Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 130006 dokumen yang sesuai dengan query
cover
Romi Putra
"Biomachining merupakan salah satu bentuk proses pemesinan dengan menggunakan bakteri lithotroph untuk menghilangkan material logam dari suatu komponen. Bakteri lithotroph sendiri merupakan jenis bakteri yang menggunakan material anorganik sebagai bagian dari metabolismenya dalam menghasilkan energi bagi siklus hidupnya. Jenis bakteri lithotroph yang dirujuk dalam penelitian ini adalah bakteri Acidithiobacillus ferrooxidans. Biomachining dapat dikategorikan sebagai bentuk dari pemesinan mikro serta dapat digunakan untuk meningkatkan kekasaran suatu permukaan logam. Tingkat kekasaran permukaan yang tinggi merupakan properti yang dapat dimanfaatkan dalam beberapa aplikasi teknologi. Salah satu bentuk aplikasi teknologi yang dapat memanfaatkan tingkat kekasaran yang tinggi adalah microchannel heat exchanger (MCHE). Peningkatan nilai kekasaran permukaan dari permukaan channel pada microchannel dapat meningkatkan performa dan koefisien perpindahan panas konveksi secara relatif signifikan. Hipotesa tersebut diuji dengan melakukan analisa numerik terhadap model microchannel yang memiliki nilai kekasaran permukaan yang dapat diproduksi melalui proses biomachining.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyudi Prasidhatama
"Biomachining diperlukan untuk merekayasa logam dengan bantuan mikroorganisme berupa bakteri, salah satunya adalah Acidithiobacillus ferrooxidans. Bakteri tersebut digunakan untuk merekayasa material tembaga melalui proses biomachining. Tembaga tersebut direkayasa dengan membuat pola agar bakteri memakan tembaga mengikuti pola yang dibuat. Pembuatan pola dilakukan menggunakan gambar yang diproyeksikan menggunakan sinar UV (ultraviolet), metode ini dinamakan maskless photolithography. Penelitian ini berfokus pada tembaga single crystal. Data profil permukaan tembaga hasil biomachining diambil dari data literatur .Pengolahan data dilakukan dengan mencari trendline pada hasil interpolasi tiap data. Trendline tersebut digunakan untuk memperoleh pola pemakanan bakteri dan dapat memprediksi lama waktu biomachining yang dibutuhkan untuk membuat microneedle. Data profil permukaan tersebut juga digunakan untuk mendapatkan perbedaan kekasaran permukaan pada tembaga single crystal dan tembaga polycrystalline yang kemudian digunakan parameter pada pengujian heat exchanger. Hasil yang didapatkan adalah penggunaan tembaga single crystal melalui proses biomachining mungkin dilakukan pada pembuatan microneedle. Sedangkan, penggunaan tembaga single crystal pada pembuatan micro-channel heat exchanger melalui proses biomachining tidak menghasilkan perbedaan yang signifikan dengan tembaga polycrystalline

Biomachining is needed to engineer metals with the help of microorganisms in the form of bacteria, one of which is Acidithiobacillus ferrooxidans. The bacteria are used to fabricate copper material through the process of biomachining. The copper is engineered by making a pattern so that bacteria eat copper following the pattern made. Pattern making is done using images projected using UV (ultraviolet) light, this method is called maskless photolithography. This research focuses on single crystal copper. Copper surface profile data from biomachining results were taken from literature data. Data processing was done by looking for trends in the interpolation results of each data. The trendline was used to obtain bacterial eating patterns and can predict the length of biomachining required to make microneedles. The surface profile data is also used to obtain differences in surface roughness in single crystal copper and polycrystalline copper which are then used parameters in the heat exchanger test. it is possible to use single crystal copper through the process of biomachining in the manufacture of microneedles, whereas the use of single crystal copper in the manufacture of micro-channel heat exchangers through the process of biomachining does not provide a significant difference with copper polycrystalline.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Mohamad Taufiqurrakhman
"Teknologi fabrikasi berskala mikro saat ini sangat bervariasi dan sedang terus dikembangkan. Salah satunya menggunakan mikroorganisme (biomachining). Terdapat jenis bakteri yang dapat melakukan pemakanan pada logam sebagai sumber energinya, salah satunya adalah Acidithiobacillus ferooxidans. Penelitian sebelumnya telah membuktikan kemampuan Acidithiobacillus ferooxidans dalam karakterisasi proses pemakanan dan hasil akhir material benda kerja. Namun, perkembangan teknologi biomachining belum selesai.
Dalam penelitian ini, proses biomachining diberikan tambahan parameter variasi sudut inklinasi terhadap benda kerja material tembaga untuk mengetahui pengaruhnya terhadap profil permukaan dan tingkat kekasaran yang dihasilkan. Benda kerja diberi sebuah pola dengan metode photolithography dan dimasukkan dalam cairan medium kultur bakteri, dengan diberikan sudut inklinasi sebesar 20° dan 30° dengan alat bantu inklinator. Data hasil pengukuran bentuk profil dan tingkat kekasaran permukaan oleh mesin SURFCOM akan dibandingkan dengan hasil biomachining yang diberi sudut inklinasi berbeda yaitu 40° dari hasil penelitian sebelumnya.
Hasil penelitian ini yaitu pemakanan sampel 20° memiliki kedalaman yang lebih kecil dibandingkan dengan sampel 30°, namun center island yang dihasilkan cenderung lebih panjang. Tren untuk nilai tingkat kekasaran (Ra) yaitu sampel 20°>30°>40°. Perbedaan karakteristik pemakanan ini diharapkan dapat mendukung pengembangan proses biomachining multi-axis kedepannya.

Nowadays, micro fabrication technology is very varied and being continuosly developed. One of them uses microorganisms culture (biomachining). There is a type of bacteria which can do metal removal as a source of energy, one of which is Acidithiobacillus ferooxidans. The previous research has proven the ability of Acidithiobacillus ferooxidans in the characterization and result of workpiece material removal process. However, biomachining technology has not done yet.
In this research, biomachining process is added by angle of inclination parameter to know the effect on copper surface profile and roughness. Workpieces are given a pattern by photolithography method and put in the bacterial culture medium, which is added inclination angle of 20° and 30° on inclinator. Profile shape and the surface roughness measurement data which are taken by SURFCOM machine will be compared with the inclination angle of 40° measurement data from previous research.
The results of this research that removal depth of sample 20° is smaller than the sample 30°, but the center island tend to be longer. Result for the value of roughness average (Ra) is the sample 20° > 30° > 40°. This characteristic differences are expected can support the development of multi-axis biomachining.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53970
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadlan Hadi
"Salah satu teknologi fabrikasi mikro yang dikembangkan adalah penggunaan mikroorganisme dalam proses pemakanan suatu material atau yang biasa disebut biomachining. Teknologi ini memanfaatkan bakteri yang dapat melakukan pemakanan terhadap suatu logam yang diolah sebagai sumber energinya. Penelitian ini mengamati karakteristik hasil proses biomachining ini dengan menambahkan parameter suhu yang konstan dan variasi sudut inkliinasi yang lebih beragam, yaitu 20º, 30º, dan 40º.
Hasil dari proses biomachining dengan parameter-parameter tersebut menghasilkan keragaman profil permukaan juga, mulai dari tingkat kekasaran, hingga sudut undercut yang dihasilkan. Benda kerja diberi sebuah pola berbentuk segi empat menggunakan metode photolithography. Lalu, benda kerja dimasukkan ke dalam cairan medium kultur bakteri, dengan diberikan sudut inklinasi sebesar 20°, 30°, dan 40° menggunakan inklinator yang sudah dipersiapkan sebelumnya. Data hasil pengukuran bentuk profil dan tingkat kekasaran permukaan didapatkan dengan bantuan mesin SURFCOM. Lalu, hasilnya akan dibandingkan antara sudut inlinasi yang satu dengan yang lainnya.
Hasil penelitian ini yaitu bahwa perbedaan suhu mempengaruhi nilai MRR. Lalu sudut inklinasi tidak mempengaruhi nilai Ra. Untuk sudut undercut α1, semakin rendah posisi objek machining, semakin tingi sudut undercut α1 yang terbentuk. Perbedaan karakter profil permukaan ini diharapkan dapat direkayasa untuk penerapan teknologi mikrofabrikasi kedepannya.

One of microfabrication technology developed is the use of microorganisms in a material processing, commonly called biomachining. This technology utilizes bacteria that can perform the funeral of a metal as a source of its energy. The study looked at the characteristics of this process results biomachining by adding a constant temperature and angular variation inclination more diverse, which is 20º, 30º, and 40º.
The results of the biomachining process with these parameters produce a diversity of surface profile as well, from the level of roughness, to undercut the resulting corner. Workpiece are given a rectangular pattern using photolithography method. Then, the workpiece were drawn into the liquid bacterial culture medium, with a given angle of inclination of 20°, 30°, and 40° using inklinator that has been prepared in advance. Shape measurement data and the level of surface roughness profiles obtained with the help of machines Surfcom. Then, the results will be compared between inlinasi angle with each other.
The results of this research that is going on every rise impairment MRR inclination angle. Then The greater the angle of inclination, the greater the value of Ra. To undercut angle α1, the lower the position of the object machining, the steeper the angle α1 undercut formed. The difference of character from the surface profile is expected to be engineered for future technology implementation mikrofabrication.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55712
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Afif Rachmat
"Biomachining adalah suatu teknik fabrikasi mikro untuk membuat tingkat kekasaran permukaan suatu produk menjadi lebih kasar dari sebelumnya. Biomachining menjadi salah satu proses manufaktur yang sedang dikembangkan karena tidak menghasilkan sisa limbah berbahaya pada sekitar dan termasuk dalam proses yang ramah lingkungan. Selain itu juga proses biomachining mulai banyak diaplikasikan ke dalam beberapa penelitian dan salah satunya adalah aplikasi biomachining dalam pembuatan micro-channel heat exchanger (MCHE). Aplikasi biomachining diterapkan dalam proses pembuatan micro-channel ini ditujukan karena hasil dari proses biomachining menghasilkan nilai kekasaran permukaan yang lebih tinggi dibandingkan proses manufaktur yang lain. Micro-channel adalah alat penukar kalor berskala mikro untuk membuat terjadinya perpindahan panas dari perangkat elektronik yang sedang bekerja agar performa perangkat tersebut tidak mengalami overheating karena kerja yang berlebihan. Cara kerja dari Micro-channel ini adalah dengan mengalirkan fluida ke dalam kanal mikro untuk menyerap panas yang terjadi pada perangkat elektronik. Tujuan dari penelitian ini adalah untuk mencari tahu seberapa bagus performa yang dihasilkan dari desain micro-channel heat exchanger dengan modifikasi permukaan profil yang baru yaitu berbentuk serpentine channel karena bentuk ini biasa digunakan pada perangkat heat transfer lain seperti heat pipe dan PCM (Phase Change Material). Pengujian dilakukan untuk mendapatkan nilai heat performance dan juga pressure drop dari bentuk micro-channel ini. Hasil pengujian menunjukkan bahwa perbandingan antara micro-channel dengan bentuk serpentine channel yang dilakukan biomachining memiliki performa yang lebih baik dibandingkan serpentine chanel non-biomachining. Walaupun jika dibandingkan dengan desain sebelumnya yaitu hexagonal fin masih lebih bagus dari serpentine channel ini

Biomachining is a micro fabrication technique to make the surface roughness level of a product rougher than before. Biomachining is one of the manufacturing processes that is being developed because it does not produce hazardous waste around and is included in an environmentally friendly process. In addition, the biomachining process has begun to be widely applied in several studies and one of them is the application of biomachining in the manufacture of micro-channel heat exchangers (MCHE). The application of biomachining is applied in the micro-channel manufacturing process because the results of the biomachining process produce higher surface roughness values ??compared to other manufacturing processes. Micro-channel is a micro-scale heat exchanger to make heat transfer occur from working electronic devices so that the performance of these devices does not experience overheating due to excessive work. The way this Micro-channel works is by flowing fluid into the micro-channel to absorb the heat that occurs in electronic devices. The purpose of this research is to find out how good the performance is produced from the design of the micro-channel heat exchanger with a new surface profile modification, namely the serpentine channel shape because this shape is commonly used in other heat transfer devices such as heat pipes and PCM (Phase Change Material). . Tests were carried out to obtain heat performance values ??and also pressure drop from this micro-channel shape. The test results show that the comparison between the micro-channel and the shape of the biomachined serpentine channel has better performance than the non-biomachined serpentine channel. Even though when compared to the previous design, namely the hexagonal fin, it is still better than this serpentine channel."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akbar Dwitama
"Biomachining merupakan salah satu proses alternatif dalam fabrikasi mikro. Beberapa keunggulan yang dimiliki dalam proses biomachining adalah ramah lingkungan, tidak terjadi thermal damage pada permukaan benda kerja, dan efisien energi. Dalam penelitian biomachining multi-axis sebelumnya inklinator sudah dikembangkan dengan menggunakan konsep sendi peluru pada fixture sehingga memiliki dua sumbu rotasi dan sudut inklinasi dapat dilakukan ke segala arah. Telah dilakukan percobaan biomachining pada permukaan benda kerja tembaga dimana tiap - tiap posisi diberi sudut inklinasi 20° dan 40°. Percobaan dilakukan dalam waktu 6 jam untuk tiap - tiap posisi inklinasi. Pada penelitian kali ini proses yang sama dilakukan pada benda kerja nikel. Percobaan dilakukan dengan temperatur ruangan 23 - 25°C. Tujuan dilakukan penelitian ini adalah untuk melihat karakterisasi dan bentuk profil permukaan dari benda kerja nikel dengan perlakuan inklinasi sudut yang berbeda.
Selain itu penelitian ini juga bertujuan untuk melihat perbandingan surface roughness dan bentuk profil permukaan dari benda kerja nikel dan tembaga yang telah melalui proses biomachining dengan sudut inklinasi yang sama. Berdasarkan hasil pengukuran didapatkan nilai material removal rate (MRR) dari benda kerja nikel dengan perlakuan inklinasi 20° dan 40° sebesar 0,102 mm3/jam dan 0,129 mm3/jam. Tingkat kekasaran yang paling rendah adalah nikel 40o dengan nilai rata-rata Ra 1,76 ± 0.31 µm dan diikuti oleh nikel 20o dengan nilai rata-rata Ra 2,41± 0.39 µm. Nilai rata-rata tingkat kekasaran benda kerja tembaga yang didapat dari penelitian sebelumnya lebih besar dibandingkan dengan benda kerja nikel. Dari hasil perbandingan dengan penelitian sebelumnya menunjukkan bahwa benda kerja tembaga memiliki kedalaman permukaan lebih besar dibanding dengan benda kerja nikel.

Biomachining is one of the alternatives in the micro fabrication process. The advantages of biomachining is environmentally friendly, no effect of thermal damage on the workpiece surface, and energy efficient. Previously, the study of multi-axis biomachining inklinator have been developed using the concept of joint bullets on his desk so that it has two axes of rotation and the angle of inclination which can be done in any direction. Biomachining experiments have been conducted on the surface of the copper workpiece where each position given the angles of inclination of 20° and 40°. Experiments performed within 6 hours for each position of inclination. In the present study, the same process carried out on nickel workpiece. The experiments were performed with room temperature 23-25°C.
The purpose of this study is to look at characterization and profile shape of nickel with different inclination angles . In addition , this study aimed to compare the surface roughness and the shape of the workpiece surface profile nickel and copper that has been through the process biomachining with the same angle of inclination . Based on the results, the value of material removal rate ( MRR ) from nickel workpiece with inclination angle 20° and 40° are 0.102 mm3/hour and 0.129 mm3/hour . The lowest level of roughness (Ra) is nickel 40o with an average value 1.76 ± 0.31 µm and followed by nickel 20o with an average value 2.41 ± 0.39 µm. Average roughness of the copper samples were obtained from previous studies is greater than the nickel workpiece. From the comparison with previous research showing that copper workpiece surface has a depth greater than the nickel workpiece.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53513
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aditya Nugroho
"Proses alternatif dalam fabrikasi mikro yang telah ditemukan saat ini salah satunya adalah biomachining. Biomachining memiliki beberapa keunggulan diantaranya ramah lingkungan, tidak terjadi thermal damage pada permukaan benda kerja, dan efisien energi. Penelitian biomachining multi-axis sebelumnya yang menggunakan inklinator dengan satu sumbu rotasi dan dengan dua arah sudut inklinasi yang berbeda menunjukkan bahwa inklinasi benda kerja mempengaruhi bentuk profil permukaan hasil pemakanan material pada benda kerja.
Dalam penelitian kali ini inklinator dikembangkan dengan menggunakan konsep sendi peluru pada meja kerjanya sehingga memiliki dua sumbu rotasi dan sudut inklinasi dapat dilakukan ke segala arah. Percobaan dilakukan dengan empat posisi inklinasi yang berbeda dan tiap - tiap posisi diberi sudut inklinasi 400. Terdapat dua jenis waktu percobaan, yaitu 6 jam dan 12 jam untuk tiap - tiap posisi inklinasi. Percobaan dilakukan dengan temperatur ruangan 23 - 25°C.
Hasil pengukuran dari mesin SURFCOM menunjukkan bahwa pada bagian tengah permukaan hasil pemakanan material terbentuk Center Island dengan kedalaman undercut, sudut kemiringan undercut, dan nilai Ra yang berbeda - beda. Selain itu ditemukan bahwa perbedaan posisi kotak biomachining tidak memberikan pengaruh signifikan terhadap kedalaman undercut, panjang undercut, sudut kemiringan undercut, dan nilai Ra.

Alternative process in micro fabrication that has been found at this time one of them is biomachining. Biomachining has several advantages including environtmentally friendly, no thermal damage occurs on the surface of the workpiece, and energy efficient. Previous multi-axis biomachining research using inclinator with one axis of rotation and the angle of inclination in two different directions showed that the inclination of the workpiece affect the surface profile from material machining results at workpiece.
In this research inclinator developed using the concept of joint bullets on its work table so that it has two axes of rotation and the angle of inclination can be done in any direction. The experiments were performed with four different inclination position and each position given angle of inclination 400. There are two kinds of time experiments, which is 6 hours and 12 hours for each inclination position. The experiments were performed with room temperature 23-25°C.
Measurement result from the SURFCOM machine show that on the middle surface at material machining results formed Center Island with depth of undercut, tilt angle of undercut, and the Ra values are different each others. Moreover it was found that the difference in the position of the biomachining box no significant effect on depth of undercut, length of undercut, tilt angle of undercut, and the Ra values.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53353
UI - Skripsi Membership  Universitas Indonesia Library
cover
Angga Darmawan
"Teknologi fabrikasi dengan skala mikro saat ini tengah menjadi trend yang berkembang di dunia. Contoh yang nyata adalah pengembangan ukuran channel sebagai media heat transfer dan pengaturan fluida yang kini sudah menjadi microchannel. Salah satu pengembangan pada teknologi fabrikasi mikro yang merujuk pada konsep Green Manufacturing adalah menggunakan mikroorganisme sebagai cutting tools (biomachining) dengan menggunakan bakteri Aciditiobacillus ferroxidans yang menjadikan logam sebagai sumber energinya. Dalam penelitian ini, dilakukan beberapa penambahan parameter pada proses biomachining seperti waktu pemakanan (72, 96, dan 120 jam) untuk mengetahui pengaruhnya terhadap profil dan tingkat kekasaran permukaan, serta kesesuaian geometri microchannel dalam proses manufaktur pada material tembaga. Benda kerja diberi pola microchannel melalui metode photolithography dan dimasukan ke dalam cairan medium kultur bakteri untuk dilakukan pemakanan. Data hasil pengukuran yang diambil dengan mesin SURFCOM menunjukan ukuran channel yang di dapatkan mencapai 200 μm. Selain itu, semakin lama waktu pemakanan, semakin besar pula kedalaman yang dihasilkan dimana didapatkan hasil rata-rata profil kedalaman 179,7 μm pada channel terluardan 42,6 μm pada channel dalam . Begitu juga pada tingkat kekasaran yang dihasilkan. Hal ini berbanding terbalik dengan kesesuaian ukuran microchannel yang dihasilkan, dimana semakin lama waktu pemakanan, semakin berkurang akurasi ukuran microchannel yang dihasilkan. Perbedaan karakteristik ini diharapkan mampu mendukung proses bomachining microchannel kedepannya.

Fabrication of micro-scale technology currently being a growing trend in the world. A real example is the development of the size of the channel as a medium of heat transfer and fluid settings which is now already a microchannel. One of the development on the technology of micro fabrication which refers to the concept of Green Manufacturing is the use of microorganisms as the cutting tools (biomachining) using bacteria Aciditiobacillus ferroxidans makes metal as a source of energy. In this study, done some addition of process parameters on biomachining as time consumption (72, 96, and 120 hours) to know its effects on the profile and level of surface roughness, as well as the suitability of the microchannel geometry in the manufacturing process on copper material. The workpiece is given the pattern of microchannel through photolithography method and entered into the liquid medium cultures of bacteria to do the eating. Results measurement data taken with the engine showed the channel size SURFCOM in the get reaches 200 μm. In addition, the longer the time consumption, the greater the resulting depth where also obtained average results profile depth of 179,7 μm on outer channel and 42.6 μm on the channel. Similarly, at the level of rudeness that is generated. It is inversely proportional to the size of the resulting microchannel suitability, where the longer the time consumption, diminishing the accuracy of microchannel size is generated. The difference of these characteristics are expected to support the process of microchannel bomachining future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59445
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anugrah H.
"Pada penelitian ini akan dipaparkan sebuah model penyelesaian secara numerik menggunakan MATLAB R2009a pada sebuah microchannel heat exchanger type evaporator, diameter hidrolik 1.46 mm dengan desain fin-louvered dan memiliki header. Microchannel heat exchanger merupakan salah satu teknologi terkini pada AC (Air Conditioning) yang mampu memberikan kinerja dan daya perpindahan kalor yang sangat besar. Model persamaan numerik yang digunakan merupakan persamaan yang telah digunakan pada penelitian penelitian sebelumnya dan akan diterapkan pada microchannel heat exchanger untuk menghitung besarnya nilai heat transfer coefficient yang menggunakan fluida refrijeran berupa propane ( ). Simulasi ini akan melakukan variable pada laju aliran massa refijeran dan diperoleh bahwa besarnya laju aliran massa fluida refrijeran akan berbanding lurus dengan besarnya heat transfer coefficient pada microchannel heat exchanger. Besarnya heat transfer coefficient pada laju aliran massa fluida refijeran 0.005 kg/s, 0.01 kg/s dan 0.02 kg/s berturut turut nilai heat transfer coefficient mencapai 335.7 ? 4059.4 W/m2 K, 335.6 ? 4020.6 W/m2 K, 335.3 ? 3965.9 W/m2 K. Adapun kualitas fluida refrijeran yang dihasilkan pada laju aliran massa refijeran tersebut adalah berturut turut 0.2664 ? 0.7571, 0.2653 ? 0.7560, 0.2647 ? 0.7541. Untuk laju aliran massa fluida refijeran yang sama pula diperoleh bahwa hubungan wall temperature akan berbanding terbalik.

In this research will be explain a numerical modeling use MATLAB R2009a in a microchannel heat exchanger type evaporator, hydraulic diameter 1.46 mm with fin-louvered design and with header. Microchannel heat exchanger was a recent technology in AC (Air Conditioning) that had high performance and high heat transfer. Numerical modeling used previous equations in last research and will be applied in microchannel heat exchanger to calculate heat transfer coefficient that used refrigeration fluid was propane ( ). This simulation will apply variable in refrigeration fluid mass flow and the result explain that refrigeration fluid mass flow is directly proportional with heat transfer coefficient pada microchannel heat exchanger. Heat transfer coefficient in refrigeration fluid mass refijeran 0.005 kg/s, 0.01 kg/s dan 0.02 kg/s berturut turut nilai heat transfer coefficient mencapai 335.7 ? 4059.4 W/m2 K, 335.6 ? 4020.6 W/m2 K, 335.3 ? 3965.9 W/m2 K and the quality of outlet condition are respectively 0.2664 ? 0.7571, 0.2653 ? 0.7560, 0.2647 ? 0.7541. For the same condition, the result relate inversely proportional with wall temperature."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65071
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>