Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 83215 dokumen yang sesuai dengan query
cover
Siti Agrisylva Shalihati
"Gas alam diubah menjadi LNG (Liquefied Natural Gas) untuk memudahkan dalam pendistribusian gas alam jarak jauh. LNG ini memiliki volume sekitar 1/600 dari volume gas alam sehingga dapat mengangkut jauh lebih banyak dibandingkan pada saat berbentuk gas alam. Sebelum pendistibusiannya ke konsumen, LNG tersebut akan diubah kembali menjadi gas. Proses diubahnya LNG kembali ke bentuk gas disebut sebagai regasifikasi. Pada proses regasifikasi dibutuhkan alat penukar kalor sebagai alat penukar kalor. Penelitian ini bertujuan untuk mendapatkan hasil sebuah rancangan alat penukar kalor pada proses regasifikasi LNG dengan mempertimbangkan aspek termal dan mekanik. Metode yang digunakan untuk aspek termal adalah metode kern sedangkan untuk aspek mekanik menggunakan TEMA (Turbular Exchanger Manufacturer Association) sebagai standar. Pada metode kern akan didapat diameter sebesar 2.03 m dengan panjang dari tube sebesar 6 m, diameter dalam tube 0.037 m dan diameter luar tube 0.04 m berdasarkan standarnya. Selain itu, didapatkan juga besar diameter shell yang akan menjadi acuan pada bagian mekanik menggunakan TEMA sehingga mendapatkan dimensi pada bagian shell seperti ketebalan shell sebesar 2.43 x 10-2 m, ketebalan tube sheet sebesar 0.112 m, diameter nozzle 0.254 m, dan diameter luar shell 2.08 m. Untuk hasil akhir merupakan sebuah design dari alat penukar kalor sesuai dengan metode yang digunakan dengan kapasitas 7 kg/s. "
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Raihan Haidar
"Saat ini gas alam merupakan sumber daya alam dengan cadangan terbesar ketiga di dunia.Gas alam pada awalnya tidak dikonsumsi sebagai sumber energi karena kesulitan dalam hal transportasi namun seiring berkembangnya teknologi mulai adanya produk-produk dari gas alam salah satunya adalah LNG. LNG atau liquefied natural gas adalah gas alam yang dicairkan yang memiliki reduksi volume 1/600 dibandingkan kondisi awal gas alam yang membuat LNG lebih mudah dan aman untuk dibawa dari daerah produksi ke konsumen. Proses pencairan gas alam menjadi LNG disebut liquefaction, gas alam dicairkan hingga suhu-160℃. Pada proses liquefaction ini terdapat heat exchanger atau alat penukar kalor yang merupakan inti dari pencairan gas alam menjadi LNG. Penelitian ini dilakukan dengan metode studi literatur dan studi lapangan di PT. PGN LNG. Tujuan penilitian ini adalah untuk merancang alat penukar kalor pada proses liquefaction, dengan melihat aspek termodinamik dan aspek mekanik nya. Fluida pada alat penukar kalor adalah gas alam dengan laju aliran 240 MMscfd dan dengan gravitasi spesifik sebesar 0,65. Gas alam sebelum memasuki alat penukar kalor di precooling terlebih dahulu hingga-35℃ dan selanjutnya di cairkan dengan refrigeran pada alat penukar kalor. Perancangan alat penukar kalor ini menggunakan standar TEMA (Turbular Exchanger Manufacturer Association) sebagai acuan mekanik dalam merancang dan menggunakan metode kern untuk perhitungan termal pada alat penukar kalor. Hasil dari penilitian ini adalah dimensi dan juga sketsa rancangan alat penukar kalor

Currently natural gas is a natural resource with the third largest reserves in the world. Natural gas was not initially consumed as an energy source because of difficulties in terms of transportation, but as technology develops, there are products from natural gas, one of which is LNG. LNG is liquefied natural gas which has a volume reduction of 1/600 compared to the initial condition of natural gas which makes LNG easier and safer to carry from the production area to the consumer. The process of liquefying natural gas into LNG is called liquefaction, natural gas is liquefied to -160 ℃. In this liquefaction process there is a heat exchanger which is the core of liquefying natural gas into LNG. This research was conducted by the method of literature study and field studies at PT. PGN LNG. The purpose of this research is to design a heat exchanger in the liquefaction process, by looking at the thermodynamic and mechanical aspects. Fluid in the heat exchanger is natural gas with a flow rate of 240 MMscfd and with a specific gravity of 0.65. Natural gas before entering the heat exchanger is precooled up to -35 ℃ and then liquefied with refrigerant in the heat exchanger. The design of this heat exchanger uses the TEMA (Turbular Exchanger Manufacturer Association) standard as a mechanical reference in designing and using the kern method for thermal calculations on the heat exchanger. The results of this research are the dimensions and also the sketch of the design of the heat exchanger."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Parsa Mozaffari
"With the growth of utilizing natural gas all over the world, Liquefied Natural Gas (LNG) has been widely used in the modern era due to its advantages of storage and transportation. When LNG is unloaded in import terminal, in the time of need, the process of returning natural gas into its gaseous form is being done in the regasification unit with different technologies in order to process the gas and then distribute it by pipeline networks to the end users. Choosing the appropriate LNG vaporizer which is both cost effective and suitable to conditions of the location and environment is intended to be evaluated.
The framework of this paper is studying of some of the different LNG vaporization methods and comparing their features and properties that each of them has. The goal of this paper is in the first step, comparison of technologies which are Open Rack Vaporizer (ORV), Shell and Tube Vaporizer (STV), and Intermediate Fluid Vaporizer (IFV) and defining the suitable vaporizer to do the simulation as the second step as well as evaluating the economical features of the project. While the Shell and Tube Vaporizer has been chosen, the regasification plant using three different heating medium, propane, steam, and 50/50 mixture of water and glycol has been designed.
At the end, the economic evaluation has been done with total capital investment of 62 million dollars in the service life of 10 years. The NPV is calculated 11.33 million dollars and the salvage value is calculated to be 5.2 million dollars. Each heating medium is considered to be effective depending on the locations and conditions."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54788
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Alfarros Haris Caya
"Liquefied Natural Gas (LNG) storage merupakan tangki penyimpanan yang menampung dan menjaga LNG pada suhu yang sangat rendah. LNG perlu dipertahankan suhunya pada suhu di bawah -160 ºC agar tidak menguap. Uap yang tercipta dari kebocoran kalor pada tangki ini disebut sebagai boil-off gas (BOG). Keberadaan BOG dapat menyebabkan kelebihan tekanan pada tangki sehingga perlu dilakukan penanganan dari BOG yang tercipta salah satunya dengan mencairkan kembali ke fase liquid dengan menurunkan suhunya menggunakan alat penukar kalor. Tujuan dari penelitian ini adalah untuk mendapatkan rancangan alat penukar kalor yang digunakan pada proses ini dalam aspek termal dan aspek mekanik. Perancangan ini dilakukan untuk LNG storage pada kapal LNG tanker dengan kapasitas 20.000 CBM dengan laju penguapan 0,15% per hari. Untuk aspek termal perancangan menggunakan metode Kern. Sedangkan untuk aspek mekanik, perancangan berpedoman pada standar yang dari Tubular Exchanger Manufacturer Association (TEMA). Dimensi alat penukar kalor yang didapat menggunakan ukuran panjang tube 192 inci dengan diameter pipa ukuran ½ inci untuk bagian tube dan pipa ukuran 24 inci untuk bagian shell, jumlah tube 120 buah dengan pitch 26,63 mm, jumlah baffle 12, dan diameter flange 693 mm. Material pipa yang dipilih adalah stainless steel 316. Pada bagian getaran, frekuensi vortex shading yang didapat adalah 59 siklus/detik dan frekuensi natural 63 siklus/detik sehingga terjadi getaran yang disebabkan vortex. Faktor kekotoran hasil hitung senilai 2,6×10-4 lebih kecil dari faktor kekotoran yang digunakan yaitu 1×10-3 sehingga aman untuk dioperasikan. Faktor kekotoran perhitungan senilai 2,6×10-4 lebih kecil dari faktor kekotoran yang digunakan yaitu 1×10-3 sehingga aman untuk dioperasikan.

Liquefied Natural Gas (LNG) storage is a storage tank containing LNG and keeping it at very low temperature. LNG need to be maintained at temperature below -160 ºC to prevent it boiling to gas. The boil formed due to the heat leakage in the storage is called boil off gas (BOG). The presence of BOG are able to cause over pressure and increase the wobbe index of the stored LNG, thus it required a handling measure of the formed BOG that can be done by reliquefacting the BOG to the liquid phase by decreasing the temperature using a heat exchanger. The purpose of this research is to determine the design of suitable heat exchanger for this process considering the thermal aspect and mechanical aspect. The design is conducted for LNG storage in LNG Tanker with capacity of 20000 CBM with boiling rate 0,15% per day. For thermal aspect, the design process use the Kern method. While the fudamental of mechanical aspect, the design use TEMA standard. The obtained dimension of designed heat exchanger is 192 inch tube length with ½ inch diameter pipe for tube section and pipe size 24 inch for shell side pipe, number of tube 120 pieces with pitch 26,63 mm, number of baffle 12, and flange diameter 693 mm. The selected pipe material is stainless steel 316. For the vibration, the obtained frequency of vortex shading is 59 cycles/second and natural frequency is 63 cycles/second so there is vibration due to the vortex shadding. Calculated fouling factor is 2,6×10-4 which is smaller than used fouling factor, 1×10-3 so it is safe to operate."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadillah Nurrani
"Proses regasifikasi LNG umumnya terjadi pada terminal penerimaan LNG dimana gas alam yang telah dicairkan hingga temperatur cryogenic akan diubah kembali dalam wujud gas. Salah satu terminal penerimaan LNG berbasis laut (offshore) di Indonesia adalah FSRU yang dikelola oleh PT. PGN Lampung, dimana masih belum di-utilisasi dengan baik. Perancangan sistem pembangkit energi cryogenic yang memanfaatkan cold energy dari proses regasifikasi LNG dapat menjadi salah satu pilihan. Metode yang digunakan adalah direct expansion dengan Organic Rankine Cycle (ORC) sebagai sistem pembangkitnya. Sistem ORC akan menggunakan dua working fluid yakni Propane (R-290) dan Propylene (R-1270) serta komponen sistem meliputi pompa, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, heater LNG, dan kondensor yang terintegrasi dengan LNG Vaporizer. Kapasitas regasifikasi LNG di FSRU PGN Lampung sebesar 240 MMSCFD (juta kubik kaki per hari) dan work power output dari expander fluida kerja sebesar 3 MW. Hasil penelitian menunjukan sistem regasifikasi LNG yang terintegrasi dengan sistem ORC menggunakan fluida Propane mampu menghasilkan total energi sebesar 14 MW, sedangkan fluida Propylene menghasilkan total energi sebesar 10 MW. Sistem ORC dengan fluida Propane menghasilkan efisiensi thermal sebesar 14.48% dan fluida Propylene sebesar 15.71%

The LNG regasification process generally occurs at the LNG receiving terminal where natural gas that has been liquefied to a cryogenic temperature will be converted back into gas form. One of the offshore LNG receiving terminals in Indonesia is the FSRU which is managed by PT. PGN Lampung, which is still not properly utilized. The design of a cryogenic energy generation system that utilizes cold energy from the LNG regasification process can be an option. The method used is direct expansion with Organic Rankine Cycle (ORC) as the generating system. The ORC system will use two working fluids, namely Propane (R-290) and Propylene (R-1270) and system components include a pump, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, LNG heater, and a condenser integrated with LNG. Vaporizers. The LNG regasification capacity at the PGN Lampung FSRU is 240 MMSCFD (million cubic feet per day) and the work power output from the working fluid expander is 3 MW. The results showed that the LNG regasification system integrated with the ORC system using Propane fluid was able to produce a total energy of 14 MW, while the Propylene fluid produced a total energy of 10 MW. The ORC system with Propane fluid produces a thermal efficiency of 14.48% and Propylene fluid of 15.71%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Triputri Syarifah
"ABSTRAK
Tesis ini bertujuan untuk menentukan dimensi Shell and Tube Vaporizer (STV)
pada pengembangan fasilitas regasifikasi berkapasitas 500 MMSCFD (~ 3.593
MWe) yang akan dipasang di ex-pengolahan LNG dengan keterbatasan lahan (30
x 30 m2). Diperoleh lima kelompok STV dengan media pemanas propana dan air
laut dan dimensi terbesar STV adalah 7,32 m (panjang) dan 1,45 m (diameter).
Parameter NPV, IRR, dan PBP atraktif untuk biaya regasifikasi 2-3
USD/MMBTU, cukup optimum saat biaya regasifikasi sebesar 2.75
USD/MMBTU, dengan NPV USD 38 M, IRR 23,9% dan PBP 4,59 tahun.
Berdasarkan analisis sensitivitas, biaya investasi lebih sensitif terhadap parameter
keekonomian dibandingkan harga sewa.

ABSTRACT
The objective of this thesis is to determine dimension of Shell and Tube Vaporizer
(STV) at regasification facility development with capacity of 500 MMSCFD (~
3.593 MWe) which will be installed at a location of ex-facilities of LNG
production that has area limitation (30 x 30 m2). There are five STV groups with
heating media of propane and sea water and the largest dimension is 7,32 m
(length) and 1,45 m (diameter). Parameters NPV, IRR, and PBP are attractive for
regasification cost of 2-3 USD/MMBTU, optimum enoughwhen the regasification
cost is 2.75 USD/MMBTU, result in NPV of USD 38 M, IRR of 23,9%, and PBP
of 4,59 years. Based on sensitivity analysis, investation cost is more sensitive to
the economic parameter compare with the rent cost"
Jakarta: Fakultas Teknik Universitas Indonesia, 2014
T38711
UI - Tesis Membership  Universitas Indonesia Library
cover
Jesslyn Phenica
"ABSTRAK
MMPC (Multivariable Model Predictive Control) digunakan untuk mengontrol suhu dan tekanan di kilang regasifikasi LNG untuk mengatasi masalah yang saling mempengaruhi variabel dan mengurangi jumlah pengontrol. Ada empat variabel yang dikontrol (variabel terkontrol, CV) dan empat variabel yang dimanipulasi variabel, MV). CV yang dikontrol adalah tekanan di tangki penyimpanan LNG yaitu tekanan keluaran vaporizer, suhu keluaran vaporizer, dan suhu gas ke pipa. MV dimanipulasi, yang masing-masing berpasangan dengan CV tersebut, adalah laju aliran produk tank top, laju aliran gas pipa, laju aliran air laut, dan pemanas tugas. Identifikasi Model empiris FOPDT (First Order Plus Dead-Time) akan dilakukan terhadap keempatnya pasang CV dan MV untuk menggambarkan interaksi antar variabel. FOPDT diperoleh digunakan sebagai pengontrol di MMPC dan menentukan pengaturan kinerja kontrol Parameter MMPC yaitu P (prediction horizon), M (control horizon), T (waktu sampling). Kinerja kontrol diukur dengan menggunakan metode ISE (Integral Square Error). Hasilnya, parameter MMPC (P, M, T) untuk kondisi regasifikasi LNG adalah optimum masing-masing adalah 330, 1, 1. Ukuran ISE dari pengontrol MMPC dalam setpoint pelacakan: 2.12 × 10-4; 23.834; 0,763; 0,085, dengan perkembangan kinerja pengontrol masing-masing 31.262%, 17%, 175%, 757% dibandingkan kinerja MPC.

ABSTRACT
MMPC (Multivariable Model Predictive Control) is used to control temperature and pressure in the LNG regasification plant to overcome the problem of interplaying variables and reducing the number of controllers. There are four controlled variables (controlled variable, CV) and four manipulated variables
variable, MV). CV that is controlled is the pressure in the LNG storage tank, namely the vaporizer output pressure, the vaporizer output temperature, and the gas temperature to the pipe. MV manipulated, each of which is paired with the CV, is the tank top product flow rate, the pipeline gas flow rate, the seawater flow rate, and the heating duty. Identification of the FOPDT (First Order Plus Dead-Time) empirical model will be carried out on the four CV and MV pairs to describe the interactions between variables. The obtained FOPDT is used as a controller in the MMPC and determines the control performance settings for the MMPC parameters, namely P (prediction horizon), M (control horizon), T (sampling time). Control performance is measured using the ISE (Integral Square Error) method. As a result, the MMPC parameters (P, M, T) for the optimum LNG regasification conditions were 330, 1, 1. ISE size of the MMPC controller in the tracking setpoint: 2.12 × 10-4; 23,834; 0.763; 0.085, with the development of the controller performance respectively 31,262%, 17%, 175%, 757% compared to the performance of MPC."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Emapatria Chandrayani
"LNG memiliki potensi untuk menjadi pemasok energi untuk menjangkau kepulauan di Indonesia dan telah direncanakan untuk memasok pembangkit listrik di pulau-pulau terpencil. Analisis tekno-ekonomi pembangkit listrik turbin gas terintegrasi dengan unit regasifikasi LNG skala kecil telah dilakukan untuk meningkatkan efisiensi pembangkit listrik dan mengurangi biaya pembangkitan listrik. Analisis dimulai dengan membuat simulasi proses dari sistem yang divalidasi untuk menggambarkan kinerja turbin gas aktual menggunakan simulator proses Aspen Hysys. Kemudian, dilakukan beberapa integrasi seperti penerapan pembangkit uap dalam combined cycle sebagai pembangkit listrik sekunder, pemanfaatan energi dingin dari regasifikasi LNG untuk pendinginan udara masukan kompresor turbin gas, dan pemanasan kembali bahan bakar gas oleh sebagian uap yang dihasilkan. Hasil simulasi memberikan akurasi yang baik dan memungkinkan untuk diintegrasikan dengan proses-proses tersebut. Integrasi gabungan memberikan keuntungan yang lebih tinggi, memberikan kenaikan daya listrik hingga 49,4% serta meningkatkan efisiensi sebesar 44,6% dan menurunkan emisi spesifik CO2 sebanyak 30,9% dibandingkan dengan simple cycle turbin gas. Berdasarkan analisis LCOE, integrasi gabungan memberikan biaya produksi listrik 20,89% lebih rendah daripada simple cycle turbin gas sekitar 14,56 sen/kWh pada faktor kapasitas 80%. Terlebih lagi, integrasi gabungan pembangkit listrik turbin gas selalu memberikan LCOE lebih rendah dibandingkan simple cycle turbin gas dalam berbagai faktor kapasitas, yaitu 21,64% lebih rendah untuk faktor kapasitas tinggi dan setidaknya 7,96% lebih rendah untuk faktor kapasitas kecil. Nilai ini dianggap lebih ekonomis dibandingkan pembangkit listrik berbahan bakar diesel. Optimalisasi upaya integrasi untuk peningkatan efisiensi sistem pembangkit listrik turbin gas dapat meningkatkan kinerja dan menurunkan total biaya pokok pembangkitan listrik.

LNG has a potential to become energy supply across Indonesian archipelago and has been planned to supply power plant in remote islands. A techno-economic analysis of integrated small scale gas turbine power plant and LNG regasification unit has been conducted to increase power plant efficiency and reduce electricity generation cost. The analysis begins with creating process simulation of the system that is validated to represent actual gas turbine performance using Aspen Hysys process simulator. Then several integrations are introduced: combined cycle steam generation as secondary power generation, cold energy utilization from LNG regasification to chill intake air compressor of gas turbine, and fuel gas reheating by a small portion of generated steam. The simulation result provides a good accuracy and enable integration to such processes. The combined integration provides higher advantages, providing extra power output up to 49.4% as well as increasing efficiency up to 44.6% and lowering as much as 30.9% specific CO2 emission than simple cycle gas turbine. Based on LCOE analysis, combined integration provides 20.89% lower cost of electricity production than gas turbine simple cycle around 14.56 cent/kWh at 80% capacity factor. The combined integration of gas turbine power plant always delivers LCOE lower than gas turbine simple cycle in any capacity factors which are 21.64% lower for high-capacity factors and at least 7.96% lower for low-capacity factors. This is considered more economically viable than diesel-fueled power plant. The higher efficiency of integrated power plant-LNG regasification system could better improve performance and further reduce generation cost."
Jakarta: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
SIHOTANG, SEVENNO
"Gas alam merupakan bahan bakar fosil yang didominasi dengan metana dan mengandung sedikit jumlah gas lain seperti etana, propana, butana dan pentana. Gas alam ini diubah fasenya dari gas menjadi cair yang biasa disebut Liquefied Natural Gas (LNG). Volume LNG ini dapat diturunkan hingga 1:600 dari pada saat fase gas. Sehingga, ketika pada saat transport tidak menghabiskan waktu dan biaya jika gas alam dibawa dalam jumlah yang banyak. Penelitian ini bertujuan merancang alat penukar kalor pada proses cascade liquifikasi gas alam menjadi LNG. Pencairan gas alam ini menggunakan beberapa refrigerant, yaitu methane, ethylene, propane, dan sea water. Dalam studi Eiksun, Odmar [13], dijelaskan optimasi sistem pencairan gas alam dengan menggunakan refrigerant alami. Namun, dalam rancangan tersebut membutuhkan power yang besar. Oleh karena itu, dalam rancangan ini digunakan sistem cascade agar tenaga/power yang digunakan kompresor ataupun pompa pada setiap alat penukar kalor lebih kecil. Rancangan pencairan gas alam ini dengan proses cascade atau bertingkat menggunakan 10 alat penukar kalor yang berjenis shell and tube. Pada hasil rancangan alat penukar kalor, nilai koreksi koefisien perpindahan panas semua rancangan penukar kalor masih dibawah 30% dan pressure drop masih dalam batasan aman yaitu sebesar 10 psi atau 70 kPa.

Natural gas is a fossil fuel that is dominated by methane and contains a small amount of other gases such as ethane, propane, butane and pentane. This natural gas is phased from gas to liquid which is commonly called Liquefied Natural Gas (LNG). This volume of LNG can be lowered up to 1:600 from the time of the gas phase. Thus, when at the time of transport does not consume time and costs if natural gas is carried in large quantities. In Eiksun's study, Odmar [13], described the optimization of natural gas liquefaction systems using natural refrigerants. However, in the design requires a large amount of power. Therefore, in this design a cascade system is used so that the power / power used by the compressor or pump on each heat exchanger is smaller. This natural gas liquefaction design is a cascade or multistage process using 10 heat exchangers of the shell and tube type. In the results of the design of the heat exchanger, the correction value of the heat transfer coefficient of all heat exchanger designs is still below 30% and the pressure drop is still within the safe limit of 10 psi or 70 kPa.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gunawan Setiadi
"Dalam rangka memenuhi kebutuhan listrik di Sulawesi Utara, Sulawesi Tengah dan Gorontalo, PT X dihadapkan pada tantangan dalam memenuhi kebutuhan listrik proyek pengembangan Kawasan Ekonomi Khusus (KEK) di Bitung dan Palu. Tidak terjangkaunya jaringan pipa gas yang bersumber di sekitar Kota Luwuk dan kecilnya kebutuhan gas menjadi kendala. Gas alam dalam bentuk cair (LNG) menjadi alternatif untuk pasokan gas ke pembangkit listrik di Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) dan Gorontalo (100 MW) menggunakan sumber LNG dari Bontang maupun Sengkang dengan kebutuhan gas total sebesar 26,41 MMSCFD. Optimasi Logistik LNG perlu dilakukan untuk mendapatkan biaya transportasi minimum. Dengan membandingkan lima kapal LNG yang akan digunakan yaitu kapal berkapasitas 10.000 m3 sampai dengan 22.500 m3 yang ada di pasaran. Metode penelitian menggunakan Solver Add-In yang ada pada Microsoft Excel dengan objective function meminimalkan biaya Distribusi LNG. Hasil optimasi berdasarkan tiga skenario dan dua sumber LNG terhadap jarak sumber LNG ke tujuan pengiriman dalam periode satu tahun didapatkan bahwa, metode transportasi LNG yang menghasilkan biaya distribusi minimum adalah menggunakan skenario Milk-Run dari sumber LNG Bontang dengan total biaya transportasi diperoleh sebesar USD 17.207.897 atau setara dengan 1,53 USD/MMBTU dengan satu buah kapal LNG berkapasitas 12.000 m3.

In the framework of fulfilling the electricity needs in North Sulawesi, Central Sulawesi and Gorontalo, PT X is faced with challenges in fulfilling the electricity needs of the Special Economic Zone (KEK) development project in Bitung and Palu. The inaccessibility of gas pipelines sourced in and around Luwuk City and the small gas requirement becomes an obstacle. Liquefied Natural Gas (LNG) becomes an alternative to supply gas to a power plant in Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) and Gorontalo (100 MW) using LNG sources from Bontang and Sengkang with total gas requirements of 26.41 MMSCFD. LNG Logistics Optimization is necessary to obtain minimum transportation costs. By comparing five LNG vessels that will be used, with a capacity of 10,000 m3 up to 22,500 m3 on the market. The research method uses a Solver Add-In in Microsoft Excel with an objective function minimizing the cost of LNG distribution. The optimization results based on three scenarios and two sources of LNG on the distance of the LNG source to the delivery destination in a one-year period found that the LNG transportation method that produces minimum distribution costs using the Milk-Run scenario from the Bontang LNG source with total transportation costs of USD 17,207,897 or equivalent with 1.53 USD/MMBTU with one 12,000 m3 LNG capacity vessel."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54361
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>