Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 55992 dokumen yang sesuai dengan query
cover
Bonnie Alexandra Kalinggo
"ABSTRAK
Industri kemasan adalah sektor industri yang diproyeksi akan terus bertumbuh, khususnya industri kemasan plastik. Dengan plastik merupakan turunan dari minyak mentah, plastik dan bahan bakunya yang berupa resin tergolong sebagai produk petrokimia. Harga resin berfluktuasi dan sensitif terhadap pergerakan harga minyak mentah sehingga deret waktunya bersifat nonstasioner. Kondisi ini dapat membuat konverter plastik sebagai pihak yang mengkonversi resin menjadi produk plastik mengalami kesulitan dalam memasingkan harga resin pada harga produk kepada pelanggannya serta berpotensi mengalami kerugian. Hal ini memicu peneliti untuk memodelkan peramalan harga resin. Literatur menunjukkan peramalan harga produk petrokimia dengan model tradisional maupun komputasi lunak, namun masih memiliki keterbatasan yang berefek pada akurasi peramalan. Selain itu, kebanyakan peneliti memodelkan peramalan pada harga minyak mentah dan tidak ada yang ditemukan menggunakan harga resin sebagai objek peramalan. Penelitian ini mengajukan peramalan harga resin dengan model neuro-fuzzy yaitu ANFIS dan membandingkan hasilnya dengan sebuah model tradisional, ARIMA, dan sebuah model tunggal komputasi lunak, NN. Hasil peramalan menunjukkan model ANFIS memiliki tingkat error dalam bentuk MAPE yang relatif sangat kecil yaitu 1.06% dan juga tingkat akurasi arah yang tinggi yaitu 93%. Ini menunjukkan bahwa model peramalan ANFIS dapat merepresentasikan karakteristik harga resin. Selain itu, hasil uji statistik juga menunjukkan bahwa terdapat perbedaan yang signifikan antara akurasi peramalan ANFIS jika dibandingkan dengan ARIMA dan NN.

ABSTRACT
The packaging industry is an industrial sector that is projected to continue growing, especially the plastic packaging industry.While plastic is a derivative of crude oil, plastic and its raw material which is called resin are categorized as petrochemical products. The resin price is fluctuating and sensitive to crude oil price movement so that the time series is nonstationary. This condition may cause the plastic converters as the ones converting resin to plastic products to experience the difficulty in passing the resin price into the product price for the customers and have the potential to suffer loss. This triggers the researcher to model the forecasting of resin price. Literatures show petrochemical product price forecasting by using traditional as well as soft computing models, but they still have limitations that affect the forecasting accuracy. In addition, most researchers model forecasting on crude oil price and none of them found to use the resin price as forecasting object. This research proposes resin price forecasting using neuro-fuzzy model that is ANFIS and compare the result with a traditional model, ARIMA, and a standalone soft computing model, NN. Forecasting result shows that ANFIS model has a relative low error in terms of MAPE that is 1.06% and also a high directional accuracy which is 93%. This shows that ANFIS forecasting model can represent the resin price characteristic. Moreover, statistical test also shows that there is significant difference in ANFIS forecasting accuracy if compared to ARIMA and NN."
Depok: Fakultas Teknik Universitas Indonesia , 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Anita Setianingrum
"Prediksi harga saham merupakan hal yang sangat penting bagi investor karena sangat berguna untuk menentukan nilai masa depan dari suatu perusahaan yang sahamnya sedang diperdagangkan di bursa efek. Investor akan mendapatkan keuntungan yang besar dengan prediksi yang tepat, sebaliknya investor akan mendapatkan kerugian jika prediksi yang digunakan tidak tepat. Pada skripsi ini, akan dibahas pembuatan model prediksi Adaptive Neuro Fuzzy Inference System ANFIS dengan menggunakan variabel indikator teknikal terbaik berdasarkan Support Vector Regression SVR yang dilihat dari kecenderungan data historis saham 25 perusahaan dari sub sektor Bank, sektor Keuangan, yang tercatat di Bursa Efek Indonesia. Melalui metode ini, akan didapatkan nilai akurasi model yang cukup baik sedemikian sehingga dapat menjadi rekomendasi bagi investor dalam melakukan prediksi harga saham berdasarkan variabel indikator teknikal terpilih.

Forecasting stock price has become an important issue for stock investors because it is very useful to determine the future value of a company whose its share are traded on the stock exchange. Investors will get a profit with a sharp predictions, otherwise they will get loss if the predictions is inappropriately used. This undergraduate thesis will study how to make a model prediction Adaptive Neruo Fuzzy Inference System ANFIS using the best technical indicators. These technical indicators chosen by using Support Vector Regression SVR referred from the tendencies of stock time series data for 25 companies of Banking sub sector, Financial sector, that listed on Indonesian Stock Exchange. Through this method, analyst will get the value of the model rsquo s accuracy, that is good enough. So that it could be a recommendation for investors for forecasting the stock prices using this method with the selected technical indicators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S66167
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Neuro fuzzy system has been shown to provide a good performance on chromosome classification but does not ofter a simple methods to obtain the accurate parameter values required to yield the best recognition rate....."
ITJOICT
Artikel Jurnal  Universitas Indonesia Library
cover
Dian Eka S.
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39801
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Hikmah
"Identifikasi retina merupakan metode identifikasi biometrik dengan tingkat kesalahan rendah melalui pola-pola unik pembuluh darah di bagian belakang retina. Pola-pola ini dapat digunakan sebagai data latih logika neuro fuzzy untuk kemudian digunakan sebagai pembanding pada saat identifikasi dilakukan.
Penelitian ini bertujuan untuk mengenali citra retina mata manusia, baik bagian kiri maupun kanan, menggunakan teknik pengolahan citra dan Adaptive Neuro Fuzzy Inference System (ANFIS). Pada proses pengenalan retina ini, citra digital yang sudah diakuisisi akan dicrop dan dibagi menjadi image block berukuran 4x4. Kemudian blok citra dikonversi dari format Red Green Blue (RGB) menjadi format Hue Saturation Value (HSV). Untuk mendapatkan parameter fitur warna HSV, setiap komponen warna HSV dihitung nilai rata-ratanya. Nilai rata-rata HSV dimasukkan ke dalam database dan dilatih dengan ANFIS yang terdiri atas 2 jenis membership function, yaitu Gaussian dan Trapesium dengan 3 input dan 1 ouput.
Dari hasil uji coba, hasil identifikasi memiliki tingkat akurasi hingga 65% untuk membership function Trapesium dan 80% untuk membership function Gaussian dengan 60 kali pelatihan ANFIS.

Retina identification is a biometric identification method which has very low error rate using a unique blood vessel pattern in the back of the retina. The identification involved an infrared scanned retina imagery which is analyzed using image processing technique to derive the color characteristics and then trained into the Adaptive Neuro Fuzzy Inference System (ANFIS).
The objective of this research to identify a person?s identity from his/her retina image. The identification process is started by cropping the digital retina image then transformed into an 4x4 image block. The image block is then converted from Red Green Blue (RGB) color format to the Hue Saturation Value (HSV) format. Each color component of HSV values is then averaged, saved to a database and trained using ANFIS. The Neuro fuzzy used Gaussian and Trapezoid membership function which have 3 input and 1 ouput, respectively.
The simulation results showed the identification system has an accuracy rate up to 65% and up to 80%, for Trapezoid and Gaussian membership function, respectively. This results are achieved using 60 training data in the ANFIS."
2008
S40478
UI - Skripsi Open  Universitas Indonesia Library
cover
Rutkowska, Danuta
New york: Physica-Verlag, 2002
006.3 RUT n
Buku Teks  Universitas Indonesia Library
cover
Derick Hendri
"Pemodelan dan peramalan harga saham merupakan hal yang sangat penting bagi seorang investor. Harga saham selalu mengalami perubahan seiring berjalannya waktu. Perubahan ini tidak konstan dan sangat berdampak jika diabaikan karena hal tersebut dapat menimbulkan risiko kerugian. Banyak model yang sudah dibuat dengan tujuan untuk meminimalkan risiko kerugian tersebut. Pada penelitian ini, akan digunakan model ARIMA-GARCH untuk meramalkan volatilitas dalam harga saham. Alasan dari penggunaan gabungan kedua model tersebut adalah karena Model ARIMA saja tidak dapat menangani data dengan volatilitas besar dan yang non-linear. Maka, diharapkan bahwa penggunaan dari model gabungan ini dapat menangani masalah tersebut. Data harga saham yang digunakan pada penelitian ini adalah data harga penutupan dalam dua saham yang termasuk dari indeks LQ45. Pada penelitian ini, data tersebut akan dimasukkan kedalam model gabungan tersebut untuk mendapat peramalan di hari selanjutnya. Setelah itu, akan digunakan metode Walk Forward untuk mendapat semua hasil peramalannya. Dari hasil tersebut, didapat bahwa pengabungan dari ARIMA (1,1,1)-GARCH (1,1) memberikan perdiksi harga saham yang terbaik untuk kedua saham yang dipilih. Lalu, menggunakan hasil MAE dan RMSE dari saham, dapat disimpulkan bahwa model ARIMA-GARCH merupakan model yang dapat memprediksi harga saham dengan baik.

For an Investor, modelling and forecasting the stock prices are very important. Stock price fluctuate as time goes and these changes vary from one point of time to another. These changes can be really dangerous if ignored because the risk of loss it might create. Many models have been created with the purpose of minimizing the risk of loss. In this study, the ARIMA-GARCH model will be used to predict closing price in the stock prices which contain volatility. The reason for using the combination of the two models is due to ARIMA model unable to handle large volatility along with non-linear data. Thus, it is hoped the use of this combined model can solve this problem. The data that is used on this study is the closing price of 2 stocks that is part of the LQ45 index. In this research, the data will be used on the combined model to get the forecast price of the next day. Then, the rest of the forecast price will be found using a process called Walk Forward. After acquiring all the forecasted price, it is found that the combination of ARIMA (1,1,1)-GARCH (1,1) yield the best result in forecasting the stock prices. Then, by using MAE and RMSE to check the error of the results, it can be concluded that the ARIMA-GARCH model is a model that is able to predict stock prices well."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vincent Martin
"Harga saham selalu berfluktuasi setiap waktu. Hal ini merupakan salah satu bentuk ketidakpastian yang terjadi di pasar saham. Risiko akibat dari ketidakpastian ini dapat diminimalisir dengan peramalan harga saham yang dibentuk dengan model linier. Salah satu model linier yang dapat digunakan dalam peramalan harga saham adalah model hybrid ARFIMA-GARCH. Model ini merupakan gabungan dari model ARFIMA dan model GARCH yang sudah pernah digunakan oleh penelitian sebelumnya dan disinyalir memiliki kekurangan dan kelebihan masing-masing. Model ARFIMA baik digunakan untuk peramalan jangka panjang, namun memiliki kendala, yakni adanya volatilitas yang terjadi dalam jangka panjang. Hal ini dapat diatasi oleh model GARCH yang baik digunakan dalam volatilitas pada harga saham dalam jangka panjang. Model GARCH merupakan pengembangan dari model Autoregressive Conditional Heterocedastic (ARCH), di mana model ini menggunakan volatilitas pada data sebelumnya. Berikutnya, model ARFIMA dan GARCH yang digabungkan menjadi model hybrid ARFIMA-GARCH akan digunakan pada penelitian ini untuk peramalan harga saham LQ45. Pada penelitian ini, hanya dua saham dari indeks saham LQ45 yang akan diprediksi harga sahamnya, yakni saham dengan volatilitas harga terkecil dan terbesar. Data harga saham yang digunakan adalah harga penutupan harian saham BBCA (PT Bank Central Asia Tbk.) dan TKIM (PT Tjiwi Kimia Paper Factory Tbk.) pada periode tahun 2017-2021. Hasil peramalan dengan model ARFIMA-GARCH akan dievaluasi nilai erornya menggunakan Root Mean Square Error dan Mean Absolute Percentage Error. Berikutnya, nilai akurasi ini akan dibandingkan dengan nilai akurasi peramalan menggunakan model ARFIMA. Pada akhirnya, diperoleh hasil bahwa peramalan harga saham dengan model ARFIMA-GARCH lebih baik dibandingkan dengan model ARFIMA.

Stock price always fluctuate all the time. This is one form of buffer that occurs in the stock market. The risk resulting from this buffer can be minimized by forecasting stock prices using linear model. One of the linear model that can be used in stock price forecasting is the hybrid ARFIMA-GARCH model. This model is a combination of the ARFIMA model and GARCH model which have been used in previous studies and allegedly each models have advantages and disadvantages. ARFIMA model is good for long-term forecasting, but has a problem, which is the volatility that occurs in the long term. This can be resolved by GARCH model which is good for volatility in stock prices, even for a long term data. GARCH model is a development of Autoregressive Conditional Heterocedastic (ARCH) model, where this model uses volatility in previous data. Furthermore, the ARFIMA and GARCH models are combined into the hybrid ARFIMA-GARCH model which will be used in this study for forecasting LQ45 stock prices. In this study, only two stock prices from LQ45 stock index that will be forecast, stocks which have the smallest and largest price volatility. The price data used is the daily closing price of BBCA (PT Bank Central Asia Tbk.) and TKIM (PT Tjiwi Kimia Paper Factory Tbk.) in 2017- 2021. The ARFIMA-GARCH model forecasting results will be evaluated by using the Root Mean Square Error and Mean Absolute Percentage Error. Next, this error accuracy value will be compared with the forecasting accuracy value using ARFIMA model. In the end, our hypothesis is that the stock price forecasting with ARFIMA-GARCH model is better than ARFIMA model."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauzan Aldiansyah
"Pengontrol aliran banyak digunakan di berbagai industri, seperti di industri perminyakan untuk mengalirkan minyak dari minyak lepas pantai ke darat atau digunakan untuk distribusi minyak. Pengontrol aliran yang paling banyak digunakan dalam industri adalah pengontrol berbasis PID konvensional yang diimplementasikan menggunakan PLC. PLC banyak digunakan dalam industri karena kekompakannya, memiliki konektivitas standar dan memiliki keandalan yang tinggi. Dalam penelitian ini, pengontrol non-konvensional, yaitu pengontrol Neuro-Fuzzy, diterapkan pada pabrik prototipe yang mengandung air sebagai agen alirannya. Pabrik prototipe terdiri dari tangki air, pompa air, katup gerbang, katup kontrol, flow meter, dan sistem perpipaan. Kontroler Neuro-Fuzzy dalam penelitian ini dirancang berdasarkan algoritma ANFIS, dengan input berupa kesalahan dan perubahan kesalahan dari variabel proses yang diamati, dalam hal ini aliran air pada pipa keluaran pabrik prototipe. Pengontrol dioperasikan di lingkungan MATLAB/SIMULINK pada PC, yang memperoleh informasi laju aliran berasal dari flow meter yang terhubung ke PLC. PLC berkomunikasi dengan pengendali melalui fasilitas OPC. Output dari pengontrol, yang berupa bukaan katup kontrol, akan dikirim ke PLC melalui OPC, oleh karena itu PLC dapat mengontrol bukaan katup sesuai dengan laju aliran air yang diinginkan. Setelah menjalani proses pelatihan, pengendali berbasis ANFIS yang dikembangkan diuji dengan berbagai titik setel debit air untuk mendapatkan informasi kinerjanya. Dari penelitian ini ditemukan bahwa pengontrol berbasis ANFIS adalah pengontrol dengan kinerja yang baik, yang memiliki waktu naik rata-rata 16,88 detik, waktu penyelesaian 30,68 detik, dan dengan overshoot 0% dan 35,65%, dan memiliki relatif kecil kesalahan 2,59%.

Flow control is widely used in various industries, such as in the oil industry to flow oil from offshore to onshore oil or used for oil distribution. The most widely used flow controller in the industry is conventional PID-based controller which is implemented using PLC. PLCs are widely used in industry because of their compactness, standard connectivity and high reliability. In this study, a non-conventional controller, the Neuro-Fuzzy controller, is applied to a prototype plant that contains water as its flow agent. The prototype plant consists of a water tank, a water pump, a gate valve, a control valve, a flow meter, and a piping system. The Neuro-Fuzzy controller in this study was designed based on the ANFIS algorithm, with input in the form of errors and error changes of the observed process variables, in this case the flow of water in the prototype factory output pipe. The controller is operated in a MATLAB / SIMULINK environment on a PC, which gets flow rate information from a flow meter connected to the PLC. PLC communicates with controllers through OPC facilities. The output from the controller, which is the control valve opening, will be sent to the PLC via OPC, therefore the PLC can control the valve opening according to the desired flow rate. After undergoing the training process, the ANFIS-based controller that was developed was tested with various water discharge set points to obtain performance information. From this study it was found that ANFIS-based controller is a controller with good performance, which has an average rise time of 16.88 seconds, a completion time of 30.68 seconds, and with 0% and 35.65% overshoot, and has relatively small errors 2.59%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajratul Hasanah
"

Demam Berdarah Dengue (DBD) merupakan penyakit yang banyak ditemukan di sebagian besar wilayah tropis dan subtropis. DBD merupakan penyakit infeksi yang disebabkan oleh virus dengue yang termasuk ke dalam family flaviviridae dan genus flavivirus yang ditularkan ke manusia melalui gigitan nyamuk Aedes aegypti dan Aedes albopicus dengan masa inkubasi intrinsik 3 sampai 14 hari, dan inkubasi ekstrinsik 8 sampai 10 hari. Dalam 3 tahun terakhir, jumlah penderita DBD di DKI Jakarta menduduki jumlah tertinggi yang mencapai 813 jiwa pada tahun 2019. Pada tugas akhir ini, dibahas pembuatan model Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk memprediksi jumlah insiden DBD di DKI Jakarta menggunakan data jumlah insiden DBD pada setiap wilayah di DKI Jakarta tahun 2009 sampai 2017. Hasil simulasi dari model Adaptive Neuro-Fuzzy Inference System dibandingkan dengan hasil model Artificial Neural Network (ANN) dan Ensemble ANN-ANFIS yang dievaluasi berdasarkan Root Mean Squared Error dan Mean Absolute Error. Pada tugas akhir ini, Adaptive Neuro-Fuzzy Inference System memiliki performa lebih baik dibandingkan Artificial Neural Network dan Ensemble ANN-ANFIS hampir seluruh daerah di DKI Jakarta.


Dengue Hemorrhagic Fever (DHF) is a disease that is found in most tropical and subtropical regions. DHF is a disease caused by dengue virus which belongs to the flaviviridae family and genus flavivirus which is transmitted to humans through the bite of Aedes aegypti and Aedes albopicus mosquitoes with an intrinsic incubation period of 3 to14 days, and extrinsic incubation period of 8 to 10 days. In the last 3 years, the number of DHF sufferers in DKI occupied the highest number, which reached 813 people in 2019. In this final project, we will discuss making an Adaptive Neuro-Fuzzy Inference System (ANFIS) model to predict the number of DHF reporting in DKI Jakarta using data on the number of DHF reporting in each region in DKI Jakarta from 2009 to 2017. Simulation result from the Adaptive Neuro-Fuzzy Inference System model are compared with the results of the Artificial Neural Network (ANN) model and the Ensemble ANN-ANFIS model, evaluated based on Root Mean Squared Error and Mean Absolute Error. In this final project, the Adaptive Neuro-Fuzzy Inference System has better performance than the Artificial Neural Network and Ensemble ANN-ANFIS in all regions in DKI Jakarta.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>