Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 180544 dokumen yang sesuai dengan query
cover
Rachmadiosi Muhammad
"Terjadi fenomena retak tertunda (delayed crack) pada produk bucket tooth PT. X yang merupakan salah satu komponen pada excavator. Proses pembuatan produk bucket tooth melalui beberapa tahapan proses perlakuan panas mulai dari tahap pengecoran, normalisasi, lalu dilanjutkan dengan tempering. Kemudian austenisasi dan quenching dengan medium polialkilen glikol (PAG) dan terakhir adalah proses double tempering. Hasil pengamatan mikrostruktur menunjukkan terjadinya fenomena dekarburisasi pada bagian permukaan material baja HSLA yang terlihat dari semua sampel produk mulai dari hasil pengecoran hingga double tempering. Kemudian terlihat pula adanya struktur dendritik dan/atau zona transformasi yang tidak hilang dari tahap awal perlakuan panas hingga sampel produk hasil double tempering walaupun telah melalui poses perlakuan panas normalisasi. Ini mengindikasikan proses normalisasi yang dilakukan belum optimal untuk menyeragamkan mikrostruktur produk bucket tooth. Selain itu juga teridentifikasi adanya austenit sisa sebesar 2,8% pada mikrostruktur sampel produk hasil double tempering yang merupakan tahap akhir proses perlakuan panas pada pembuatan produk bucket tooth. Hal ini berisiko untuk memicu terjadinya delayed crack pada produk bucket tooth. Temuan tersebut juga didukung oleh hasil pengujian kekerasan microvickers yang menunjukkan nilai kekerasan sebesar 296 VHN pada area terang pengamatan mikrostruktur produk hasil double tempering yang berada dalam rentang nilai kekerasan austenit.

Delayed cracking phenomenon occurs in the bucket tooth products of PT. X, which are one component of excavators. The bucket tooth productss making process goes through several stages of the heat treatment process starting from the casting, normalization, then proceed with tempering process. Then austenisation and quenching with polyalkylene glycol (PAG) medium and finally the double tempering process. Microstructure observation results show the phenomenon of decarburization on the surface of HSLA steel material which is seen from all product samples ranging from casting to double tempering. Then it also shows the dendritic structure and/or transformation zone that does not disappear from the initial stage of heat treatment to the sample of the double tempering product even though it has been through the normalized heat treatment process. This indicates that the normalization process is not optimal to uniform the bucket tooth product microstructure. In addition, 2,8% of the retained austenite was identified in the microstructure of the double tempering product sample which is the final stage of the heat treatment process in the production of bucket tooth products. This is a risk to trigger delayed cracks in bucket tooth products. This finding was also supported by the results of microvickers hardness testing which showed a hardness value of 296 VHN in the bright area of ​​of microstructure observation on double tempering product where in the range of the austenite hardness value."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adani Khairina Hakimah
"

Dalam penelitian ini dilakukan pengamatan mikrostruktur, ukuran butir austenit awal, dan kekerasan di bawah pengaruh proses normalisasi dengan variasi waktu tahan pada baja HSLA hasil coran sebagai upaya pencegahan delayed crack akibat transformasi fasa untuk aplikasi bucket tooth. Normalisasi dilakukan pada suhu 970oC dengan waktu tahan selama 45 menit, 60 menit, 75 menit, dan 90 menit dan laju pemanasan 10oC/menit. Dari hasil penelitian yang diperoleh menunjukkan bahwa mikrostruktur yang dihasilkan berupa bainit pada matriks bainit atau daerah gelap serta struktur martensit dan martensit-austenit sisa pada daerah gelap atau transformation zone. Semakin bertambahnya waktu tahan maka akan dihasilkan ukuran butir yang semakin besar namun diikuti oleh semakin tingginya nilai kekerasan sebab ada penghalusan butir secara intragranular serta semakin besarnya persentase area transformation zone. Waktu tahan selama 45 menit, 60 menit, 75 menit, 90 menit secara berturut-turut menghasilkan ukuran butir 5.06 mm, 5.14 mm, 5.08 mm, 5.20 mm dan nilai kekerasan sebesar 355 VHN, 369 VHN, 376 VHN, dan 385 VHN. Serta didapatkan pula kenaikan persentase area transformation zone dengan nilai 8.27%, 10.222%, 10.787%, dan 11.7%.

 


This research investigated microstructures, prior austenite grain sizes, and hardness under the influence of normalizing process with various holding time parameters on high strength low alloy (HSLA) steel castings for bucket tooth excavator application in order to prevent delayed crack due to phase transformation. Normalizing process was carried out at 970oC with holding time of 45 minutes, 60 minutes, 75 minutes, and 90 minutes by heating rate of 10oC /min. The result of this research shows that the obtained microstructures consisted of bainite in bainite matrix also retained austenite and martensite-retained austenite was found in transformation zone structures. Increasing holding time produced larger grain size but followed by the higher value of hardness due to larger percentage area of transformation zone and also intergranular nucleation which caused grain refinement. The holding time of 45 minutes, 60 minutes, 75 minutes, 90 minutes respectively produced grain sizes of 5.06 mm, 5.14 mm, 5.08 mm, 5.20 mm and hardness values of 355 VHN, 369 VHN, 376 VHN, and 385 VHN. Transformation zone also increased by values of 8.27%, 10.222%, 10.787%, and 11.7%.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dino Adipradana Darwanto Haroen
"

High-strength low alloy steel atau biasa disebut baja HSLA merupakan material yang digunakan untuk komponen excavator bucket tooth pada industri alat berat. Komponen ini diproduksi di Indonesia tanpa adanya kegagalan pada produk, namun ketika diekspor ke luar negeri, produk mengalami retak yang diindikasikan sebagai delayed crack. Penelitian sebelumnya menyatakan bahwa delayed crack ini terjadi akibat hadirnya austenit sisa yang merupakan fasa metastabil dan dapat bertransformasi secara isotermal menjadi fasa lain serta menghasilkan tegangan sisa sehingga berujung pada inisiasi retak. Penelitian ini memfokuskan pada metode untuk mengurangi jumlah austenit sisa dengan memvariasikan waktu tempering pada perlakuan double tempering (QTT). Namun, nilai kekerasan akhir juga dipertimbangkan pada penelitian ini agar sesuai pada standar komponen industri alat berat. Temperatur tempering yang digunakan adalah 205°C dan waktu tempering yang digunakan adalah 68 menit x 2 (t1), 81 menit x 2 (t2), 94 menit x 2 (t3), dan 107 menit x 2 (t4). Perlakuan tempering dapat secara efektif menurunkan jumlah austenit sisa karena ketika tempering austenit sisa akan terdekomposisi menjadi fasa lain. Selama perlakuan tempering juga, martensit akan terdekomposisi menjadi tempered martensite sehingga kehilangan sebagian atom karbonnya (loss of tetragonality) dan menjadi lebih lunak. Karakterisasi yang dilakukan pada penelitian ini adalah OM, SEM, Image-J (image analyzer), microvickers (kekerasan mikro), dan Rockwell C (kekerasan makro). Setelah dianalisis, penelitian ini mendapatkan hasil mikrostruktur berupa martensit (fresh martensite & tempered martensite), bainit (lower bainite), dan austenit sisa. Ditemukan pula karbida transisi pada bilah-bilah martensit. Ukuran fasa martensit (panjang bilah/jarum) tidak mengalami perubahan yang signifikan (cenderung seragam) seiring peningkatan waktu tempering. Peningkatan waktu tempering memengaruhi jumlah austenit sisa yang mengalami penurunan dan jumlah tempered martensite meningkat. Jumlah austenit sisa seiring peningkatan variabel waktu tempering mengalami penurunan dari 2.88%, 1.93%, 1.15%, dan 0.65%. Sementara itu, nilai kekerasan yang dihasilkan seiring meningkatnya waktu tempering adalah 49.43 HRC, 48.21 HRC, 47.78 HRC, dan 46.93 HRC dimana nilai kekerasan mengalami penurunan yang tidak signifikan. Maka, peningkatan waktu tempering dari 68 menit x 2 (t1), 81 menit x 2 (t2), 94 menit x 2 (t3), hingga 107 menit x 2 (t4) akan menurunkan potensi terjadinya delayed crack karena jumlah austenit sisa dapat berkurang, namun tetap memiliki nilai kekerasan yang baik.


The high-strength low alloy steel or commonly called HSLA steel is a material used for bucket tooth excavator components in the heavy equipment industry. This component was produced in Indonesia without product failure, but when exported abroad, the product experienced cracks which was indicated as delayed crack. Previous studies have suggested that this delayed crack occurred due to the presence of retained austenite which is a metastable phase and can be transformed isothermally into another phase and produces residual stress resulting in crack initiation. This study focuses on methods to reduce the amount of retained austenite by varying the tempering time in the double tempering (as-QTT) treatment. However, the final hardness value was also considered in this study to fit the heavy equipment industry component standard. The tempering temperature was 205°C and the tempering time was 68 minutes x 2 (t1), 81 minutes x 2 (t2), 94 minutes x 2 (t3), and 107 minutes x 2 (t4). The tempering treatment can effectively reduce the amount of residual austenite because when tempering the retained austenite will decompose into another phase. During tempering too, martensite will decompose into tempered martensite so that it loses some of its carbon atoms (loss of tetragonality) and becomes softer. The characterizations carried out in this study are OM, SEM, Image-J (image analyzer), microvickers (micro hardness), and Rockwell C (macro hardness). After being analyzed, this study obtained the results of microstructure in the form of martensite (fresh martensite & tempered martensite), bainite (lower bainite), and retained austenite. Also found transition carbides on martensite laths. The size of the martensitic phase (length of the lath/needle) does not change significantly (tends to be uniform) with increasing tempering time. An increase in tempering time affects the amount of retained austenite that has decreased and the amount of tempered martensite increases. The amount of retained austenite with increasing tempering time variables decreased from 2.88%, 1.93%, 1.15%, to 0.65%. Meanwhile, the value of hardness produced with increasing tempering time was 49.43 HRC, 48.21 HRC, 47.78 HRC, and 46.93 HRC where the value of hardness experienced an insignificant decrease. Thus, increasing the tempering time from 68 minutes x 2 (t1), 81 minutes x 2 (t2), 94 minutes x 2 (t3), until 107 minutes x 2 (t4) will reduce the potential for delayed cracks to occur because the amount of retained austenite can be reduced, but still has a good hardness value.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Finia Nur Chaerunisa
"Baja High Strength Low Alloy digunakan sebagai material bucket tooth pada excavator. Perlakuan panas dilakukan pada baja HSLA mulai dari hasil pengecoran, yaitu normalisasi, pre-tempering, austenisasi, dan double quenching. Penelitian sebelumnya menemukan adanya austenit sisa pada komponen bucket tooth yang menyebabkan delay crack akibat austenit sisa yang bertransformasi dan menimbulkan tegangan sisa. Struktur mikro yang seragam diperlukan agar material lebih responsif terhadap perlakuan panas selanjutnya. Penelitian ini berfokus pada optimalisasi temperatur normalisasi sebelum pengerasan dan meneliti pengaruhnya terhadap struktur mikro dan sifat mekanis baja HSLA, yaitu normalisasi pada temperatur 910oC, 940oC, 970oC, dan 1000oC. Struktur mikro baja HSLA hasil cor terdiri dari matriks granular bainit yang dendritik dan adanya area transformation zone yang memiliki kekerasan mikro lebih tinggi dibanding matriks. Ketika dinormalisasi pada berbagai temperatur, dihasilkan matriks carbide free upper bainit dengan pola yang masih dendritik dan masih terdapat transformation zone (lower bainite dan martensite dan/atau retained austenite). Namun, normalisasi 1000oC, struktur dendritik tidak ditemukan pada permukaan sampel. Penggunaan etsa Vilella’s reagent, ditemukan pada sampel hasil cor memiliki ukuran butir yang besar. Meningkatnya temperatur normalisasi menyebabkan peningkatan ukuran butir. Namun pada temperartur 970oC, pengamatan dengan SEM ditemukan adanya nukleasi butir secara intra-granular yang ditandai ditemukannya butir-butir yang lebih halus. Presentase area transformation zone pada baja HSLA hasil cor sebesar 7,786%, kemudian meningkat seiring meingkatnya temperatur normalisasi, secara bertutut-turut menjadi 8.043%, 10.012%, 10.222%, dan 11.295%. Nilai kekerasan makro untuk sampel hasil cor sebesar 356,05 HV dan meningkat seiring meningkatnya temperatur normalisasi, yaitu secara berturut turut menjadi 361,90 HV; 366,47 HV; 377,18 HV; 382,00 HV. Kekuatan tarik sampel as-cast 1172,31 MPa, kemudian meningkat seiring meningkatnya temperatur normalisasi, berutut-turut menjadi 1190,93 MPa; 1205,74 MPa; 1238,55 MPa; dan 1253,35 MPa. Meningkatnya temperatur normalisasi menyebabkan peningkatan kekerasan dan kekuatan tarik, walaupun tidak signifikan. Tegangan sisa pada permukaan sampel normalisasi 970oC didominasi tegangan sisa tarik.

High Strength Low Alloy steel is used as bucket tooth material in excavators. The heat treatment is carried out on as-cast HSLA steel starting from normalization, pre-tempering, austenisation, and double quenching. Previous research found the presence of residual austenite in the bucket tooth component which causes delay cracks due to the residual austenite that transforms and causes residual stress. A uniform microstructure is needed, so that the material is more responsive to subsequent heat treatment. This research focuses on optimizing the normalization temperature before hardening and investigating its effect on the microstructure and mechanical properties of HSLA steels, with normalization at 910oC, 940oC, 970oC, and 1000oC. The microstructure of HSLA steel as-cast consists of a dendritic matrix of granular bainite and transformation zone area with a higher micro hardness than the matrix. When normalized at various temperatures, carbide free upper bainite matrix is ​​produced with a dendritic dendritic pattern and there is still a transformation zone (lower bainite and martensite and/or retained austenite). However, normalizing 1000oC, the dendritic structure was not found on the surface of the sample. A large grain size was found on the cast sample when the Vilella’s reagent etching was used. Increasing the normalization temperature causes an increase in grain size. However, at a temperature of 970oC, observations with SEM found that there was intra-granular nucleation characterized by the discovery of finer grains. The percentage of transformation zone area on HSLA steel produced by casting is 7,786%, then increases with increasing normalization temperature, which are 8,043%, 10,012%, 10,222%, and 11,295% respectively. The macro hardness value for the cast sample was 356,05 HV and increased with increasing normalization temperature, which are 361,90 HV; 366,47 HV; 377,18 HV; and 382,00 HV respectively. The tensile strength of the as-cast sample was 1172,31 MPa, then increasing with increasing normalization temperature to 1190,93 MPa; 1205,74 MPa; 1238,55 MPa; and 1253,35 MPa, respectively. An increase in normalization temperatures cause an increase in hardness and tensile strength, although not significant. Residual stress on the surface of the 970oC normalized sample is dominated by tensile residual stress."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alif Fadhilah Dinandaka
"Program Tol Laut membuat produksi kapal di Indonesia semakin meningkat. Galangan yang memproduksi kapal di Indonesia seringkali menggunakan metode flame straightening untuk meluruskan kembali plat yang bengkok akibat sebaran panas yang tidak merata, maupun karena kurangnya perhatian dalam penaganan plat ataupun blok. Galangan di Indonesia secara umum menggunakan plat baja karbon rendah untuk membangun kapal. Perlakuan flame straightening yang dilakukan di galangan seringkali tidak memiliki standar yang jelas. Karenanya harus diketahui pengaruh yang terjadi pada bagian yang diberikan flame straightening dari perspektif struktur mikro dan sifat mekanik. Mereplikasi kegiatan flame straightening yang terjadi di galangan dengan variabel waktu pemanasan dan temperatur maksimum, penelitian ini memberikan hasil berupa gambaran pengaruh flame straightening tersebut.
Pengujian hasil pemanasan dilakukan dengan observasi visual, uji tarik, uji kekerasan, dan observasi struktur mikro dengan SEM-EDX. Terbukti bahwa perlakuan panas flame straightening memberikan dampak pada plat spesimen. Observasi visual memberi keluaran bahwa terdapat corak warna yang terjadi setelah dilakukan perlakuan panas, corak tersebut terjadi secara acak. Begitu pula dengan uji kekerasan yang memberikan hasil acak namun terbukti terdapat penambahan nilai kekerasan dibanding material yang belum diberi perlakuan panas. Uji tarik memberi hasil bahwa semakin lama pemanasan, maka kekuatan tarik akan semakin baik, sampai dengan variabel waktu yang ditentukan. Pengujian SEM-EDX memberikan hasil yang sesuai dengan teori struktur mikro dan diagram fasa, yang mengatakan dengan variabel yang telah ditentukan seharusnya tidak ada perubahan struktur mikro yang terjadi.

Tol Laut Program is increasing the shipbuilding activities in Indonesia. Shipbuilding shipyards in Indonesia oftenly use flame straightening in order to realign deformed plates due to uneven heat spreading, as well as the lack of concern when handling plates or ship blocks. Indonesian shipyards commonly use low carbon steel for shipbuilding. Flame straightening that is done in shipyards, oftenly have no clear standards. That is why it is important to know the influence happened in the flame straightened part of the plates form the microstructural and mechanical properties perspectives. Replicating the flame straightening done in shipyards with heating time and maximum temperature as variables, this research gives an output of  the depiction of the influence of flame straightening.
The examination of the heating results is done by visual observation, tensile test, hardness tes, and microstructural observation using SEM-EDX. It is proved that flame straightening affects the specimens. Visual observation shows a colored pattern that occurs after the heat treatment, and the pattern occurs randomly. Hardness test also gives a random output but proved the addition of hardness number compared to untreated materials. Tensile test gives the output of the increase of tensile strength correspondently with the length of heating time, with the specified time variable. SEM-EDX gives the corresponding output with the microstructure and phase diagram theory, that with the specified variables, there should not be any change."
Depok: Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Rahman
"Material High-Strength Low Alloy Steel (HSLA) yang digunakan dalam pembuatan produk tooth excavator mengalami retak dalam jumlah besar akibat proses heat treatment yang kurang optimal setelah didiamkan selama 2 bulan. Penelitian sebelumnya menemukan keberadaan fasa yang tidak homogen dan keberadaan austenit sisa pada baja. Kemohogenan fasa dibutuhkan untuk mendapatkan struktur mikro yang stabil. Penelitian ini akan berfokus pada prosess heat treatment material pada perlakuan pre-tempering yang dilakukan setelah proses normalisasi. Pre-tempering yang dilakukan pada temperatur 677 ℃ dengan variable waktu tempering masing-masing selama 1 jam, 2 jam, 3 jam, 4 jam dan 5 jam. Berdasarkan hasil percobaan, pre-tempering yang dilakukan mempengaruhi perubahan fasa yang terbentuk dibandingkan hasil normalisasi. Perubahan yang terjadi yaitu perubahan fasa yang sebelumnya upper-bainite, bainitik-ferit, dan austenit sisa pada hasil normalisasi menjadi fasa granular bainite, bainitik-ferit, austenit sisa, dan persebaran karbida pada sekitar batas butir setelah dilakukan pre-tempering. Kemohogenan fasa juga terlihihat setelah dilakukan pre-tempering selama 3 jam tanpa mengalami coarsening. Selain itu, pre-tempering juga menyebabkan penurunan nilai kekerasan pada baja HSLA akibat terjadinya proses recovery. Diharapkan setelah proses pre-tempering yang optimal terjadi perubahan fasa yang terbentuk secara homogen sehingga dapat ditekan dan dihindarinya fenomena delayed crack saat proses perlakuan panas selanjutnya.

High-Strength Low Alloy Steel (HSLA) materials used in the manufacture of tooth excavator products have cracked in large numbers due to sub-optimal heat treatment process after being allowed to stand for 2 months. Previous studies have found the presence of non-homogeneous phases and the presence of residual austenite in steels. Homogeneous pahses is needed to obtain a stable microstructure. This research will focus on the process of heat treatment materials in pre-tempering treatment conducted after the normalization process. Pre-tempering is carried out at a temperature of 677 ℃ with variable tempering time each for 1 hour, 2 hours, 3 hours, 4 hours and 5 hours. Based on the results of the experiment, the pre-tempering carried out affected the change in phase formed compared to the results of normalization. Changes that occur are changes in the previously upper-bainite, bainitic-ferrite, and residual austenite phases in the normalization results to the granular phase of bainite, bainitic-ferrite, residual austenite, and the distribution of carbides around the grain boundaries after pre-tempering. Homogeneous phases was also seen after pre-tempering for 3 hours without experiencing coarsening. In addition, pre-tempering also causes a decrease in the value of hardness in HSLA steel due to the recovery process. It is expected that after an optimal pre-tempering process, the phase changes will occur which are formed homogeneously so that it can be suppressed and avoided the phenomenon of delayed cracking during the subsequent heat treatment process"
Depok: Fakultas Teknik Universitas Indonesia , 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nasution, Ichwanul Muslimin Alfattah
"Penelitian ini didasari oleh terjadinya fenomena crack pada komponen bucket tooth, yang yang menggunakan material baja HSLA, setelah 1 bulan diproduksi, yang disebut dengan delayed crack. Penelitian ini akan berfokus terhadap proses perlakuan panas, khususnya tempering setelah normalisasi. Tempering dilakukan selama 1 jam dengan variabel temperatur tempering pada temperatur 527, 577, 627, dan 677°C. Sampel pengujian awalnya berupa keel block hasil normalisasi, yang kemudian dipotong menjadi balok dengan dimensi 4 x 1 x 4 cm. Karakterisasi dilakukan pada sampel as-normalize dan setelah ditempering, dimulai dari pengamatan struktur mikro menggunakan mikroskop optik, Scanning Electron Microscope (SEM), dan pengujian kekerasan mikro dan makro. Didapatkan bahwa tempering setelah normalisasi tidak hanya menghomogenisasi struktur mikro, tetapi juga mentransformasi fasa dari upper bainite menjadi granular bainite. Semua variabel temperatur tempering menghasilkan bentuk struktur mikro yang sama, berupa granular bainite. Seiring meningkatnya temperatur tempering setelah normalisasi, struktur mikro akan semakin membulat, ketajamannya akan semakin berkurang, kekerasan makro akan menurun dari 389 HVN menjadi 257 HVN, dan kekerasan mikro akan menurun dari 371 HVN menjadi 247 HVN.

This study is based on the occurrence of a phenomenon of crack on a bucket tooth component that used HSLA steel as a material after 1 month being produced, which is called delayed crack. This study will be focusing on its heat treatment process, especially tempering after normalizing. Tempering was carried out for 1 hour with variable tempering temperatures at 527, 577, 627, and 677°C. Initially, the sample was a normalized keel block, which was then cut into blocks with dimensions of 4 x 1 x 4 cm. Characterization was carried out on as normalize and after tempering samples, such as observing microstructure using Optical Microscopy (OM), Scanning Electron Microscope (SEM), microhardness and macro hardness testing. It was found that tempering after normalizing not only homogenized the microstructure, but also transformed the phase from upper bainite to granular bainite. All tempering temperature variables produced the same microstructure, that is granular bainite. As the tempering temperature after normalizing increases, the microstructure will be increasingly rounded, the sharpness will be decreased, macro hardness decreased from 389 HVN to 257 HVN, and microhardness decreased from 371 HVN to 247 HVN."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julian Restudy
"Baja HSLA dan baja karbon rendah merupakan jenis baja yang banyak diaplikasikan pada bidang konstruksi maupun otomotif dimana keuletan dan ketangguhan yang baik sangat dibutuhkan. Adanya penambahan sejumlah kecil (0,15%) unsur paduan tertentu pada baja HSLA yang menghasilkan sifat mekanis yang baik melalui penguatan presipitat dan penghalusan butir menyebabkan baja ini lebih unggul dari baja karbon rendah biasa. Penelitian ini dilakukan untuk mempelajari sejauh mana komposisi kimia mempengaruhi morfologi ferit yang terbentuk pada baja HSLA dibandingkan baja karbon rendah yang akan berpengaruh pada sifat mekanis akhir serta ketahanan korosinya. Benda uji yang digunakan yaitu, baja HSLA 0,029% Nb dan baja karbon rendah yang dipanaskan ulang pada temperatur 1200 °C dengan waktu tahan 1 jam dengan pencelupan air.
Perlakuan pemanasan ulang sampai pada temperatur 1200 °C dengan waktu tahan 1 jam dengan pencelupan air akan menyebabkan berubahnya morfologi ferit dari baja HSLA maupun baja karbon rendah. Perubahan morfologi dari ferit ini akan menyebabkan sifat mekanis dan ketahanan korosi dari baja HSLA dan baja karbon rendah mengalami perubahan yang antara lain dipengaruhi oleh adanya transformasi fasa serta bertambah besarnya diameter butir ferit. Pemanasan pada temperatur 1200 °C dengan waktu tahan yang cukup lama (1 jam) menyebabkan meningkatnya migrasi atom pada batas butir melalui proses difusi sehingga ukuran butir akan bertambah besar yang nantinya akan mempengaruhi sifat ketahanan korosinya.
Perlakuan pemanasan ulang dengan pendinginan yang cepat menyebabkan terbentuknya lath martensit serta struktur widmanstatten ferit pada mikrostruktur baja HSLA. Berbeda dengan baja karbon rendah yang tetap memiliki struktur ferit namun ukuran butirnya tidak seragam pada mikrostrukturnya. Pemanasan ulang menghasilkan ukuran butir ferit yang lebih besar dari sebelumnya serta meningkatkan ketahanan korosi dari baja dengan baja HSLA memiliki ukuran butir ferit yang lebih besar dan ketahanan korosi yang lebih baik dibandingkan dengan baja karbon rendah biasa.

HSLA steel and low carbon steel has a good ductility and toughness which is needed in constructional and automotive aplication. Additional small number (0,15%) of certain alloy on HSLA steel increasing it mechanical properties, by precipitation strenghtening and grain refinement, to better than normal low carbon steel. This research is done to study the comparison of influence chemical composition to ferrite morphology that occur after isothermal process on HSLA steel and low carbon steel and their corrosion resistant. Sample is HSLA 0,029% Nb and low carbon steel (0,15% C), reheating at isothermal temperature 1200 °C, with about 1 hour, with water quenching.
Reheating at isothermal temperature 1200 °C, with holding time about 1 hour, with direct water quenching cause the transformation of ferrite morphology of both HSLA steel and low carbon steel that influence the change of mechanical and corrosion properties. The change of mechanical and corrosion properties influenced by increasing the ferrite grain size and also the phase transformation of steel. High temperature of reheat (1200 °C) and long holding time (1 hour) enhance the atom migration on grain boundary so that the austenit grain size growing larger and as result the ferrite grain size is larger.
High reheating temperature with rapid cooling cause the lath martensite and widmanstatten ferrite formed on microstructure of HSLA steel. On the other hand, there is no phase transformation changing on low carbon steel, it still has ferrite with rough grain size. Reheating process will increase both the ferrite grain size and corrosion resistant of steel with HSLA steel has larger the ferrite grain size and better corrosion resistant than low carbon steel.
"
2008
S41679
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Rafif Roid Shiddiq
"Bucket tooth pada alat berat excavator menggunakan baja High Strength Low Alloy sebagai material didasari oleh sifat-sifatnya. Perlakuan panas yang dilakukan pada baja HSLA adalah normalisasi, tempering, austenisasi, dan quenching, serta double tempering. Penemuan Delay Crack pada produk bucket tooth yang disebabkan oleh adanya austenit sisa pada komponen bucket tooth, austenite ini menimbulkan tegangan sisa di dalam produk. Meminimalisir jumlah austenite sisa serta keseragaman mikrostruktur adalah langkah yang tepat untuk mencegah Delay Crack. Penelitian ini berfokus pada kualifikasi kecepatan pendinginan media pendingin berupa air, air hangat, dan oli dan meneliti pengaruhnya terhadap struktur mikro dan kekerasan baja HSLA. Kecepatan pendinginan rata-rata yang paling tinggi secara berurutan adalah air, oli, dan air hangat, senilai 111,28 oC/s, 51.30 oC/s, 56.75 oC/s. Perbedaan kecepatan pendinginan akan menghasilkan struktur mikro baja HSLA yang berbeda. Fasa martensite terbentuk paling dominan pada setiap jenis media pendingin dengan sedikit austenite sisa yang kadarnya meningkat seiring dengan meningkatnya kecepatan pendinginan yaitu 0.8%, 2,4%, 3% . Kekerasan mikro menemukan fraksi area transformation zone keras akibat dikelilingi oleh martensite pada setiap baja, fasa lower bainite pada baja media pendingin air hangat, serta karbida pada baja media pendingin Air suhu kamar. Nilai kekerasan makro untuk tiap sampel meningkat seiring meningkatnya kecepatan pendinginan, yaitu secara berturut turut menjadi 49.1 HRC, 47.1 HRC, dan 44.3 HRC. Sehingga meningkatnya kecepatan pendinginan menyebabkan peningkatan kekerasan dan kadar austenite sisa. Beberapa temuan lainnya seperti dekarburisasi pada permukaan baja di analisis untuk mengetahui penyebab delay crack terjadi.

Excavator’s bucket tooth using High Strength Low Alloy Steel based material because of it’s properties. The heat treatment performed on HSLA steel is normalization, tempering, austenisation, and quenching, and the last double tempering. Delay Crack was discovered on bucket tooth products caused by the presence of retained austenite in the bucket tooth component, this austenite raises residual stresses in the product. Minimizing the amount of retained austenite and gaining microstructural uniformity is the right step to prevent Delay Crack. This research focuses on qualifying the cooling rate of quenching media in the form of water, hot water, and oil then examines their effects on the microstructure and hardness of HSLA steels. The highest average cooling speed, respectively, is water, oil and warm water, valued at 111.28 oC / s, 51.30 oC / s, 56.75 oC / s. The difference in cooling speed will produce a different HSLA steel microstructure. Martensite phase is formed dominantly in every quenching media variables with a little content of retained austenite whose levels increase with increasing cooling rate by 0.8%, 2.4%, 3%. Microhardness Testing found a hard zone named transformation zone fraction due to being surrounded by martensite in each variables, lower bainite phase in hot water variable, and carbide in water variable. The value of macro hardness for each sample increased with increasing cooling rate, which became 49.1 HRC, 47.1 HRC, and 44.3 HRC respectively. So that the increase in cooling rate causes an increase in hardness and residual austenite levels. Several other findings such as decarburization on the steel surface are analyzed to determine the cause of the delay crack.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ichlas Wahid
"Perlakuan Panas adalah suatu kombinasi operasi pemanasan dan pendinginan terhadap logam atau paduannya, dalam keadaan padat dengan selang waktu penahanan tertentu, dimana perlakuan panas ini diberikan pada logam atau paduannya untuk memperoleh sifat-sifat tertentu. Prosesdur proses perlakuan panas berbeda beda tergantung dari tujuan dari pemberian perlakuan panas itu sendiri, yang biasanya mengacu pada sifat-sifat mekanik dari material bendakerja.
Dalam penelitian ini yang ingin diketahui adalah pegaruh proses perlakuan panas terhadap sifat mekanik yang ada, dan perubahan struktur mikro yang terjadi, proses perlakuan panas yang dilakukan adalah Annealing, Hardening,dan Tempering dengan perlakuan khusus, dilakukan terhadap benda kerja awal baja karbon menegah ( 0,45 % C ) atau baja 1045, dan selajutnya dilakukan penijauan mekanik, tank, kekerasan Rockwel, kekerasan Mikro Vickers, Struktur mikro dengan mikroskop optik dan peninjauan retak akibat uji tank dengan SEM.
Hasil penelitian dapat di simpulkan bahwa harga tegangan tarik tertinggi dicapai oleh spesimen proses Hardening dan tegangan ter rendah di capai oleh spesimen proses Tempering dan harga regangan tertinggi di capai spesimen proses Annealing, Harga kekerasan rockwell tertinggi di peroleh spesimen proses Hardening dan kekerasan terrendah dicapai spesimen proses Tempering demikian pula pada peninjauan kekerasan mikro Vickers. Perubahan Struktur mikro yang terjadi pada penelitian ini sepesimen awal mempunyai struktur mikro ferit dan pearlit, setelah dilakukan proses annealing didapat fern + peariit dan setelah dilakukan proses Hardening struktur mikro martensit + austenit, pada proses tempering struktur mikronya kembaii pada struktur awal ferit + pearlit, hal ini sebabkan temperatur tempemya dilakukan pada temperatur 850°C."
Depok: Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>