit sehingga medium quench dengan konduktivitas termal tinggi dibutuhkan. Multi wall carbon nanotube (MWCNT) memiliki konduktivitas termal yang sangat tinggi dikarakterisasi menggunakan Scanning Electron Microscope (SEM) dan Energy Dispersive X-Ray Spectroscopy (EDAX), lalu disintesis menjadi nanofluida dengan penambahan surfaktan Polyethylene Glycol (PEG) dan dilarutkan dalam air distilasi. Nanofluida di ultrasonikasi selama 15 menit untuk mencegah aglomerasi dan dilakukan pengujian konduktivitas termal serta zeta potensial yang bertujuan untuk mengukur kestabilan nanofluida. Variasi konsentrasi nanopartikel sebesar 0.1%, 0.3%, dan 0.5% dan untuk surfaktan sebesar 0%, 3%, 5%, dan 7%. Setelahnya, nanofluida digunakan sebagai medium quench dengan waktu pencelupan 4 menit dan sampel pada baja S45C dilakukan pengujian mikrostruktur dan kekerasan. Pada hasil didapatkan data bahwa penambahan nanopartikel tidak berpengaruh secara signifikan terhadap konduktivitas termal dan surfaktan PEG cenderung menurunkan nilai konduktivitas termal. Pada semua sampel yang telah dilakukan perlakuan panas diikuti dengan quench terbentuk martensite, tetapi nilai konduktivitas termal juga tidak berbanding lurus dengan kemampuan medium quench untuk meningkatkan kekerasan. Konsentrasi MWCNT 0,3% dengan surfaktan 0% menunjukan nilai konduktivitas tertinggi, sedangkan untuk hasil kekerasan tertinggi dicapai oleh media quench air.

Hardening on carbon steel material can be achieved with heat treatment quenching, for medium carbon steel only a little time is allowed to attain martensite phase therefore high thermal conductivity quench medium is needed. Multi wall carbon nanotube (MWCNT) has very high thermal conductivity was characterized with Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDAX), then it synthesized as nanofluids by adding some polyethylene glycol (PEG) surfactant and dissolved in distilled water. Nanofluids were ultrasonicated for 15 minutes to prevent agglomeration and tested for thermal conductivity also for zeta potential to measure nanofluids stability. Nanoparticle concentration varies from 0.1%, 0.3%, and 0.5% and for surfactants varies from 0.0%, 3%, 5%, and 7%. Afterward, nanofluids were used as a quench medium with immersion time of 4 minutes and for S45C steel samples were tested for its microstructure and hardness. The results show nanoparticle addition not significantly affecting the thermal conductivity and PEG as surfactant tends to decrease thermal conductivity. On all heat-treated samples followed by quench martensite phase are obtained, however thermal conductivity values are also not directly proportional to quench medium ability to increase the hardness. 0,3% MWCNT along with 0% PEG concentration give the highest thermal conductivity result, while for hardness achieved by using water quench medium."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Eka Setiawan
"Kerugian Tekanan dalam pipa tergantung dari viskositasnya. Viskositas tidak hanya diperngaruhi oleh temperatur tetapi juga dipengaruhi oleh subtansi isi dalam fluidanya. Penelitian ini penting untuk memahami karakteristik aliran dalam fluida. Tujuan dari riset ini adalah untuk menganalisis efek dari campuran air dengan penambahan Multiwalled Carbon Nanotube dengan konsentrasi 1% dan 4%. Dengan menggunakan pipa kapiler, hubungan antara head dan debitditampilkan dengan jelas,dimana aliran dalam pipa 650 x 2 dengan head 0.85 meter. Fenomena ini harus diteliti lebih lanjut dimana peningkatan viskositas tidak hanya diikuti oleh degradasi dari kapasitas aliran.

The head loss in pipe depends on its visvosity. The viscosity is influenced by not only temperature, but also substances of its fluid. The research is important to do in order to know the characteristic of its flow. The purpose of this research is to analyze the effects of the mixing between the fluid and the MultiWalled Carbon Nanotube which has 1% and 4% concentrate. By using capillary pipe, the relationship between head and flow capacities shown, where 650 x 2 pipes. This phenomenon needs a continuity study concerning on the creasing of the viscositiy which is not followed only by the degradation of its capacities."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S52172
UI - Skripsi Open  Universitas Indonesia Library
cover
Nasution, Arvie Anugerah Putri
"Perkembangan teknologi pendinginan sangat berpengaruh terhadap hasil dari perlakuan panas yang dilakukan pada sebuah material. Media pendingin yang efektif dinilai mampu menghasilkan kecepatan pendinginan yang cepat sehingga dapat menghasilkan baja dengan kekerasan yang tinggi. Penelitian ini bertujuan untuk memanfaatkan grafit dan oli 5W-40 untuk membuat nanofluida sebagai media pendingin. Grafit yang digunakan terlebih dahulu digerus sebelum dicampurkan dengan oli 5W-40. Pada penelitian ini juga dilihat pengaruh dari penambahan surfaktan berupa sodium dodecylbenzenesulfonate (SDBS), cetyltrimethylammonium-bromide (CTAB), dan polyethylene glycol (PEG) untuk membandingkan efektivitas nanofluidanya. Konsentrasi grafit yang digunakan juga beragam, yaitu 0.1%w/v, 0.3%w/v, dan 0.5%w/v sehingga dapat dilihat pengaruh yang dihasilkan dari perubahan konsentrasi tersebut. Berdasarkan hasil penelitian, didapatkan bahwa penambahan surfaktan dapat meningkatkan nilai konduktivitas termal dari nanofluidanya. Diketahui bahwa penambahan CTAB dengan konsentrasi partikel 0.1%w/v menghasilkan nanofluida dengan nilai konduktivitas tertinggi, yaitu 0.173 W/mK. Sementara itu, kekerasan baja tertinggi dihasilkan oleh nanofluida dengan penambahan PEG dan konsentrasi partikel 0.1%w/v, yaitu sebesar 38 HRC dan diikuti oleh nanofluida dengan penambahan CTAB dan konsentrasi partikel 0.1%w/v, yaitu sebesar 36 HRC. Hal ini disebabkan karena adanya mekanisme penyerapan yang berbeda-beda dari surfaktan pada lingkungan yang berbeda.

The development of quenching technology will highly influence the results of materials’ heat treatment process. An effective quenchant obtained fast cooling rate during the quenching process so that the steel’s hardness increased. This study aims to utilize graphite as nanoparticles and 5W-40 engine oil as the base fluid to make a nanofluid quenchant. The graphite was being milled before mixed with the oil. This study also studied the effect of surfactants addition in the form of sodium dodecylbenzenesulfonate (SDBS), cetyltrimethylammonium-bromide (CTAB), and polyethylene glycol (PEG) to compare the effectiveness of the nanofluids. The graphite concentration varies as well, namely 0.1%w/v, 0.3%w/v, and 0.5%w/v to see the effect resulting from the change in concentration. Based on the results of the study, it was found that the addition of surfactants affects the nanofluids’ thermal conductivity sufficiently. It is known that the addition of CTAB with particle concentration of 0.1%w/v produces the highest conductivity value, which is 0.173 W/mK. Meanwhile, the highest steel hardness was produced by nanofluid with the addition of PEG with particle concentration of 0.1%w/v, which was 38 HRC and followed by nanofluid with the addition of CTAB with particle concentration of 0.1%w/v, which was 36 HRC. The discrepancy happened because of the surfactants’ different absorption mechanism in different environments."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Safira Salmadewi
"Pada perkembangan teknologi terbaru dilakukan penambahan nanopartikel ke dalam media quench untuk meningkatkan konduktivitas termal dalam perpindahan panas yang disebut sebagai nanofluida. Pembuatan nanofluida diawali dengan milling partikel biomassa karbon batok kelapa selama 15 jam dengan kecepatan 500 rpm untuk mereduksi ukuran, kemudian nanopartikel tersebut dengan konsentrasi 0,1%w/v, 0,3%w/v dan 0,5%w/v didispersikan ke dalam fluida dasar oli 5W-40 menggunakan ultrasonikasi, baik tanpa penambahan surfaktan maupun dengan penambahan surfaktan Sodium Dodecylbenzene Sulfonate (SDBS), Cetyl Trimethyl Ammonium Bromide (CTAB), atau Polyethylene glycol (PEG) sebanyak 3%w/v untuk meningkatkan stabilitas. Proses perlakuan panas dilakukan dengan memanaskan baja karbon S45C hingga suhu 900 ̊C kemudian di quench menggunakan media quench berupa nanofluida karbon batok kelapa. Karakterisasi nanopartikel dilakukan dengan SEM, EDS dan PSA, selanjutnya karakterisasi nanofluida dilakukan dengan pengujian zeta potensial, viskositas dan konduktivitas termal, sedangkan Baja S45C dikarakterisasi dengan OES, kekerasan dan struktur mikro. Secara garis besar terjadi penurunan konduktivitas termal nanofluida dengan meningkatnya konsentrasi nanopartikel. Konduktivitas termal tertinggi dimiliki oleh nanofluida dengan konsentrasi 0,3%w/v dengan penambahan surfaktan CTAB dengan nilai 0,173 W/mK. Setelah dilakukan heat treatment pada baja S45C menggunakan media quench nanofluida dapat diamati peningkatan kekerasan, namun penggunaan konsentrasi nanopartikel yang berlebih dapat menyebabkan terjadinya aglomerasi sehingga saat nanofluida tersebut digunakan sebagai media quench dapat menurunkan kekerasan baja S45C. Kekerasan tertinggi dimiliki oleh baja S45C yang di quench menggunakan nanofluida dengan konsentrasi 0,1%w/v serta penambahan surfaktan SDBS maupun PEG dengan nilai kekerasan keduanya 0,36 HRC. Nanofluida dengan konduktivitas termal tertinggi sebagai media quench tidak menunjukan hasil kekerasan yang tertinggi pada baja S45C.

In the latest technological developments, nanoparticles are added to the quench media to increase thermal conductivity in heat transfer, which is known as nanofluid. The fabrication of nanofluids starts with milling coconut shell carbon biomass nanoparticles for 15 hours at 500 rpm to reduce their particle size, then the nanoparticles with concentrations of 0.1%w/v, 0.3%w/v, and 0.5%w/v respectively are dispersed into 5W-40 as base fluid using ultrasonication, either without the addition of surfactants or with the addition of the surfactant Sodium Dodecylbenzene Sulfonate (SDBS), Cetyl Trimethyl Ammonium Bromide (CTAB), Polyethylene glycol (PEG) with a concentration of 3%w/v to increase the stability. The heat treatment process is carried out by heating S45C carbon steel to a temperature of 900°C and then quenched with coconut shell carbon nanofluid as a quench media. Nanoparticles are characterized with SEM, EDS, and PSA, then the nanofluids are characterized by testing the zeta potential, viscosity, and thermal conductivity, while S45C steel was characterized by OES, hardness and microstructure observations. In general, the thermal conductivity of nanofluids decreases with the increasing concentration of nanoparticles. The highest thermal conductivity value was obtained by nanofluids with a concentration of 0.3%w/v with the addition of CTAB surfactant, which the value is 0.173 W/mK. After heat treatment of S45C steel using nanofluid as media quench, an increase of hardness in S45C steel can be observed, but the use of an excessive concentration of nanoparticles can cause agglomeration of nanoparticles in nanofluid so that when nanofluid is used as a quenching medium it can reduce the hardness of S45C steel. S45C steel which is quenched using nanofluid with a concentration of 0.1% w/v with the addition of SDBS or PEG surfactants has the highest hardness and the value is 0.36 HRC. The highest thermal conductivity in nanofluid didn’t show the highest hardness value of S45C steel after quench."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ghina Almas Afnany
"Kekerasan yang tinggi pada sebuah material dapat dicapai dengan melakukan proses perlakuan panas menggunakan media quench yang memiliki nilai konduktivitas termal yang tinggi, seperti nanofluida. Pada penelitian ini, nanofluida berbasis CNT disintesis menggunakan metode 2 tahap, yaitu dengan mendispersikan CNT dengan konsentrasi sebesar 0,1%, 0,3%, dan 0,5% ke dalam fluida dasar berupa air distilasi yang kemudian ditambahkan surfaktan Cetyl Trimethylammonium Bromide (CTAB) sebanyak 0%, 3%, 5%, dan 7% untuk meningkatkan stabilitasnya, lalu dilakukan ultrasonikasi. Nanofluida tersebut kemudian digunakan sebagai media quench pada sampel baja S45C. Proses perlakuan panas dilakukan dengan memanaskan baja hingga suhu 900ºC kemudian di quenching. Baja hasil quenching diamati mikrostrukturnya dan dihitung nilai kekerasannya. Konduktivitas termal nanofluida mengalami penurunan saat digunakan surfaktan CTAB 3%, lalu mengalami peningkatan saat digunakan surfaktan CTAB 5%, dan menurun kembali saat digunakan surfaktan CTAB 7% dengan nilai konduktivitas termal tertinggi diperoleh oleh sampel nanofluida pada konsentrasi CNT 0,3% dengan surfaktan CTAB 5%, yaitu sebesar 0,72 W/mK. Sementara nilai kekerasan tertinggi untuk baja yang di quenching dengan nanofluida adalah sebesar 39 HRC, yaitu ketika digunakan konsentrasi 0,1% CNT tanpa penambahan surfaktan.

High hardness of a material can be achieved by doing heat treatment using a quench medium that has a high thermal conductivity value, such as nanofluids. In this study, CNT-based nanofluids were synthesized using a 2-step method, which by dispersing CNT with concentrations of 0.1%, 0.3%, and 0.5% into the base fluid in the form of distilled water which was then added with surfactant Cetyl Trimethylammonium Bromide (CTAB) as much as 0%, 3%, 5%, and 7% to increase their stability, then ultrasonication was performed. The nanofluid was then used as a quench medium for the S45C steel sample. The heat treatment process is carried out by heating the steel to a temperature of 900ºC then quench it. The quenched steel was observed for its microstructure and the hardness was calculated. The thermal conductivity of nanofluids decreased when 3% CTAB surfactant was used, increased when 5% CTAB surfactant was used, and decreased when 7% CTAB surfactant was used with the highest thermal conductivity value obtained by nanofluid samples at 0.3% CNT concentration with 5% CTAB surfactant, which the value is 0.72 W/mK. Meanwhile, the highest hardness value for steel quenched with nanofluids was 39 HRC, when 0.1% CNT was used without the addition of surfactants."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>