Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 143408 dokumen yang sesuai dengan query
cover
Hendrana Tjahjadi
"ABSTRAK

Pada saat ini metode pengukuran tekanan darah secara non-invasive paling banyak digunakan baik didalam maupun diluar fasilitas kesehatan. Namun metode tersebut masih membuat pengguna tidak nyaman karena adanya tekanan manset pada saat pengukurannya. Beberapa metode non-invasive tanpa manset telah dikembangkan salah satunya adalah metode pulse wave analysis (PWA). Photoplethysmograpy (PPG) merupakan satu-satunya masukan dan dasar bagi perhitungan pengukuran tekanan darah pada metode PWA. Tantangan utama dalam menggunakan metode PWA berbasis PPG adalah akurasinya sangat dipengaruhi oleh noise. Selain itu, karakteristik PPG bervariasi tergantung pada kondisi fisiologis, karenanya sistem harus melakukan kalibrasi untuk menyesuaikan perubahan tersebut. Kami berupaya mengatasi keterbatasan tersebut dan mengusulkan pengembangan metode pulse wave analysis untuk klasifikasi tekanan darah secara non-invasive berbasis PPG menggunakan kombinasi algoritma Bidirectional Long Term Memory (BSLTM) dengan Time Frequency Analysis (TFA). Kami menggunakan 121 subyek untuk pengujian model yang bersumber dari figshare database dan mengklasifikasikannya ke dalam tiga tingkatan klasifikasi: normotension (NT), prehypertension (PHT), hypertension (HT) sesuai dengan standar klinis Join National Commitee. Pelatihan jaringan BLSTM menggunakan fitur TFA, secara signifikan meningkatkan efisiensi dengan mengurangi waktu pelatihan sekaligus meningkatkan akurasi klasifikasi. Metode yang diusulkan berhasil mengklasifikasikan tekanan darah dengan rata-rata nilai accuracy pada NT, PHT, dan HT masing-masing 92.43%, 94.83%, dan 94.01%. 


ABSTRACT


The blood pressure measurement non-invasive methods that are presently implemented using a cuff cause discomfort, particularly for injured people, overweight people, and infants. Several non-invasive cuff-less methods have been developed, one of which is the pulse wave analysis (PWA) method. Photoplethysography (PPG) is the only input and basis for the calculation of blood pressure measurements in the PWA method.The main challenge in using the PPG method is that its accuracy is greatly influenced by motion artifacts. In addition, the characteristics of PPG vary depending on physiological conditions; hence, the system must be calibrated to adjust for such changes. We attempt to address these limitations and propose a novel method for the classification of BP using a bidirectional long short-term memory (BLSTM) network with time-frequency analysis (TFA) based on PPG signals. We used 121 subjects from the figshare database for model testing and classify into three classification levels: normotension (NT), prehypertension (PHT), and hypertension (HT) according to the Join National Committee. BLSTM network training uses the TFA feature, significantly increasing efficiency by reducing training time while increasing classification accuracy. The proposed method is successful in the classification of BP with accuracy values of NT, PHT, and HT; 92.43%, 94.83%, and 94.01% respectively. 

"
2020
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ernia Susana
"Photoplethysmography (PPG) merupakan sinyal penting yang mengandung banyak informasi fisiologis tentang kesehatan jantung dan dapat digunakan untuk mengklasifikasikan kadar glukosa darah non-invasif (BGL). Meskipun demikian, distorsi kebisingan dan gerakan dapat dengan mudah mengkontaminasi sinyal PPG, sehingga berpotensi menghasilkan data berkualitas rendah. Masalah tambahan muncul dari fakta bahwa sifat gelombang PPG bervariasi karena variasi elastisitas dinding pembuluh darah dan kekentalan darah, yang dapat mengakibatkan ketidakakuratan pengukuran. Meskipun beberapa metode tersedia untuk meningkatkan kualitas sinyal PPG, algoritmanya rumit dan tidak selalu menghasilkan akurasi yang tinggi. Kami telah mengembangkan teknik ekstraksi fitur menggunakan analisis frekuensi waktu (TFA) yang menyediakan spektogram, frekuensi sesaat, dan entropi spektral yang dapat menjamin kualitas sinyal. Penelitian kami menggunakan memori jangka pendek jangka panjang dua arah (BLSTM) berdasarkan kebutuhan akan model yang secara berkala dapat beradaptasi dengan perubahan karakteristik PPG. Kami mengusulkan menggabungkan TFA dengan model BLSTM yang dapat mengurangi waktu pelatihan sekaligus meningkatkan akurasi. Metode yang kami usulkan mengurangi titik data pada sinyal PPG dari awal 2100 menjadi hanya 64, secara signifikan mengurangi waktu pelatihan dari 239 menit 34 detik menjadi 4 menit 4 detik. Model memiliki akurasi 94,1%, sensitivitas 100%, spesifisitas 89,5%, dan skor F1 94,5%. Metode yang kami usulkan mencapai akurasi tinggi dan janji luar biasa dengan hanya mengandalkan data PPG mentah dalam klasifikasi BGL.

Photoplethysmography (PPG) is an important signal that contains much physiological information about cardiovascular health and can be used to classify non-invasive blood glucose levels (BGL). Nonetheless, noise and motion distortions can readily contaminate PPG signals, potentially resulting in low-quality data. An additional issue arises from the fact that the PPG wave properties vary due to variations in the elasticity of the blood vessel wall and blood viscosity, which can result in measurement inaccuracies. While several methods are available to improve the quality of PPG signals, the algorithms are complex and do not always produce high accuracy. We have developed a feature extraction technique using time-frequency analysis (TFA) that provides spectrograms, instantaneous frequencies, and spectral entropies that can guarantee signal quality. Our study uses bidirectional long-short-term memory (BLSTM) based on the need for a model that can periodically adapt to changes in PPG characteristics. We propose combining TFA with a BLSTM model that can reduce training time while increasing accuracy. Our proposed method reduced the data points on the PPG signal from the initial 2100 to only 64, significantly reducing the training time from 239 min 34 sec to 4 min 4 sec. The model had an accuracy of 94.1%, sensitivity of 100%, specificity of 89.5%, and F1 score of 94.5%. Our proposed method achieves a high accuracy and excellent promise by relying solely on raw PPG data in BGL classification."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Stanley Pratama
"Parafrasa merupakan suatu cara untuk menuliskan kalimat dengan kata-kata lain dengan maksud atau tujuan yang sama. Pendeteksian parafrasa otomatis dapat dilakukan dengan menggunakan Natural Language Sentence Matching (NLSM) yang merupakan bagian dari Natural Language Processing (NLP). NLP merupakan teknik komputasi untuk memproses teks secara umum, sedangkan NLSM dikhususkan untuk mencari hubungan antar dua kalimat. Dengan adanya perkembangan neural network (NN), maka saat ini NLP dapat lebih mudah dilakukan oleh komputer.Model untuk mendeteksi maupun membuat parafrasa Bahasa Inggris sudah banyak dikembangkan dibandingkan dengan Bahasa Indonesia yang data pelatihannya lebih sedikit. Penelitian ini mengusulkan Model SPratama yang memodelkan deteksi parafrasa untuk Bahasa Indonesia menggunakan recurrent neural network (RNN) yaitu bidirectional long short-term memory (BiLSTM) dan bidirectional gated recurrent unit (BiGRU). Data yang digunakan adalah “Quora Question Pairs” yang diambil dari Kaggle dan diterjemahkan ke Bahasa Indonesia menggunakan Google Translate. Hasil penelitian ini menunjukkan bahwa model-model yang diusulkan mendapatkan akurasi sekitar 80% untuk pendeteksian kalimat parafrasa.

Paraphrasing is a way to write sentences with other words with the same intent or purpose. Automatic paraphrase detection can be done using Natural Language Sentence Matching (NLSM) which is part of Natural Language Processing (NLP). NLP is a computational technique for processing text in general, while NLSM is used specifically to find the relationship between two sentences. With the development neural network (NN), nowadays NLP can be done more easily by computers. Many models for detecting and paraphrasing in English have been developed compared to Indonesian, which has less training data. This study proposes SPratamaModel, which models paraphrase detection for Indonesian using a recurrent neural network (RNN), namely bidirectional long short-term memory (BiLSTM) and bidirectional gated recurrent unit (BiGRU). The data used is "Quora Question Pairs" taken from Kaggle and translated into Indonesian using Google Translate. The results of this study indicate that the proposed models have the accuracy of around 80% for the detection of paraphrased sentences."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thariq Hadyan
"Quadcopter merupakan wahana terbang yang memiliki 4 rotor bersifat underactuated. Sifat quadcopter yang merupakan sistem yang kompleks akibat coupling antar variabelnya menjadikan desain pengendali yang cukup rumit. Diperlukan adanya pengendali yang mudah untuk dapat diaplikasikan pada quadcopter. Untuk melakukan percobaan pengaplikasian pengendali pada quadcopter, sistem pengendali tersebut harus dilakukan percobaan pada simulasi untuk mengetahui hasilnya. Oleh karena itu, peneliti mengusulkan pengendalian DIC yang berbasis deep neural networks (DNN) dan long-short term memory (LSTM) diujikan pada simulator sebelum akhirnya pada quadcopter asli. LSTM digunakan memiliki arsitektur pendukung untuk data sekuensial sebagaimana pergerakan trajektori. Sistem kendali dengan LSTM ini dihasilkan galat MSE yang lebih rendah dibanding DNN. Kinerja LSTM lebih baik dibandingkan dengan DNN. Selain itu, terdapat beberapa faktor – faktor terjadi peningkatan galat ketika diintegrasikan pada simulator Gazebo untuk bahan evaluasi terhadap pengendali berbasis yang sama diaplikasikan pada quadcopter aslinya.

Quadcopter is a flying vehicle that has 4 rotors that are underactuated. The nature of the quadcopter which is a complex system due to the coupling between the variables makes the controller design quite complicated. An easy controller is needed to be applied to the quadcopter. In order to experiment with the application of the controller on the quadcopter, the control system must be experimented with in a simulation to find out the results. Therefore, the researcher proposes that DIC control based on Deep Neural Network and Long-Short Term Memory be tested on a simulator before finally on a real quadcopter. LSTM is used to have a supporting architecture for sequential data as well as trajectory movement. The controller with this LSTM produces a lower MSE error than DNN. LSTM performance is better compared to DNN. In addition, there are several factors that increase the error when integrated into the simulator for evaluation of the same based controller applied to the original quadcopter."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fathia Amira Nuramalia
"Twitter adalah platform media sosial microblogging yang memungkinkan komunikasi dua arah untuk mengutarakan opini dan komentar. Komentar-komentar yang beragam ini dapat memperlihatkan sentimen-sentimen masyarakat apabila dilakukan analisis sentimen. Analisis sentimen adalah studi yang menganalisis opini orang terhadap suatu produk, organisasi, individu, atau jasa tertentu. Machine learning merupakan metode yang dapat mempermudah proses klasifikasi sentimen. Penelitian ini dilakukan pada cuitan berbahasa Indonesia terkait Kampus Merdeka yang diambil dari Twitter menggunakan package tweepy sebanyak 1.651 cuitan terhitung dari tanggal 5 Maret 2022 hingga 13 Maret 2022. Model machine learning yang digunakan pada penelitian ini adalah Bidirectional Long Short-Term Memory (BiLSTM), dengan dua model hybrid LSTM-based, yaitu CNN-LSTM dan LSTM-CNN sebagai pembanding. Kinerja model diukur dengan metrik kinerja accuracy, precision, recall, dan F1-score. Implementasi dilakukan pada data yang telah dilakukan oversampling untuk mendapatkan hasil yang optimal. Penelitian menunjukkan bahwa model BiLSTM memiliki kinerja yang lebih unggul dibandingkan dengan dua model pembanding lainnya pada seluruh metrik dengan besar metrik, yaitu: accuracy dan recall sebesar 79,577%; precision sebesar 73,097%; dan F1-score sebesar 75,634%.

Twitter is a microblogging social media platform that allows two-way communication to express opinion and comments. These various comments can show us sentiment of the public when we perform a sentiment analysis. Sentiment analysis is a study that analyze the opinion of people towards a specific product, organization, individual, or service. Machine learning is a method that will help perform sentiment classification easier. This study performs analysis on 1.651 data tweets about Kampus Merdeka taken from Twitter using a package called tweepy since March 5th 2022 until March 13th 2022. The machine learning model used in this study is Bidirectional Long Short-Term Memory (BiLSTM), with two LSTM-based hybrid model, CNN-LSTM and LSTM-CNN as comparison models. Model performance is measured by performance metrics accuracy, precision, recall, and F1-score. Implementation was done on data that has been going through oversampling to achieve the best result. The study shows that BiLSTM performs better than the other two comparison models for all the metrics with the percentage of the each metric being: 79.577% for accuracy and recall; 73,097% for precision; and 75,634% for F1-score."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gita Kartika Suriah
"Analisis sentimen merupakan suatu proses untuk menentukan sikap atau sentimen dari penulis mengenai hal tertentu. Proses pengelompokan sentimen secara manual membutuhkan waktu cukup lama, sehingga diusulkan untuk menggunakan machine learning. Pada penelitian ini, model machine learning yang digunakan merupakan model CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) dan BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) yang menghasilkan kinerja yang lebih baik dibandingkan model CNN dan BiLSTM pada permasalahan analisis sentimen. Supaya model dapat belajar secara berkelanjutan dari beberapa domain data, model tersebut juga diimplementasikan lifelong learning. Hasilnya, model CNN-BiLSTM menunjukkan kinerja transfer of knowledge yang lebih baik dibandingkan oleh model BiLSTM-CNN maupun model dasarnya. Di sisi lain, model BiLSTM-CNN menunjukkan kinerja yang lebih buruk dibandingkan model dasarnya. Sedangkan, hasil loss of knowledge menunjukkan bahwa kinerja model CNN- BiLSTM lebih buruk dari BiLSTM-CNN. Selain itu, kedua model gabungan tersebut menunjukkan kinerja yang lebih baik dibandingkan model CNN, tetapi lebih buruk dibandingkan model BiLSTM. Untuk pengembangan lebih lanjut, diimplementasikan pula lifelong learning dengan pembaruan vocabulary. Dengan implementasi tersebut, model mampu mempelajari vocabulary dari domain data 2, 3, 4, dan 5. Pembaruan vocabulary ternyata meningkatkan kinerja model pada transfer of knowledge dan loss of knowledge.

Sentiment analysis is a process to determine the attitude or sentiment of the author regarding certain matters. The process of classifying sentiments manually takes a long time, so it is proposed to use machine learning. In this study, the machine learning model used is the CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) and BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) models which produce better performance than the CNN and BiLSTM models on the problem of sentiment analysis. In order for the model to learn continuously from several data domains, the model is also implemented lifelong learning. As a result, the CNN-BiLSTM model shows better transfer of knowledge performance compared to the BiLSTM-CNN model and its base model. On the other hand, the BiLSTM-CNN model shows a worse performance than its base model. Meanwhile, the results of loss of knowledge show that the performance of the CNN-BiLSTM model is worse than the BiLSTM-CNN model. In addition, the two combined models show better performance than the CNN model, but worse than the BiLSTM model. For further development, lifelong learning is also implemented with an update to vocabulary. With this implementation, the model is able to learn vocabulary from data domain 2, 3, 4, and 5. In fact, the vocabulary update has an effect in increasing the performances of transfer of knowledge and loss of knowledge.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yogi Lesmana Sulestio
"Penelitian Part-of-Speech tagger (POS tagger) untuk bahasa Indonesia telah banyak dikembangkan. Sayangnya, sejauh ini baru Polyglot yang menggunakan POS tag menurut pedoman anotasi Universal Dependencies (UD). Namun, Polyglot sendiri masih mempunyai kekurangan karena belum dapat mengatasi klitik dan kata ulang yang terdapat dalam bahasa Indonesia. Tujuan penelitian ini adalah mengembangkan POS tagger untuk bahasa Indonesia yang tidak hanya sesuai dengan ketentuan anotasi UD, tapi juga sudah mengatasi kekurangan Polyglot. POS tagger ini akan dikembangkan dengan metode deep learning menggunakan arsitektur yang merupakan versi modifikasi dari Recurrent Neural Network (RNN), yaitu Bidirectional Long Short-Term Memory (Bi-LSTM). Dataset yang digunakan untuk mengembangkan POS tagger adalah sebuah dependency treebank bahasa Indonesia yang terdiri dari 1.000 kalimat dan 19.401 token. Hasil eksperimen dengan menggunakan Polyglot sebagai pembanding menunjukkan bahwa POS tagger yang dikembangkan lebih baik dengan tingkat akurasi POS tagging yang meningkat sebesar 6,69% dari 84,82% menjadi 91,51%.

There have been many studies that have developed Part-of-Speech tagger (POS tagger) for Indonesian language. Unfortunately, so far only Polyglot that has used POS tag according to Universal Dependencies (UD) annotation guidelines. However, Polyglot itself still has shortcomings since it has not been able to overcome clitics and reduplicated words in Indonesian language. The purpose of this study is to develop POS tagger for Indonesian language which is not only in accordance with UD annotation guidelines, but also has overcome Polyglot’s shortcomings. This POS tagger will be developed under deep learning method by using modified version of Recurrent Neural Network (RNN) architecture, Bidirectional Long Short-Term Memory (Bi-LSTM). The dataset used to develop POS tagger is an Indonesian dependency treebank consisting of 1.000 sentences and 19.401 tokens. Result of experiment using Polyglot as baseline shows that the developed POS tagger is better. This is indicated by increased accuracy POS tagging by 6,69% from 84,82% to 91,51%."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Noer Fitria Putra Setyono
"SIBI merupakan bahasa isyarat resmi yang digunakan di Indonesia. Penggunaan SIBI seringkali ditemukan permasalahan karena banyaknya gerakan isyarat yang harus diingat. Penelitian ini bertujuan untuk mengenali gerakan isyarat SIBI dengan cara mengekstraksi fitur tangan dan wajah yang kemudian diklasifikasikan menggunakan Bidirectional Long ShortTerm Memory (BiLSTM). Ekstraksi fitur yang digunakan dalam penelitian ini adalah Deep Convolutional Neural Network (DeepCNN) seperti ResNet50 dan MobileNetV2, di mana kedua model tersebut digunakan sebagai pembanding. Penelitian ini juga membandingkan performa dan waktu komputasi antara kedua model tersebut yang diharapkan dapat diterapkan pada smartphone nantinya, dimana model tersebut akan diimplementasikan. Hasil penelitian menunjukkan bahwa penggunaan model ResNet50-BiLSTM memiliki kinerja yang lebih baik dibandingkan dengan MobileNetV2-BiLSTM yaitu 99,89%. Namun jika akan diaplikasikan pada arsitektur mobile, MobileNetV2-BiLSTM lebih unggul karena memiliki waktu komputasi yang lebih cepat dengan performa yang tidak jauh berbeda jika dibandingkan dengan ResNet50-BiLSTM.

SIBI is a sign language that is officially used in Indonesia. The use of SIBI is often found to be a problem because of the many gestures that have to be remembered. This study aims to recognize SIBI gestures by extracting hand and facial features which are then classified using Bidirectional Long ShortTerm Memory (BiLSTM). The feature extraction used in this research is Deep Convolutional Neural Network (DeepCNN) such as ResNet50 and MobileNetV2, where both models are used as a comparison. This study also compares the performance and computational time between the two models which is expected to be applied to smartphones later, where both models can now be implemented on smartphones. The results showed that the use of ResNet50-BiLSTM model have better performance than MobileNetV2-BiLSTM which is 99.89\%. However, if it will be applied to mobile architecture, MobileNetV2-BiLSTM is superior because it has a faster computational time with a performance that is not significantly different when compared to ResNet50-BiLSTM."
Depok: Fakultas Komputer Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aqila Dzikra Ayu
"Pertahanan negara penting untuk menjaga negara dari ancaman dan gangguan yang ada. Namun, industri pertahanan yang untuk mendukung pertahanan negara masih kurang optimal, seperti kebutuhan misil yang belum bisa disediakan oleh industri pertahanan. Ketersediaan misil sangat terbatas karena bergantung pada politik dari negara yang membuatnya. Diperlukan solusi yang memungkinkan negara untuk mengembangkan misil secara mandiri tanpa melibatkan pihak luar negeri. Misil adalah suatu sistem dinamik yang bersifat non-linear, time-varying, multivariabel, dapat memiliki coupling, dan rentan gangguan ketika digunakan. Oleh karena itu, dibutuhkan pengendali yang dapat mengendalikan sistem misil yang rumit. Pada penelitian ini, diusulkan pengendali misil berbasis long-short term memory (LSTM) karena arsitekturnya yang cocok untuk data sekuensial seperti data pengendali. Pengendali misil berbasis LSTM menghasilkan hasil prediksi yang dapat mengikuti data asli dengan MSE rendah. Kinerja pengendali berbasis LSTM lalu dibandingkan dengan pengendali misil berbasis deep neural network. Hasil penelitian menunjukkan bahwa pengendali berbasis LSTM menghasilkan MSE pelatihan dan pengujian yang lebih rendah dari pengendali misil berbasis deep neural network.

National defense is essential to protect the country from existing threats and disturbances. However, the defense industry is still not optimal to support national defense, such as the need for missiles that the industry cannot provide. The availability of missiles is limited due to the politics of the country who made them. A solution is needed to allow our country to develop missiles independently without involving foreign parties. The missile is a dynamic system that is non-linear, time-varying, multivariable, coupled, and susceptible to interference when operated. Therefore, a controller is needed to control the complex missile system. This research proposes a long-short term memory (LSTM)-based missile controller because its architecture is suitable for sequential data, such as controller data. The LSTM-based missile controller produces results that can follow the original data with low MSE. The performance of the LSTM-based missile controller is then compared with the deep neural network-based missile controller. The results showed that the LSTM-based missile controller resulted in lower training and testing MSE than the deep neural network-based missile controller."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elyaser Ben Guno
"Automatic Modulation Classification (AMC) secara otomatis mengidentifikasi jenis modulasi apa yang digunakan pada pemancar berdasarkan pengamatan terhadap sinyal yang diterima. Seiring dengan perkembangan pada topik ini, Deep Learning (DL) dapat diterapkan pada AMC dan memiliki kinerja yang menjanjikan. Namun, sebagian besar model DL yang dibuat hanya berfokus pada akurasi, mengabaikan ukuran model dan kompleksitas komputasi yang dapat menjadi masalah bagi perangkat dengan ukuran memori dan daya komputasi yang terbatas. Dalam penelitian ini, model Convolutional Long short-term memory Deep Neural Network (CLDNN) ringan diusulkan untuk mengklasifikasi modulasi. Model yang diusulkan dilatih dan diuji dengan dataset RML2016.10b. Model yang diusulkan memiliki ukuran model dan jumlah parameter yang lebih kecil, serta waktu pelatihan dan klasifikasi yang lebih cepat, relatif terhadap model pembanding, dengan tetap menjaga kualitas akurasinya.

Automatic Modulation Classification (AMC) automatically identifies what type of modulation is used on the transmitter based on observations of the received signal. Along with the development on this topic, Deep Learning (DL) can be applied to AMC and has promising performance. However, most of the DL models created only focus on accuracy, ignoring the model size and computational complexity which can be a problem for devices with limited memory size and computing power. In this study, a lightweight Convolutional Long short-term memory Deep Neural Network (CLDNN) model was proposed to classify modulation. The proposed model was trained and tested with the RML2016.10b dataset. The proposed model has a small model size and parameters, as well as fast training and classification time, relative to the comparison models, while maintaining the quality of its accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>