Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 67454 dokumen yang sesuai dengan query
cover
Feronica Fatimah
"Rencana Umum Ketenagalistrikan Nasional (RUKN) 2019-2038 memiliki target bauran energi pembangkit tenaga listrik di tahun 2038 terdiri dari batubara yang masih mendominasi sebesar 47%, gas 25%, EBT 28% dan BBM sekitar 0,1%. Penambahan kapasitas pembangkit memiliki kontribusi besar dalam kenaikan emisi gas rumah kaca (GRK) khususnya karbon dioksida (CO2). Pada penelitian ini dilakukan studi penambahan biaya karbon pada biaya pokok produksi pembangkitan listrik. Simulasi dengan beberapa skenario biaya karbon dihitung untuk mengetahui pengaruh merit order dan penurunan pendapatan industri pembangkitan listrik. Pada skenario biaya karbon sebesar Rp 75.000/tCO2e dinilai paling optimal kerena sudah terjadi perubahan merit order pada PLTU Batubara Supercritical menjadi paling ekonomis daripada PLTU Batubara konvensional. Sedangkan pembangkit tenaga gas tidak terjadi perubahan merit order. Penurunan pendapatan pembangkit dengan biaya karbon Rp 75.000/tCO2e pada PLTU Batubara konvensional sebesar 25%, pada PLTU Batubara Supercritical sebesar 22%, dan untuk PLTU-Gas, PLTG, PLTGU mengalami penurunan pendapatan sebesar 4%. Jika dilakukan penerapan biaya karbon di Sistem Jawa Bali, biaya pokok produksi listrik akan mengalami kenaikan sebesar 13% dari semula. Total pendapatan pajak yang diterima per tahun berpotensi untuk dimanfaatkan sebagai biaya pembangunan PLTS dengan kapasitas 890 MW.

The National Electricity General Plan (RUKN) 2019-2038 has a target for the energy mix of power plants in 2038 dominated by coal around 47%, gas 25%, EBT 28% and fuel around 0.1%. The addition of generating capacity has a major contribution in increasing greenhouse gas (GHG) emissions, especially carbon dioxide (CO2). This research study about adds carbon price to the cost of electricity production. Several carbon cost scenarios are conducted to determine the effect of merit orders and a decrease in the electricity generation industry revenue. In the carbon cost scenario of Rp. 75,000 / tCO2e, it is considered the most optimal because there has been a change in merit orders at the Supercritical Coal Power Plant to be the most economical than conventional Coal Power Plants. While gas power generation did not change merit orders. Decrease in electricity generation industry revenue with carbon costs of Rp. 75,000 / tCO2e at conventional Coal Power Plants by 25%, at Supercritical Coal Power Plants by 22%, and for Gas-Power Plants, Power Plants, Power Plants and Power Plants decreased by 4%. If carbon costs are implemented in the Java-Bali System, the cost of electricity production will increase by 13% from the original. The total tax revenue received per year has the potential to be utilized as the cost of building a solar power plant with a capacity of 890 MW."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Simanjuntak, Junifer Saut Pangidoan
"Pertumbuhan konsumsi tenaga listrik di Indonesia mencapai 8,6 per tahun berimplikasi terhadap peningkatan produksi energi listrik. Pemerintah telah mengantisipasinya melalui Program Pembangunan 35.000 MW yang didominasi PLTU batubara yang dapat meningkatkan emisi Gas Rumah Kaca secara signifikan. Penelitian ini bertujuan untuk untuk menentukan jenis teknologi batubara bersih yang diimplementasikan dalam unit PLTU Program Pembangunan 35.000 MW. Metodologi yang digunakan dalam penelitian ini adalah pemodelan skenario penggunaan teknologi batubara bersih yang disesuaikan dengan kelas kapasitas PLTU dan penentuan skenario terbaik didasarkan potensi emisi GRK terendah di sektor pembangkitan tenaga listrik dan module cost balance tertinggi, melalui simulasi LEAP. Berdasarkan hasil simulasi, seluruh unit PLTU Program Pembangunan 35.000 MW di regional Jawa-Bali harus menggunakan teknologi ultra super-critical untuk kelas kapasitas diatas 1.000 MW, super-critical untuk kelas kapasitas diatas 500 MW dan PFBC untuk kelas kapasitas dibawah 500 MW. Pada regional Sumatera, teknologi yang digunakan adalah super-critical dan PFBC untuk masing-masing kelas kapasitas diatas 500 MW dan dibawah 500 MW. Pada regional Kalimantan dan Sulawesi, penggunaan teknologi PFBC merupakan skenario terbaik untuk kelas kapasitas dibawah 500 MW, sedangkan teknologi CFBC digunakan pada unit kelas kapasitas pembangkit yang sama di regional Nusa Tenggara Barat. Potensi penurunan emisi GRK sektor pembangkitan tenaga listrik akibat implementasi teknologi batubara bersih dalam seluruh unit PLTU Program Pembangunan 35.000 MW sampai dengan 2020 mencapai 41,91 juta ton CO2e yang melampaui target penurunan emisi nasional dalam Rencana Aksi Nasional Gas Rumah Kaca RAN-GRK dalam skema nasional atau berkontribusi 74,84 dalam skema unilateral. Pada 2025, penurunan emisi diperkirakan akan mencapai 57,87 juta ton CO2e atau berkontribusi 30,46 dari rencana target penurunan emisi nasional pasca 2020 dalam skema optimistik. Oleh karena itu, implementasi teknologi batubara bersih dalam unit PLTU batubara dapat direkomendasikan sebagai salah satu kegiatan utama penurunan emisi GRK sektor energi dalam draft kebijakan RAN-GRK pasca 2020 yang sedang disusun Pemerintah saat ini.

The growth of electricity consumption in Indonesia 8.6 per year has implications toward increasing of the electricity generation. The Government of Indonesia had anticipated through 35,000 MW Electricity Development Program predominantly coal fired power plants CFPP that increase Greenhouse Gas GHG emissions significantly. The study aims to determine the type of clean coal technology implemented in the CFPPs of 35,000 MW Electricity Development Program. The methodology on the study is modeling the scenario for the use of clean coal technology in the CFPPs in accordance to their capacity size, while the selection of best scenario based on the lowest GHG emission potential in power generation sector and the highest module cost balance by using LEAP. Based on the simulation results, all of them in Java Bali region should use ultra super critical for capacity size above 1,000 MW, super critical for above 500 MW and PFBC for below 500 MW. In the region of Sumatra, the technology should be used is super critical and PFBC for the capacity size above 500 MW and below 500 MW respectively. In the region of Kalimantan and Sulawesi, the use of PFBC is the best scenario for capacity size below 500 MW, while CFBC is used in the their same size located in the West Nusa Tenggara region. The potential for GHG emission reduction in the power generation sector due to the implementation of clean coal technology in the 2020 in all of them is expected to reach 41.91 million tonnes CO2e that exceed the national scheme emission reduction target in GHG National Action Plan RAN GRK or have contribution 74.84 in its unilateral scheme. By 2025, emissions reduction is expected to reach 57.87 million tonnes CO2e or have contribution 30.46 of post 2020 national emissions reduction target plan in the optimistic scheme. Therefore, the implementation of clean coal technology in the CFPPs is recommended as one of the main activities of GHG emission reduction in the energy sector of the post 2020 RAN GRK policy currently being drafted by the Government of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48052
UI - Tesis Open  Universitas Indonesia Library
cover
Fajri Fathur Rahman
"Program NZE (net zero emission) menjadi istilah populer setelah diadakannya Paris Climate Agreement tahun 2015. Program tersebut bertujuan untuk menekan pencemaran lingkungan yang berpotensi mengakibatkan pemanasan global. Energi menjadi salah satu sektor yang difokuskan dalam upaya mencapai program NZE. Berbagai negara telah mengeluarkan regulasi-regulasi baru dalam hal penyediaan energi listrik yang disesuaikan dengan program NZE, termasuk di Indonesia. Pada tahun 2020, Offshore Operation Engineering Team Medco E&P Indonesia memulai sebuah proyek dan terlaksana diselesaikan pada akhir tahun yaitu Grati Green House roject (GGHP). Proyek GGHP ini dalam kata singkat adalah memanfaatkan energi listrik yang disuplai dari PLN dengan tarif industri yang sebelumnya energi listrik di Grati OPF berasal dari gas engine generator (GEG) yang gasnya diproduksi dari Grati OPF juga. Sebelum selesainya proyek GGHP, gas engine generator (GEG) yang berada di Grati OPF setiap harinya menghasilkan emisi gas buang dari pembakaran untuk menjalankan generatornya. Maka penulisan penelitian ini akan menganalisa bagaimana pengaruh akhir dari pelaksanaan proyek GGHP dalam mendukung program NZE.

NZE (net zero emission) program became a popular term after the Paris Climate Agreement was held in 2015. This program aims to reduce environmental pollution which has the potential to cause global warming. Energy is one of the sectors focused on achieving NZE program. Various countries have issued new regulations in terms of supply of electrical energy adapted to the NZE program, including in Indonesia. In 2020, the Offshore Operation Engineering Team of Medco E&P Indonesia started a project which was completed by the end of the year, namely the Grati Green House project (GGHP). GGHP project, in short, is utilizing electricity supplied by PLN at industrial rates. Prior to the completion of the GGHP project, electricity at Grati OPF came from a gas engine generator (GEG) whose gas was also produced from Grati OPF. The GEG produced exhaust emissions from combustion every day to run the generator. After all, this research will analyze how the final impact of implementing the GGHP project is in supporting the NZE program."
Depok: Fakultas Teknik Universitas Indonesia, 2022
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Alpha Agustinus
"Perusahaan tambang sangat tergantung pada bahan bakar fosil untuk memenuhi kebutuhan listrik dan kegiatan pertambangan seperti penggunaan alat berat. Oleh karena itu, emisi gas rumah kaca akibat pembakaran bahan bakar fosil ini telah menjadi isu utama terkait dampak terhadap lingkungan akibat kegiatan pertambagan. Energi terbarukan seperti Pembangkit Listrik Tenaga Surya (PLTS) dapat menjadi solusi alternatif untuk mengatasi masalah tersebut. Penelitian ini bertujuan untuk meneliti bauran PLTS yang optimal pada pabrik pengolahan mineral di tambang emas Newmont Suriname. Perangkat lunak HOMER digunakan untuk mendesain bauran PLTS paling optimal. Perangkat lunak ETAP digunakan untuk menvalidasi desain secara teknis teknis melalui analisis aliran daya dan analisis arus hubung singkat. Hasil penelitian menunjukkan kapasitas bauran PLTS paling optimal adalah 30 MW, dimana menurunkan Cost of Electricity (COE) dari cent $17,1/kWh menjadi cent $16,3/kWh dan emisi CO2 dari 142.682 ton/tahun menjadi 123.852 ton/tahun. Bauran PLTS ini layak secara teknis dimana level tegangan di semua bus masih dalam batas yang diperbolehkan menurut standar IEEE-1547-2018 dan arus hubung singkat maksimum tidak melebihi kapasitas dari switchgear terpasang.

Mining companies are highly dependent on fossil fuels to meet their electricity needs and mining activities such as the use of heavy equipment. Therefore, greenhouse gas emissions due to burning of fossil fuels have become a major issue related to the impact on the environment due to mining activities. Renewable energy such as Solar Power Plants (Photovoltaic) can be an alternative solution to overcome this problem. This study aims to examine the optimal photovoltaic penetration at mineral processing plant at Newmont Suriname gold mine. HOMER software is used to design the most optimal photovoltaic penetration. ETAP software is used to technically validate the design through power flow analysis and short-circuit analysis. The results showed that the most optimal photovoltaic penetration capacity is 30 MW, which reduced the Cost of Electricity (COE) from cent $17.1/kWh to cent $16.3/kWh and CO2 emissions from 142,682 tons/year to 123,852 tons/year. This photovoltaic penetration is ??technically feasible where the voltage level at all buses is within the permissible limits according to the IEEE-1547-2018 standard and the maximum short-circuit current does not exceed the capacity of the installed switchgear."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mahahera Bastinov Putri Almagistra
"Gas alam adalah salah satu bahan bakar fosil yang banyak digunakan dalam kehidupan sehari-hari, yang diperoleh dari sumur gas yang kemudian diproses dan ditransportasikan, salah satunya lewat pipa transmisi. Dalam transportasinya, gas alam sering terlepas ke atmosfer, baik disengaja dalam proses penurunan tekanan emisi venting atau tidak disengaja emisi fugitive, yang berdampak buruk bagi lingkungan. Untuk itu, perlu dilakukan perhitungan tingkat emisi yang diharapkan dapat menjadi acuan dan rekomendasi strategi untuk mengurangi emisi gas rumah kaca GRK. Dalam perhitungan tingkat emisi, dikenal dengan istilah faktor emisi, yaitu nilai faktor pengali untuk menghitung tingkat emisi. Nilai faktor emisi ini dihasilkan oleh agensi lingkungan, diantaranya INGAA dan IPCC. Untuk mengurangi ketidakpastian nilai faktor emisi, IPCC merekomendasikan untuk melakukan simulasi Monte Carlo, yang dilakukan oleh Lechtenbohmer, et al. 2007 di sistem pipa transmisi milik Rusia. Penelitian ini melakukan perhitungan tingkat emisi menggunakan nilai faktor emisi berdasarkan INGAA, IPCC, dan Lechtenbohmer, et al. 2007 , dengan variasi laju alir. Variasi laju alir berpengaruh pada perhitungan dengan INGAA Tier 2 dan 3 serta IPCC. Perhitungan dengan nilai faktor emisi berdasarkan Lechtenbohmer et al. 2007 memiliki nilai emisi yang paling tinggi. Metode terbaik yang dapat diaplikasikan adalah IPCC karena faktor emisi IPCC merupakan fungsi geografis dan teknologi.

Natural gas is one of the fossil fuel which is used in daily basis and can be extracted from gas wells then being produced and transported, one of which is using transmission pipeline. When being transported, natural gas is often emitted to the atmosphere, either for depressurization venting emission or leak through the pipeline fugitive emission . Therefore, emission level estimation must be performed as reference and strategy recommendation to reduce the greenhouse gas GHG emission that would damage the environment. Emission factor is a well known multiplier factor to calculate GHG emission from every emission source. Emission factor value is assessed by environment agency, such as INGAA and IPCC. To reduce the uncertainty of emission factor, IPCC suggests to conduct Monte Carlo simulation that had already been done by Lechtenbohmer, et al. 2007 in Russia rsquo s gas transmission system. This research estimates emission level using emission factor based on INGAA, IPCC, and Lechtenbohmer, et al. 2007 with flowrate variation. This flowrate variation has influence on Tier 2 and 3 INGAA also on IPCC methodologies. Emission factor based on Lechtenbohmer, et al. 2007 estimates the highest emission level. IPCC is the most suitable basis for emission factor because it has already considered geographic and technology of a country."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67058
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Isky Ainul Azmii
"Permasalahan lingkungan hidup semakin menjadi perhatian secara global, salah satunya emisi GRK. Berdasarkan Perjanjian Paris, Indonesia menjadi negara yang berkomitmen untuk menurunkan emisi gas rumah kacanya. Universitas Indonesia merupakan perguruan tinggi yang dapat menghasilkan emisi gas rumah kaca dalam aktivitasnya. Penelitian bertujuan untuk mengetahui bagaimana kondisi emisi gas rumah kaca Universitas Indonesia pada tahun 2023 serta potensi yang dimilikinya dalam penyerapan karbon dan perdagangan karbon. Penghitungan emisi dibagi ke dalam tiga kategori. Kategori 1 mencakup transportasi, penggunaan LPG, dan penggunaan AC. Kategori 2 mencakup penggunaan listrik. Kategori 3 mencakup pengelolaan sampah, penggunaan kertas, dan penggunaan semen. Hasil penelitian menunjukkan bahwa pada tahun 2023 Universitas Indonesia menghasilkan total emisi gas rumah kaca sebesar 34.363,29 tCO2eq dengan penggunaan listrik yang menjadi penghasil emisi terbesar, yakni 24.338,46 tCO2eq. Sementara, sumber penghasil emisi terendah berasal dari penggunaan kertas, yakni 62,15 tCO2eq. Penelitian merencanakan beberapa proyek mitigasi penurunan emisi GRK UI, seperti floating solar panel, bis kuning elektrik, penggunaan DME untuk menggantikan LPG, kegiatan car free day, dan penggunaan direct air capture. Proyek mitigasi penurunan emisi GRK UI diestimasikan mampu menurunkan emisi sebesar 8.864,27 tCO2eq. Melalui proyek tersebut, Universitas Indonesia dapat mencapai target penurunan emisi GRK sebesar 31,89% pada tahun 2030.

Environmental issues have become a matter of global concern, with GHG emissions being a prominent example. In accordance with Paris Agreement, Indonesia has a commitment to reduce its GHG emissions. UI is a prominent institution that conducts various activities that result in emission of GHG. The objective of this study is to determine the condition of the UI’s greenhouse gas emissions in 2023, its potential in carbon sequestration and carbon trading. Emissions are divided into three categories. Category 1 includes transportation, LPG use, and AC use. Category 2 covers electricity. Category 3 includes waste management, paper use, and cement use. The results showed that in 2023 the UI’s total greenhouse gas emissions amounted to 34,363.29 tCO2eq, with electricity being the largest emitter, at 24,338.46 tCO2eq. The lowest emission source comes from paper use, which is 62.15 tCO2eq. Mitigation projects designed to reduce UI GHG emissions, including the implementation of floating solar panels, electric yellow buses, the use of DME to replace LPG, car free day, and direct air capture. The UI GHG emission reduction mitigation project is estimated to reduce emissions by 8,864.27 tCO2eq, enabling UI to achieve its target of a 31.89% reduction in GHG emissions by 2030. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanafi Anis
"Dibeberapa tahun terakhir, perhatian akan emisi CO2 atau emisi gas rumah kaca sudah semakin meningkat. Kebutuhan untuk menguranginya pun semakin meningkat diberbagai negara. Salah satunya dengan cara mengurangi buangan gas yang berasal dari kendaraan. Karena kemajuan teknologi yang semakin canggih, maka banyak produsen kendaraan di dunia sudah beralih ke kendaraan listrik. Di dunia sudah banyak dikembangkan berbagai macam model kendaraan listrik, salah satunya adalah kendaraan Plug-in Hybrid Electric Vehicle atau PHEV. Di Indonesia sendiri, kendaraan ini sangat cocok dengan kondisi energi yang dimiliki, karena bahan bakar minyak yang masih sangat melimpah dan banyaknya cara untuk membangun pembangkit listrik.
Potensi kendaraan PHEV untuk mengurangi emisi gas rumah kaca sangat tergantung pada penggunaan kendaraan dan sumber energinya yaitu bensin dan listrik. Namun, manfaat atau dampak khusus dari PHEV pada akhirnya bergantung pada pola pembelian dan penggunaan kendaraan. Beberapa parameternya seperti nilai faktor utilisasi atau Utility Factor (UF) dan juga nilai nilai pengeluaran kepemilikan saat memiliki kendaraan atau Total Cost Ownership (TCO). Hasil komprehensif dengan menghitung nilai UF dapat membantu pengguna untuk memahami konsumsi energi aktual dengan lebih jelas dan TCO untuk mengetahui beban pengeluaran yang ditanggung pengguna PHEV. Penelitian ini akan menunjukan nilai UF dan TCO dari salah satu kendearaan PHEV yang ada di Indonesia, yaitu Mitsubishi Outlander PHEV.

In recent years, attention to CO2 emissions or greenhouse gas emissions has increased. The need to reduce it is also increasing in various countries. One of them is by reducing gas emissions from vehicles. Due to increasingly sophisticated technological advances, many vehicle manufacturers in the world have switched to electric vehicles. In the world, various types of electric vehicle models have been developed, one of which is the Plug-in Hybrid Electric Vehicle or PHEV. In Indonesia itself, this vehicle is very suitable for the energy conditions you have, because fuel oil is still very abundant and there are many ways to build power plants.
The potential of PHEV vehicles to reduce greenhouse gas emissions is highly dependent on the use of the vehicle and its energy sources, namely gasoline and electricity. However, the specific benefits or impacts of PHEVs ultimately depend on the vehicle buying and usage patterns. Some of the parameters are the value of the utility factor (UF) and also the value of expenditure efficiency when owning a vehicle or Total Cost Ownership (TCO). Comprehensive results by calculating the UF value can help users to understand the actual energy consumption more clearly and TCO to find out the expenses incurred by PHEV users. This study will show the UF and TCO values ​​of one of the PHEV vehicles in Indonesia, namely the Mitsubishi Outlander PHEV.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rizani Imaniar
"Dalam forum United Nation Framework Convention on Climate Change (UNFCCC) – Conference of Parties (COP) ke-21 pada Desember 2015, Presiden Republik Indonesia menyampaikan komitmen nasional terkait penurunan emisi gas rumah kaca (GRK) salah satunya melalui pengembangan energi terbarukan. Komitmen nasional ini ditindaklanjuti dengan pengembangan roadmap energi nasional yang dikenal dengan Grand Strategi Energi Nasional (GSEN) oleh Dewan Energi Nasional (DEN) dimana Indonesia memiliki target Nationally Determined Contributions (NDC) sebesar 314 juta ton CO2e per tahun penurunan emisi karbon dari sektor energi yang harus dicapai pada tahun 2030 (hingga 2020 telah tercapai 64,4 juta ton CO2e per tahun).
Salah satu upaya yang dilakukan terkait pengembangan energy terbarukan adalah dengan implementasi biodiesel yang sejak tahun 2019 telah mulai diimplementasikan dengan pencampuran bahan bakar diesel dengan Fatty Acid Methyl Ester (FAME) yang saat ini dikenal dengan B30 (blending 30% bahan bakar nabati dengan 70% bahan bakar diesel). Namun Secara teknis B30 dengan blending FAME tidak bisa melebihi 30% karena keterbatasan teknis (water content, monoglyceride, dll). Sedangkan Presiden Republik Indonesia memiliki target yang cukup ambisius yaitu tingkat blending yang lebih tinggi yaitu B40 bahkan hingga B50. Untuk itu, Hydrotreated Vegetable Oil (HVO) muncul sebagai solusi yang dapat memenuhi dari sisi kriteria teknis. Namun terdapat beberapa pertimbangan dari sisi keekonomian nya.
Setelah penelitian ini mengukur kelayakan dari sisi finansial proyek, serta mempertimbangkan pula beberapa aspek benefit lain yang muncul antara lain seperti kontribusi terhadap target pencapaian NDC sebesar 521,000 ton reduksi CO2e per tahun, penghematan current account deficit dan lain sebagainya maka proyek ini layak dari sisi Economic Benefit Cost Analysis.

In the 21st United Nations Framework Convention on Climate Change (UNFCCC) – Conference of Parties (COP) forum in December 2015, the President of the Republic of Indonesia conveyed national commitments related to reducing greenhouse gas (GHG) emissions, one of which is through the development of renewable energy. This national commitment was followed up with the development of a national energy roadmap known as the Grand National Energy Strategy (GSEN) by the National Energy Council (DEN) in which Indonesia has a Nationally Determined Contributions (NDC) target of 314 million tons of CO2e per year to reduce carbon emissions from the energy sector. must be achieved by 2030 (by 2020 64.4 million tonnes of CO2e per year have been reached).
One of the efforts made related to the development of renewable energy is the implementation of biodiesel, which since 2019 has begun to be implemented by mixing diesel fuel with Fatty Acid Methyl Ester (FAME) which is currently known as B30 (30% blending of biofuels with 70% of biofuels). diesel fuel). However, technically, B30 with FAME blending cannot exceed 30% due to technical limitations (water content, monoglyceride, etc.). Meanwhile, the President of the Republic of Indonesia has a fairly ambitious target, namely a higher blending level of B40 and even up to B50. For this reason, Hydrotreated Vegetable Oil (HVO) emerged as a solution that can meet the technical criteria. However, there are some considerations from an economic point of view. After the study of the financial feasibility of the project also the implememtation of HVO Biodiesel, by also considering other several aspects of benefits arise, such as the contribution to the NDC target of 521,000 tonnes CO2e reduction per year, savings in the current account deficit and so on. Thus, this project considered as feasible by the Economic Benefit Cost Analysis conducted
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nayusrizal N
"ABSTRAK

Suatu peralatan listrik yang juga menyerap energi reaktif disamping mengkonsumsi energi aktif akan mengakibatkan penurunan faktor daya. Penelitian ini ditujukan untuk mendesain skema penalti energi reaktif yang tepat melalui analisis dampak faktor daya rendah terhadap sistem ketenagalistrikan, khususnya pada sistem distribusi sesuai dengan studi kasus yang dilakukan di PT PLN (Persero) UP3 Marunda. Metodologi penelitian diawali dengan pengambilan data dan perhitungan, analisis tarif listrik existing dan mendesain berbagai skema tarif baru, analisis perbaikan faktor daya, analisis teknis dan ekonomi. Dari data pemakaian energi 272 pelanggan PLN Marunda tahun 2018 diketahui faktor daya rata-rata bervariasi dari 0,45 hingga mendekati 1,0. Selanjutnya diciptakan dua desain skema tarif baru dengan mengacu pada ketentuan tarif listrik di berbagai negara maju dan standar internasional. Pada skema-1 yang dinamakan fixed rate, batasan faktor daya dirubah menjadi 0,90, sedangkan skema-2 menerapkan pemberian insentif dan pengenaan penalti secara progresif. Hasil analisis menunjukkan rugi-rugi jaringan sebesar 0,19% dan jatuh tegangan sebesar 0,36% antara titik kirim dengan titik terima. Penggunaan kapasitor berhasil menurunkan rugi-rugi jaringan 21,5% dan jatuh tegangan 11,4% dari nilai sebelumnya. Hasil analisis ekonomi menunjukkan perbaikan faktor daya tersebut laik direalisasikan. Apabila direalisasikan di PLN Marunda, penurunan emisi CO2 tahun 2018 mencapai 3.748 ton.


ABSTRACT


An electrical equipment that also absorbs reactive energy in addition to consuming active energy will result in a decrease of power factor. This study aimed to design the right scheme of reactive energy penalties through analysis the impact of low power factors on the electricity system, particularly in the distribution system in accordance with a case study conducted at PT PLN (Persero) UP3 Marunda. The research methodology begins with data collection and calculation, analysis of existing electricity tariffs and designing various new tariff schemes, analysis of power factor improvement, technical and economic analysis. From the energy consumption data of 272 PLN Marunda customers in 2018 it is known that the average power factor varies from 0.45 to close to 1.0. Furthermore, two new tariff scheme designs were created with reference to the electricity tariff provisions in various developed countries and international standards. In scheme-1 called fixed rate the power factor limit is changed to 0.90, while scheme-2 applies incentives and progressive penalties. The analysis shows power losses about 0.19% and a voltage drop of 0.36% between the sending point and receiving point. The use of capacitors also succeeded in reducing power losses by 21.5% and voltage drops by 11.4% from the values before. The results of economic analysis show that the power factor correction is worth realizing. If realized in PLN Marunda, the reduction of CO2 emissions in 2018 could reach 3,748 tons.

"
2019
T54031
UI - Tesis Membership  Universitas Indonesia Library
cover
Bimo Aryo Rahmatullah
"Pemerintah Indonesia berkomitmen untuk menekan emisi gas rumah kaca dan menargetkan konsumsi energi baru terbarukan (EBT) sebesar 23% dari bauran energi nasional. Salah satunya dengan pembangunan PLTP di Indonesia Bagian Timur. Dalam proses studi interkoneksi ini ditemukan kondisi tidak stabil pada sistem yang dapat menyebabkan blackout. Berdasarkan kondisi ini, sistem membutuhkan adanya tindakan mitigasi untuk meningkatkan ketahanan sistem terhadap gangguan. Penambahan Battery Energy Storage System (BESS) dalam sistem dapat dilakukan sebagai tindakan mitigasi gangguan serta untuk meningkatkan keandalan sistem sendiri. Pada penelitian ini, ketahanan sistem terhadap gangguan akan diuji. Sistem akan diuji dalam 2 kondisi yaitu kondisi sebelum penambahan BESS pada sistem, dan setelah penambahan BESS pada sistem. Simulasi kestabilan dengan menggunakan perangkat lunak DIgSILENT PowerFactory menghasilkan kondisi sistem yang lebih stabil setelah penambahan BESS. Saat sistem mengalami islanding, penambahan BESS membuat sistem dapat kembali stabil setelah gangguan dengan nilai frekuensi dalam rentang 49,5 Hz – 50,5 Hz dan tegangan 0,90 p.u. – 1,10 p.u sesuai dengan grid code.

The Indonesian government is committed to reducing greenhouse gas emissions and targets the consumption of new and renewable energy (EBT) at 23% of the national energy mix. One of them is the construction of PLTP in Eastern Indonesia. In the process of this interconnection study found unstable conditions in the system that can cause blackouts. Based on these conditions, the system requires mitigation measures to increase the system's resistance to disturbances. The addition of a Battery Energy Storage System (BESS) in the system is carried out as a disturbance mitigation measure and to increase the reliability of the system itself. In this study, the resistance of the system to disturbance will be tested. The system will be tested in 2 conditions, namely the condition when there is no BESS in the system, and after BESS is in the system. Stability simulation using DIgSILENT PowerFactory software resulted in a more stable system condition after the addition of BESS. After the addition of BESS, the system can return to stability after disturbances with a safe frequency limit of 49.5 Hz – 50.5 Hz and a voltage of 0.90 p.u. – 1.10 p.u. according to the grid code."
Depok: Fakultas Teknik, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>