Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 193588 dokumen yang sesuai dengan query
cover
Bambang Novianto
"Pertumbuhan pemanfaatan internet telah meningkatkan perhatian terhadap keamanan data. Pada tahun 2014, Projek SHINE (SHodan Intelligence Extraction) telah menerbitkan laporan penilaian keamanan skala besar untuk perangkat yang terhubung ke Internet. Namun, berdasarkan laporan tersebut, jumlah informasi mengenai IP address Indonesia yang berhasil didapatkan masih sedikit. Terdapat sebanyak 7.182 IP address dari Indonesia, yaitu sekitar 0,0032% dari total 2.186.971 IP address yang berhasil dikumpulkan oleh Projek SHINE. Dalam penulisan tesis ini, penulis mengajukan inisiatif untuk melakukan analisis kerentanan semua informasi Autonomous System Number (AS Number) di Indonesia dari Shodan. Penulis telah menyusun dataset semua informasi AS Number di Indonesia antara lain 12.787 port, 79 sistem operasi, 409 produk, 3.634 domain, 145.543 IP address, dan 790 organisasi. Penulis menggunakan algoritma K-Means clustering untuk mengelompokkan AS Number ke dalam beberapa kelas sesuai dengan tingkat paparan di shodan. Berdasarkan hasil pengelompokan, penulis mendapatkan 4 kelas AS Number antara lain 1.075 AS Number di kelas: 0 (belum terdapat informasi mengenai AS Number tersebut di Shodan), 614 AS Number di kelas: 1 (tingkat paparan rendah), 9 AS Number di kelas: 2 (tingkat paparan sedang), dan 1 AS Number di kelas: 3 (tingkat paparan tinggi). Informasi ini dapat dimanfaatkan oleh Kementerian yang menangani bidang Teknologi Informasi dan Komunikasi dan Badan yang menangani Keamanan Siber di Indonesia untuk menghimbau organisasi pengelola AS Number agar mewaspadai potensi kerentanan yang dinformasikan oleh Shodan dan dimanfaatkan oleh hacker.

The growth of internet-enabled devices has increased interest in cybersecurity. In 2014, Project SHINE (SHodan INtelligence Extraction) published a report of large-scale security assessments for devices connected to the Internet. However, the number of IP addresses harvested from Indonesia in 2014 is very small. There were 7.182 IP address from Indonesia. It was about 0,0032% from the total 2.186.971 IP addresses. In this paper, we propose an initiative to gather all information for all Autonomous System Number (AS Number) from Indonesia in Shodan. We have gathered a dataset about all information of AS Numbers in Indonesia such as 12.787 unique ports, 79 unique operating systems, 409 unique products, 3.634 unique domains, 145.543 unique IP addresses, and 790 unique organizations. We use the K-Means algorithm to cluster all AS Numbers into several classes according to the exposure level in shodan. Based on the result, we have 4 classes of AS Numbers. There are 1.075 AS Numbers in class:0 (no information in Shodan yet), 614 AS Numbers in class:1 (exposure level = low), 9 AS Numbers in class:2 (exposure level = medium), and 1 AS Number in class:3 (exposure level = high). This information can be used to warn the organizations that manage AS Numbers in Indonesia to be aware of the security and the threats to their systems."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Siti Aminah
"Makalah ini mcmbahas tentang pengelompokan data melalui metoda K-Muans Clustering. Hasil penjgelompokan metoda tersebut digunakan untuk memetakan data rataan nilai UMPTN IPA per kabupaien/kodya di seluruh Indonesia, dengan menggunakan Arc-View GIS versi 3.1. Dari hasil pemetaan tersebut diharapkan data yang merupakan rataan nilai UMPTN IPAtlersebut akan Iebih mudah dan menarik untuk dibaca. Terutama bagi pengambil kebijakan dalam dunia pendidikan. Dengan melihai hasil pemetaan tersebut diharapkan mereka bisa meningkatkan kualilas pendidikan atau melakukan perbaikan-perbaikan dalam dunia pcndidikan di Indonesia secara global, sesuai dengan kualitas pcndidikannya"
Depok: Universitas Indonesia, 2003
SAIN-8-2-2003-12
Artikel Jurnal  Universitas Indonesia Library
cover
Nova Yuniarti
"[ABSTRAK
Berdasarkan data WHO tahun 2014, diperkirakan sekitar 15 juta orang di dunia
yang terinfeksi hepatitis B (HBsAg+) juga terinfeksi hepatitis D. Infeksi hepatitis
D dapat terjadi bersamaan (koinfeksi) atau setelah seseorang terkena hepatitis B
kronis (superinfeksi). Penyakit hepatitis B disebabkan oleh virus HBV dan
penyakit hepatitis D disebabkan oleh virus HDV. HDV tidak dapat hidup tanpa
HBV. Hepatitis D erat hubungannya dengan infeksi virus HBV, sehingga sangat
realistis bila setiap usaha pencegahan terhadap hepatitis B, maka secara tidak
langsung mencegah hepatitis D. Pada tesis ini akan dibahas bagaimana hasil
pengelompokan barisan DNA HBV menggunakan algoritma k-means clustering
dengan menggunakan perangkat lunak R. Dimulai dengan mengumpulkan barisan
DNA HBV yang diambil dari GenBank, kemudian dilakukan ekstraksi ciri
menggunakan n-mers frequency, dan hasil ekstraksi ciri barisan DNA tersebut
dikumpulkan dalam sebuah matriks dan dilakukan normalisasi menggunakan
normalisasi min-max dengan interval [0, 1] yang akan digunakan sebagai data
masukan. Jumlah cluster yang dipilih dalam penelitian ini adalah dua dan
penentuan centroid awal dilakukan secara acak. Pada setiap iterasi dihitung jarak
masing-masing objek ke masing-masing centroid dengan menggunakan Euclidean
distance dan dipilih jarak terpendek untuk menentukan keanggotaan objek di
suatu cluster sampai akhirnya terbentuk dua cluster yang konvergen. Hasil yang
diperoleh adalah virus HBV yang berada pada cluster pertama lebih ganas
dibanding virus HBV yang berada pada cluster kedua, sehingga virus HBV pada
cluster pertama berpotensi berevolusi dengan virus HDV menjadi penyebab
penyakit hepatitis D.

ABSTRACT
Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D., Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D.]"
2015
T44666
UI - Tesis Membership  Universitas Indonesia Library
cover
Nur Fitriani
"Kinerja mahasiswa adalah bagian penting dari suatu perguruan tinggi. Hal ini dikarenakan salah satu kriteria  perguruan tinggi yang berkualitas didasarkan pada  prestasi akademik yang baik. Tahun pertama perkuliahan adalah periode mahasiswa untuk meletakkan dasar atau fondasi yang selanjutnya akan mempengaruhi keberhasilan akademik karena tahun pertama memainkan peran penting dalam membentuk sikap dan kinerja siswa di tahun-tahun berikutnya. Pada Penelitian ini, pendekatan Semi-supevised Learning digunakan dalam mengklasifikasi kinerja mahasiswa tahun pertama di Departemen Matematika, Universitas Indonesia. Kinerja Mahasiswa dibagi menjadi dua kategori, yaitu sedang dan tinggi. Sampel pada penelitian ini adalah 140 mahasiswa tahun pertama dengan menggunakan 27 fitur. Ada dua proses yang digunakan, yaitu proses clustering dan klasifiksi. Pada proses clustering, mahasiswa dibagi menjadi tiga cluster/kelompok menggunakan K-Means Clustering. Sedangkan dalam proses klasifikasinya menggunakan Naïve Bayes Classifier. Kinerja algoritma yang diusulkan menghasilkan nilai akurasi 96.67% dan sensitifitas 94.44%.

Students performance is an essential part of a higher learning institution because one of the criteria for a high-quality university is based on its excellent record of academic achievements. The first- year of the lecture is the student period in laying the foundation that will affect academic success because first-year plays an important role in shaping the attitudes and performance of students in the following years. In this study, a semi-supervised learning approach is used to classify the performance of first-year students in the Department of Mathematics, Universitas Indonesia. Student performance will be divided into two categories, namely medium and high. The sample in this study consist of 140 first-year students with 27 features. There are two processes used i.e. clustering and the classification process. In the clustering process, the data is divided into three clusters using K-Means Clustering and the Naïve Bayes Classifier is chosen to classify it. The performance of the proposed algorithms is stated by accuracy and sensitivity value i.e. 96.67% and 94.44% respectively."
Depok: Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wu, Junjie
"This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China."
Berlin: Springer-Verlag, 2012
e204063793
eBooks  Universitas Indonesia Library
cover
Wahyu Ika Nur Fitriyani
"Peningkatan kebutuhan lahan permukiman mendorong aktivitas manusia yang semakin kompleks, sehingga menimbulkan bencana, salah satunya kebakaran permukiman. Pada tahun 2018-2021, kebakaran permukiman mengalami ekspansi sebesar 14% di Kota Jakarta Timur. Kejadian ini mengakibatkan kerusakan infastrukur dan kerugian ekonomi yang cukup besar serta menyebabkan hilangnya nyawa seseorang. Studi kerentanan bencana menjadi salah satu opsi yang dapat dilakukan dalam upaya mitigasi. Faktor fisik, sosial, dan ekonomi dinilai sebagai faktor penilaian kerentanan bencana yang mengarahkan pada peningkatan dampak bahaya. Penelitian ini bertujuan untuk mengidentifikasi faktor yang paling berpengaruh dan menganalisis karakteristik wilayah rentan bencana kebakaran permukiman di Kota Jakarta Timur. Metode yang digunakan dalam penelitian ini adalah Analytical Hierarchy Process (AHP) melalui analisis Geographic Information System- based Multicriteria Decision Analysis (GIS-MCDA). Hasil penelitian menunjukan bahwa faktor kerentanan fisik memiliki pengaruh yang lebih tinggi dibandingkan faktor sosial dan ekonomi. Berdasarkan analisis tersebut, wilayah rentan kebakaran permukiman tingkat rendah terdistribusi secara mengelompok pada wilayah yang memiliki lebar jalan 6 m, penggunaan tanah berupa industri, kepadatan penduduk rendah, dan dominasi usia produktif serta dominasi penduduk berjenis kelamin laki-laki. Kemudian pada tingkat sedang memiliki pola menyebar pada karakteristik wilayah dengan kepadatan penduduk sedang dengan material bangunan permukiman semi permanen serta dapat menjangkau hidran kota kurang dari 400 m. Sedangkan, pada tingkat tinggi terdistribusi secara mengelompok pada wilayah dengan karakteristik dekat dengan sumber penyalaan api besar, kepadatan bangunan dan penduduk yang tinggi, serta penggunaan lahan permukiman. Analisis ini memiliki kesesuaian dengan nilai 67% dan termasuk model prediksi cukup baik dari hasil perbandingan kondisi aktual riwayat kejadian kebakaran permukiman tahun 2018-2021. Dengan demikian, penelitian ini diharapkan dapat menjadi pertimbangan kajian lebih lanjut yang berguna dalam menentukan wilayah prioritas untuk penyusunan rencana penanggulangan bencana kebakaran permukiman seperti meningkatkan kapasitas masyarakat.

Complex human activities are encouraged by the growing demand for residential that causing disaster, such as residential fires. Residential fires increased by 14% in East Jakarta City in 2018-2021. This incident resulted in infastructural damage, significant economic loss, and person’s life. One of the choices for mitigation actions is to conduct disaster vulnerability evaluations. Disaster vulnerability assessment elements that increase hazard consequences are evaluated as being physical, social, and economic factors. This study aims to identify the most important factors and analyze the characteristics of vulnerability of residential fires in East Jakarta City. The Analytical Hierarchy Process (AHP) through GIS-MCDA analysis was the method employed in this study. The results showed that physical vulnerability factors had a greater impact than social and economic. Based on this analysis, low-level residential vulnerability areas are clustered with a road width of 6 m, industrial land use, low population density, and dominance of productive age and male population. Then, medium level has dispersed pattern in the characteristics of areas with medium population density also semi-permanent residential building materials and a 400 m or less distance to fire hydrant. Meanwhile, high level are distributed in areas with characteristics close to major fire source, high density of buldings and residents. According to the findings of the comparison on historical intensity of residential fires in 2018-2021, the analysis is valid with a value of 67% and included a fairly to good model prediction. As a result, this research can be considered for additional studies to help identify priority areas for residential fires disaster management plan, such as increasing community capacity."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frisca
"Spectral clustering adalah salah satu algoritma clustering modern yang paling terkenal. Sebagai teknik clustering yang efektif, metode spectral clustering muncul dari konsep teori graf spektral. Metode spectral clustering membutuhkan algoritma partisi. Ada beberapa metode partisi termasuk PAM, SOM, Fuzzy c-means, dan k-means. Berdasarkan penelitian yang telah dilakukan oleh Capital dan Choudhury pada 2013, ketika menggunakan Euclidian distance, k-means memberikan akurasi yang lebih baik dibandingkan dengan algoritma PAM. sehingga, makalah ini menggunakan algoritma k-means. Keuntungan utama dari spectral clustering adalah mengurangi dimensi data, terutama dalam hal ini untuk mengurangi dimensi yang besar dari data microarray.
Microarray data adalah chip berukuran kecil yang terbuat dari slide kaca yang berisi ribuan bahkan puluhan ribu jenis gen dalam fragmen DNA yang berasal dari cDNA. Aplikasi data microarray secara luas digunakan untuk mendeteksi kanker, misalnya adalah karsinoma, di mana sel-sel kanker mengekspresikan kelainan pada gen-nya. Proses spectral clustering dimulai dengan pengumpulan data microarray gen karsinoma, preprocessing, menghitung similaritas, menghitung , menghitung nilai eigen dari , membentuk matriks , dan clustering dengan menggunakan k-means. Dari hasil pengelompokan gen karsinoma pada penelitian ini diperoleh dua kelompok dengan nilai rata-rata Silhouette maksimal adalah 0.6336247. Proses clustering pada penelitian ini menggunakan program open source R.

Spectral clustering is one of the most famous modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c means, and k means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k means algorithm provide better accuracy than PAM algorithm. So in this paper we use k means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset.
Microarray data is a small sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The spectral clustering process is started with collecting microarray data of carcinoma genes, preprocessing, compute similarity matrix, compute , compute eigen value of , compute , clustering using k means algorithm. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k means algorithm is two clusters clusters with maximum Silhouette value 0.6336247.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47117
UI - Tesis Membership  Universitas Indonesia Library
cover
Eka Kurnia Sari
"Perkembangan sistem teknologi telekomunikasi yang semakin canggih dan kompleks memicu meningkatnya kegagalan ataupun kesalahan sistem dalam sistem jaringan utama dan sistem pendukung layanan telekomunikasi, serta kesalahan yang terjadi pada bisnis proses dan sumber daya manusia yang terkait. Kegagalan dan kesalahan ini menyembabkan kerugian yang ditanggung perusahaan, kerugian yang ditimbulkan dengan istilah revenue leakage atau kebocoran pendapatan. Revenue Assurance memegang peranan penting dalam pengendalian terhadap resiko revenue leakage dengan membuat kontrol dalam mendeteksi dan mencegah terjadinya kebocoran agar mampu meminimalkan biaya dan memaksimalkan potensi pendapatan. Dalam tesis ini dikembangkan metode untuk menganalisis Big data CDR untuk mengoptimalkan proses analisis pada revenue assurance control dengan menggunakan algoritma K-means Clustering. Algortima ini mengelompokkan obyek pengamatan dalam beberapa kategori yang diindikasikan sebagai titik kebocoran. Hasil kelompok yang dihasilkan dengan kategori yang beresiko tinggi memiliki anggota yang sedikit dengan tingkat nilai evaluasi akurasi cluster, R-Squared, sekitar 90%.

In the telco industry, Revenue Assurance plays an important role to assure the company revenue from leakage. the revenue chain is established across the process and whole sophisticated system that technologically complex to provide the unstoppable services. This case increasing the probability of system or process failure leads to the leakage. Hence necessary the revenue assurance control to detect and prevent it then it can help to minimize cost and maximize revenue. In this thesis, developed the analysis method in big data CDR to optimize analysis process at revenue assurance control using K-means Clustering algorithm. The use of the K-means clustering algorithm method able to group the object areas with high risk indications of leakage. The cluster result of high risk of leakage is having low amount of member, and the cluster evaluation result of R-Squared giving the good value about 90%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Filda Maharani Hasanah
"Telemedicine merupakan solusi ideal untuk menjadi layanan kesehatan di era COVID-19. Halodoc merupakan salah satu aplikasi telemedicine terbaik di Indonesia. Sejak tahun 2022, Halodoc sudah mempunyai lebih dari 15.000.000 pengguna sehingga perlu mengganti fokus bisnisnya dari product oriented menjadi customer oriented. Halodoc perlu melakukan analisis customer segmentation untuk mengetahui karakteristik pengguna lebih dalam. Analisis ini menggunakan salah satu teknik data mining yaitu clustering menggunakan algoritma K-Prototypes. Atribut penggunaan voucher, total transaksi, kategori produk, spesialis dokter, provider asuransi, kelompok usia, merek handphone, dan lokasi digunakan pada penelitian ini. Pengguna Halodoc yang melakukan transaksi minimal 1 kali selama November 2021 hingga Januari 2022 yang berjumlah 193.000 pengguna akan disegmentasi. Hasilnya adalah pengguna Halodoc dapat disegmentasi menjadi 4 status sosial yaitu working class, petty bourgeoise, middle class, dan high class. Status sosial yang memiliki ukuran terbesar adalah middle class yaitu dengan proporsi 46,69% dari keseluruhan pengguna. Pengguna yang paling potensial untuk Halodoc adalah yang berasal dari status sosial High Class karena memiliki frekuensi transaksi terbanyak dan nominal pengeluaran terbesar.

Telemedicine is the ideal solution to become a healthcare service in COVID-19 era. Halodoc is one of the best telemedicine applications in Indonesia. Since 2022, Halodoc has more than 15.000.000 users, so they need to change its business focus from product oriented to customer oriented. Halodoc needs to do customer segmentation analysis to find out more about user’s characteristics. This analysis uses one of data mining techniques which is K-Prototypes Clustering. Voucher usage, total transaction, doctor specialist, insurance provider, age group, mobile phones’s brand, and location are used in this study. Halodoc’s users who make transactions at least 1 time during November 2021 to January total 193.000 users will be segmented. The results is Halodoc’s users can be segmented into 4 social classes such as working class, petty bourgeoise, middle class, and high class. Social status that has the largest size is the middle class with the proportion of 46.69% of the total users. The most potential users for Halodoc are those from High Class social status because they have the highest transaction frequency and the largest nominal spending."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asita Darma Irawati
"Pertimbangan finansial menjadi salah satu penentu utama apakah seseorang akan melanjutkan pendidikan ke tingkat yang lebih tinggi atau tidak, sehingga diperlukan beasiswa untuk membantu mahasiswa dalam menempuh pendidikan tinggi, terutama hingga tingkat doktor. Besar biaya yang dikeluarkan oleh lembaga penyedia beasiswa kepada penerima beasiswa tentunya diharapkan sepadan dengan kualitas ilmu yang diperoleh. Oleh karena itu, penelitian ini bertujuan untuk membahas analisis pengelompokan universitas terbaik dunia berdasarkan komponen biaya pendidikan program doktor dengan metode K-Means. Universitas pada penelitian ini diambil dari QS World University Rangkings (WUR) 2022. Analisis eksploratori data dilakukan dan diperoleh bahwa terdapat 83 dari 472 universitas di dunia memberi bantuan dana penuh untuk studi program doktor. Nilai Silhouette sebesar 0,72 menunjukkan bahwa tiga merupakan jumlah kelompok yang optimal bagi data. Sehingga terbentuk kelompok A sebanyak 328 universitas, kelompok B sebanyak 108 universitas, dan kelompok C sebanyak 36  universitas. Kelompok A terdiri dari universitas dengan SPP dan biaya hidup per bulan relatif rendah, kelompok B sedang, dan kelompok C tinggi. Untuk biaya transportasi udara, kelompok B cenderung rendah, sedangkan kelompok A dan C relatif serupa dan lebih mahal dari kelompok B. Sementara untuk biaya visa, kelompok A cenderung lebih murah, sedangkan kelompok B dan C cenderung serupa dengan biaya lebih mahal. Berdasarkan analisis ini, penulis memberikan saran universitas yang bisa dipertimbangkan lembaga pemberi beasiswa sebagai perguruan tinggi tujuan.

Financial concern has been one of the main reasons why an individual wants to pursue higher education. That is why scholarship is needed to help students earn an education, especially until doctoral degree. The amount of money spent by institution who give scholarship must be equivalent with the quality of knowledge an awardee got. This study aims to do clustering analysis of the world’s top universities based on tuition fee components for doctoral program using K-Means method. The object of this study are universities based on QS World University Rankings 2022. Exploratory data analysis is done and found that there are 83 out of 472 universities in the world who give fully funded program for doctoral study. Based on the silhouette value of 0.72, three is the best number of clusters for the data. Group A, B, C consists of 328, 108, and 36 universities in respective order. Group A consists of universities who have chepear tuition fee and monthly living cost compared to Group B dan C. However, Group B consists of universities who have cheaper transportation, meanwhile Group A and C are quiet similar. For visa, Group A is cheaper compared to Group B and C which are similar. Based on the results, recommendations are given to the institution who provide scholarship about the objective university for doctoral study."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>