Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 144409 dokumen yang sesuai dengan query
cover
Michael
"ABSTRAK
Baterai adalah komponen listrik yang digunakan untuk menyimpan listrik. Saat ini, baterai yang paling banyak digunakan adalah baterai Lithium Ion. Baterai lithium memiliki kepadatan energi yang relatif tinggi dibandingkan pendahulunya, tetapi sangat beracun dan berbahaya bagi organisme hidup dan memerlukan penanganan yang hati-hati dalam operasinya, salah satunya adalah dengan menggunakan sistem manajemen baterai. Dalam tesis ini, dirancang perlindungan overcharging dan sistem manajemen baterai balancing pasif untuk baterai Lithium seri terhubung. Pengujian prototipe dilakukan dengan menguji kemampuan perlindungan pengisian berlebih dengan memantau setiap tegangan sel dan nilai saat ini saat diisi. Pengujian kemampuan balancing pasif dilakukan dengan mengukur setiap tegangan sel saat diisi. Berdasarkan dari data pengujian prototipe sirkuit balancing overcharging dan pasif, disimpulkan bahwa prototipe mampu memberikan perlindungan pengisian daya yang berlebihan dan mampu menyeimbangkan secara pasif setiap seri sel baterai terhubung pada 3,75 Volt menggunakan 0,2 Ampere arus pengisian.

ABSTRACT
atteries are electrical components that are used to store electricity. Currently, the most widely used battery is a Lithium Ion battery. Lithium batteries have a relatively high energy density compared to their predecessors, but are highly toxic and dangerous to living organisms and require careful handling in their operations, one of which is to use a battery management system. In this thesis, designed overcharging protection and passive battery balancing management system for connected series Lithium batteries. Prototype testing is done by testing the overcharging protection capability by monitoring each cell voltage and current value when charged. Passive balancing capability testing is done by measuring every cell voltage when filled. Based on the prototype overcharging and passive balancing circuit testing data, it was concluded that the prototype is able to provide excessive charging protection and is able to passively balance each series of battery cells connected at 3.75 Volts using 0.2 Amperes of charging current."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Guardio Orlando Fibiodendi
"Banyaknya penggunaan kendaraan berbahan bakar fosil menyebabkan berbagai macam permasalahan. Permasalahan tersebut timbul karena bahan bakar fosil memiliki jumlah terbatas dan emisi gas buang yang berbahaya bagi lingkungan. Solusi untuk mengatasi permasalahan tersebut adalah dengan beralih menggunakan kendaraan berbahan bakar listrik. Kendaraan listrik menggunakan baterai sebagai media penyimpanan energi. Baterai berbasis lithium-ion sering digunakan untuk penggunaan kendaraan listrik karena memiliki banyak kelebihan. Dengan latar belakang tersebut, skripsi ini bertujuan untuk mempelajari karakteristik dari baterai kendaraan berbasis lithium-ion dan konsumsi energinya pada kendaraan. Dari uji laboratorium diketahui bahwa semakin besar arus pengisian maka semakin besar nilai tegangan rata-rata dan kapasitas energi yang diisikan ke baterai.
Uji laboratorium juga menunjukkan bahwa semakin besar arus pengosongan maka semakin kecil nilai tegangan rata-rata baterai dan kapasitas energi yang diambil dari baterai. Pada pengujian konsumsi KARLING diperoleh bahwa pada saat kendaraan dikemudikan dengan kecepatan konstan, arus pengosongan rata-ratanya besar dan tegangan rata-ratanya kecil. Berkebalikan dengan hal tersebut, pada saat kendaraan dikemudikan dengan menyesuaikan lintasan, banyak mengalami percepatan dan perlambatan, arus rata-rata pengosongannya kecil namun tegangan rata-ratanya lebih besar. Untuk konsumsi energinya, pada pengujian dengan cara mengemudi yang menyesuaikan lintasan, konsumsi energinya lebih besar karena kebutuhan daya saat percepatan lebih besar dan waktu tempuh lebih lama.

The large number of fossil fueled vehicles usage causes a variety of problems. The problem occurs because fossil fuels have limited quantities and exhaust emissions that are harmful to the environment. The solution due to this problems is using electrical vehicle. Electrical vehicle needs batteries as energy storage. Lithium ion based battery is often used for electrical vehicle usage because it has many advantages. With this background, the thesis aims to study the characteristics of vehicle lithium ion based battery and its energy consumption on vehicle.
From the laboratory test, it is known that the greater the charging current the more the average voltage and the energy capacity charged to the battery. The laboratory test also shows that the greater the discharge current the smaller the average voltage and the energy capacity discharged from battery. On the KARLING consumption test, it is obtained that when the vehicle is driven with constant velocity, the average discharge current is large and the average voltage is small. Contrary with that, when the vehicle is driven following the track, vehicle often accelerated or decelarated, the average discharge current is smaller but the average voltage is larger. For the energy consumption, the track adjusting driving method has larger energy consumption because the power demand when the vehicle accelarated is larger and the driving time is longer."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benediktus Ma’dika
"Baterai litium-ion merupakan teknologi yang menjanjikan untuk mendukung transisi energi berbasis fosil ke energi baru terbarukan pada kendaraan listrik yang ramah lingkungan karena kinerja penyimpanan energinya yang unggul. Penelitian material energi untuk baterai litium-ion terus dilakukan secara intensif hingga saat ini. Untuk mendukung hal tersebut, penelitian ini mensintesis Lithium Lanthanum Titanate ( LLTO, dengan formula kimia Li0,5La0,5TiO3) dari kombinasi lantanum oksalat lokal (95,296 % atomik lanthanum), litium karbonat komersial dan titanium oksida komersial melalui solid-state reaction yang sederhana dan berbiaya rendah. Dalam metode ini, digunakan kalsinasi dua tahap di mana tahap pertama dilakukan pada temperatur 800 °C selama 8 jam di bawah kondisi atmosfer biasa sedangkan tahap kedua dilakukan pada tiga variasi temperatur yakni 1.050 °C, 1.150 °C dan 1.250 °C selama 12 jam di bawah kondisi atmosfer biasa yang masing-masing menghasilkan 97,98, 98,141 dan 92,328 % berat Li0,5La0,5TiO3. LLTO yang disintesis pada temperatur kalsinasi kedua 1.150 °C menunjukkan luas permukaan dan volume pori yang paling besar, butir-butir tersusun secara acak dan memiliki sifat pseudokapasitansi sehingga memberikan kapasitas spesifik yang tinggi sebesar 17.120 mAh g-1 (pada C-rate 0,5 dan potensial yang mendekati nol) dan konduktivitas yang tinggi sekitar 2,45 × 10 -2 S/cm. LLTO ini menjanjikan untuk digunakan sebagai anoda potensial rendah dalam baterai litium-ion.

Lithium-ion battery is one of the promising technologies to support the transition of fossil-based energy to renewable energy in eco-friendly electric vehicles due to its superior energy storage performance. Research on energy materials for lithium-ion batteries continues to be carried out intensively to date. To support this plan, this research has synthesized Lithium Lanthanum Titanate (LLTO, with a chemical formula Li0,5La0,5TiO3) from a combination of local lanthanum oxalate (95.296 % atomic of lanthanum), commercial lithium carbonate, and commercial titanium oxide through a low-cost and simple solid-state reaction. In this method, a two-stage calcination method was used, where the first step was carried out at a temperature of 800 °C for 8 h under atmospheric conditions while the second step was carried out at three different temperatures namely 1050 °C, 1150 °C and 1250 °C for 12 h under atmospheric conditions yielding 97.98, 98.141 and 92.328 weight % of Li0,5La0,5TiO3, respectively. The LLTO synthesized at the second calcination temperature of 1150 °C exhibited largest surface area and pore volume, randomly arranged particles, and pseudocapacitive feature as to provide a high specific capacity of 17,120 mAh g-1 (at a C-rate 0, 5 and near-zero potentials) and a high conductivity of 2.45 × 10 -2 S/cm. This LLTO holds promise for use as a low-potential anode in lithium-ion batteries."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael
"Baterai adalah salah satu komponen kelistrikan yang digunakan untuk menyimpan energi listrik. Pada masa kini, jenis baterai yang banyak digunakan adalah baterai bermaterial lithium. Material lithium memiliki power density yang relatif tinggi daripada material lainnya, namun material lithium sangat beracun dan berbahaya bagi makhluk hidup dan memerlukan penanganan khusus dalam pengoperasiannya, salah satunya dengan sistem manajemen baterai. Pada skripsi ini, dilakukan desain sistem manajemen baterai yang dapat memproteksi baterai dari overcharging dan dapat melakukan passive balancing pada hubung seri baterai lithium. Pada pengujian purwarupa, dilakukan uji coba rangkaian proteksi overcharging dengan memonitor nilai tegangan dan arus tiap sel baterai ketika diisi daya sedangkan uji coba rangkaian passive balancing dilakukan dengan mengukur nilai tegangan tiap sel baterai ketika diisi daya. Berdasarkan hasil pengujian purwarupa rangkaian proteksi overcharging dan passive balancing yang dibuat, rangkaian mampu memproteksi setiap sel baterai dari overcharging dan mampu menyeimbangkan tiap sel baterai hubung seri dengan prinsip passive balancing pada tegangan 3.75 Volt dengan arus pengisian 0.2 Ampere.

Battery is an electrical component used to store electricity. Nowadays, the most widely used battery is the Lithium Ion battery. Lithium battery has a relatively high energy density compared to its predecessor, but is highly toxic and hazardous for living organisms and requires careful handling in its operation, one of such is to use a battery management system. In this thesis, an overcharging protection and passive balancing battery management system for series connected lithium battery is designed. The prototype testing is done by testing the overcharging protection capability by monitoring each cell voltage and current value when charged. The testing of passive balancing capability is done by measuring each cell voltage when charged. Based from the overcharging and passive balancing circuit prototype testing data, it is concluded that the prototype is able to provide cells overcharging protection and able to passively balance each series connected battery cell at 3.75 Volt using 0.2 Ampere of charging current. "
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewi Anggraeni
"Sistem Manajemen Baterai (BMS), yang bertanggung jawab untuk memantau baterai isi ulang, memainkan peran penting dalam melindungi kendaraan dan instrumen listrik. Dua indikator utama yang perlu dipertimbangkan adalah State of Charge (SoC) dan State of Health (SoH). Memperkirakan SoC secara akurat penting untuk mencegah potensi masalah. Selain itu, ruang, waktu komputasi, dan biaya merupakan faktor penting dalam pengembangan perangkat keras. Untuk mengatasi pertimbangan ini, model Extended Kalman Filter (EKF) orde pertama dan Adaptive Extended Kalman Filter (AEKF) dipilih karena pra-pemrosesan datanya lebih sederhana dan akurasinya lebih baik. Estimasi ini didasarkan pada metode matematika. Studi ini merekomendasikan penggunaan metode First-Order Equivalent Circuit Model (ECM) bersama dengan algoritma EKF dan AEKF karena pengaturannya yang mudah dan proses komputasi yang efisien. Melalui penelitian yang melibatkan beberapa siklus pengisian-pengosongan, ditemukan bahwa metode AEKF secara konsisten mengungguli metode EKF dalam hal akurasi SoC. Hal ini semakin diperkuat dengan melakukan pengujian reliabilitas pada metode AEKF, yang menunjukkan akurasi estimasi SoC yang lebih unggul dibandingkan metode EKF ketika diberikan nilai SoC awal yang berbeda. Selain itu, waktu komputasi yang lebih singkat dari metode EKF menjadi pertimbangan untuk penerapan praktis di dunia nyata. Lebih lanjut, percobaan yang dilakukan selama 500 siklus mengungkapkan bahwa estimasi SoH menurun dari 99,97% menjadi 76,1947%, menunjukkan bahwa baterai telah mencapai tahap End of Life (EOL), seperti yang dilaporkan di berbagai jurnal.

The Battery Management System (BMS), responsible for monitoring rechargeable batteries, plays an essential role in safeguarding electric vehicles and instruments. Two key indicators to consider are State of Charge (SoC) and State of Health (SoH). Accurately estimating SoC is important to prevent potential issues. Additionally, space, computing time, and cost are important factors in hardware development. To address these considerations the first-order Extended Kalman Filter (EKF) and Adaptive Extended Kalman Filter (AEKF) models were selected due to their simpler data pre-processing and better accuracy. These estimations are based on mathematical methods. The study recommends using the First-Order Equivalent Circuit Model (ECM) method in conjunction with the EKF and AEKF algorithms due to their straightforward setup and efficient computational process. Through research involving multiple charge-discharge cycles, it was found that the AEKF method consistently outperformed the EKF method in terms of SoC accuracy. This was further confirmed by subjecting the AEKF method to reliability testing, where it displayed superior SoC estimation accuracy compared to the EKF method when given different initial SoC values. Additionally, the shorter computing time of the EKF method is a consideration for practical real-world implementation. Furthermore, experiments conducted over 500 cycles revealed that SoH estimation declined from 99.97% to 76.1947%, suggesting that the battery has reached the End of Life (EOL) stage, as reported in various journals."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ratna Permata Sari
"[Telah dilakukan peningkatan konduktivitas listrik LiFePO4 dengan metode penambahan material logam nano Cu dan CNTs. Metode ini menjadi pilihan yang menarik karena mudah dan murah dalam proses pembuatannya. Proses sintesis dilakukan dengan mencampur serbuk LiFePO4 (komersil) dengan variasi presentase berat nano tembaga (komersil) 0, 1, 3, 5, 7 wt. % dan 5 wt. % nano karbon (komersil)
kemudian di proses vacuum mixing dan film applicator. Pengujian XRD, SEM dan EDX dilakukan pada serbuk yang diterima untuk mengkonfirmasi fasa, ukuran butir serta ada tidaknya impurities. Hasil XRD dan EDX pada serbuk nano Cu menunjukkan bahwa telah terjadi oksidasi dan terbentuk menjadi CuO dan Cu2O, serta ditemukan
adanya impurities elemen S sebesar 8.5 wt. %. Komposisi fasa yang dihasilkan dari proses penambahan didapat dari menganalisis pola difraksi XRD menunjukkan bahwa fasa yang terbentuk adalah
LiFePO4 namun ditemukan adanya impurities berupa Cu4O3 pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C, dan 10 wt. % PVDF. Konduktivitas listrik diuji material katoda LiFePO4 dengan EIS, dan hasil uji menunjukkan bahwa konduktivitas listrik LiFePO4 meningkat seiiring dengan penambahan nano Cu namun tidak terlalu signifikan (dalam satu orde), hal ini dikarenakan efek oksidasi pada Cu.
Pada variasi penambahan nano C dan nano Cu terjadi peningkatan sebesar 3 orde dengan nilai konduktivitas sebesar 8.4 x 10-5 S/cm pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C. Penambahan nano karbon pada LiFePO4 lebih efektif dalam peningkatan konduktivitas dibandingkan dengan penambahan nano Cu
dikarenakan efek oksidasi pada Cu yang tidak dapat dihindari. Morfologi material katoda dan distribusi nano Cu dan nano karbon dianalisis menggunakan SEM/EDX, menunjukkan material yang dicampur pada variasi penambahan nano Cu cukup homogen, struktur butir spherical, sedangkan pada variasi penambahan nano Cu dan
nano karbon struktur butir polyhedral dengan ukuran butir berada pada rentang 100- 500 nm. Struktur butir ini mempengaruhi hasil cole plot dimana pada variasi penambahan Cu terbentuk semicircle sedangkan pada penambahan nano C tidak;Improved of Electrical conductivity of LiFePO4 with the method of adding Cu Nano metal material and CNTs has been done. This method is an attractive option because it is easy and inexpensive in the manufacturing process. Synthesis process is
done by mixing the powder LiFePO4 (commercial) with a variation of the percentage by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs (commercial) and then process in vacuum mixing and film applicator. Testing XRD, SEM and EDX performed on the powder to confirm the phase, grain size and the presence or absence of impurities. Results of XRD and EDX on Nano Cu powder showed that there had been oxidation and formed into CuO and Cu2O, and discovered the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. % Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode material was tested by EIS, and the results showed that the electrical conductivity of LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the same order), this is because the effects of oxidation on Cu. On the addition of Nano C and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition
of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX, showed mixed material on the variation of the addition of Nano Cu quite homogenous, spherical grain structure, while the variation of the addition of Nano Cu and CNTs structures polyhedral grains with a grain size in the range 100-500 nm. This affects the grain structure results in a variation of Cole plot where the addition of Cu is formed semicircle, while the addition of Nano C is not.;Improved of Electrical conductivity of LiFePO4 with the method of adding Cu
Nano metal material and CNTs has been done. This method is an attractive option
because it is easy and inexpensive in the manufacturing process. Synthesis process is
done by mixing the powder LiFePO4 (commercial) with a variation of the percentage
by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs
(commercial) and then process in vacuum mixing and film applicator. Testing XRD,
SEM and EDX performed on the powder to confirm the phase, grain size and the
presence or absence of impurities. Results of XRD and EDX on Nano Cu powder
showed that there had been oxidation and formed into CuO and Cu2O, and discovered
the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing
the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any
impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. %
Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode
material was tested by EIS, and the results showed that the electrical conductivity of
LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the
same order), this is because the effects of oxidation on Cu. On the addition of Nano C
and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-
5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition
of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition
of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material
morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX,
showed mixed material on the variation of the addition of Nano Cu quite homogenous,
spherical grain structure, while the variation of the addition of Nano Cu and CNTs
structures polyhedral grains with a grain size in the range 100-500 nm. This affects the
grain structure results in a variation of Cole plot where the addition of Cu is formed
semicircle, while the addition of Nano C is not., Improved of Electrical conductivity of LiFePO4 with the method of adding Cu
Nano metal material and CNTs has been done. This method is an attractive option
because it is easy and inexpensive in the manufacturing process. Synthesis process is
done by mixing the powder LiFePO4 (commercial) with a variation of the percentage
by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs
(commercial) and then process in vacuum mixing and film applicator. Testing XRD,
SEM and EDX performed on the powder to confirm the phase, grain size and the
presence or absence of impurities. Results of XRD and EDX on Nano Cu powder
showed that there had been oxidation and formed into CuO and Cu2O, and discovered
the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing
the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any
impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. %
Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode
material was tested by EIS, and the results showed that the electrical conductivity of
LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the
same order), this is because the effects of oxidation on Cu. On the addition of Nano C
and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-
5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition
of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition
of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material
morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX,
showed mixed material on the variation of the addition of Nano Cu quite homogenous,
spherical grain structure, while the variation of the addition of Nano Cu and CNTs
structures polyhedral grains with a grain size in the range 100-500 nm. This affects the
grain structure results in a variation of Cole plot where the addition of Cu is formed
semicircle, while the addition of Nano C is not.]"
Fakultas Teknik Universitas Indonesia, 2015
T43699
UI - Tesis Membership  Universitas Indonesia Library
cover
Ma'Arif Hasan
"Penelitian ini bertujuan untuk menganalisis kinerja Hybrid Energy Storage System (HESS) yang merupakan kombinasi hibridisasi antara baterai jenis Lithium-Ion dan super kapasitor dalam aplikasi kendaraan listrik. Penelitian ini menggunakan tiga varian baterai dan tiga varian superkapasitor sesuai dengan spesifikasi yang telah ada di pasaran. Adapun kriteria yang digunakan untuk menentukan kinerja HESS adalah pengujian kombinasi baterai dan superkapasitor terhadap 3 (tiga) kondisi mobilitas kendaraan listrik yang sangat bergantung pada kondisi riil dijalan dan behavior pengemudi. Tiga kondisi mobilitas itu adalah mode akselerasi yaitu saat kendaraan listrik sedang membutuhkan daya puncak, mode stabil dan deselerasi atau pengereman mendadak. Selain kinerja HESS, penelitian ini juga menganalisis pengaruh pemasangan superkapasitor terhadap kriteria yang digunakan serta memberikan rekomendasi kombinasi terbaik dari varian baterai dan superkapasitor yang diuji. Metode yang digunakan dalam penelitian ini adalah analisis simulasi parameter berdasarkan pembebanan riil di jalan dengan menggunakan Simulink Matlab R2022a dengan menghitung daya referensi kendaraan listrik berdasarkan kecepatan dalam Km/Jam, Torsi dan diameter roda merujuk pada spesifikasi manufaktur. Hasil penelitian menunjukkan bahwa dari 9 (Sembilan) kombinasi HESS yang diujikan, seluruhnya telah mampu memenuhi tiga kondisi mobilitas kendaraan listrik berdasarkan kondisi riil dijalan. Namun, dari 9 kombinasi HESS yang diujikan, rangkaian terbaik yang menjadi rekomendasi adalah rangkaian baterai dengan kapasitas 2.700 Wh dan superkapasitor dengan kapasitas 500 F.

This study aims to analyze the performance of the Hybrid Energy Storage System (HESS), which is a combination of hybridization between Lithium-Ion batteries and supercapacitors in electric vehicle applications. This study uses three battery variants and three supercapacitor variants according to the specifications that are already on the market. The criteria used to determine HESS performance are testing a combination of batteries and supercapacitors against 3 (three) conditions for electric vehicle mobility which are very dependent on real conditions on the road and driver behavior. The three mobility conditions are acceleration mode, which is when an electric vehicle is in need of peak power, stable mode and deceleration or sudden braking. In addition to HESS performance, this study also analyzes the effect of supercapacitor installation on the criteria used and provides recommendations for the best combination of battery and supercapacitor variants tested. The method used in this research is parameter simulation analysis based on real conditions on the road using Simulink Matlab R2022a by calculating the reference power of electric vehicles based on speed in km/hour, torque and wheel diameter referring to manufacturer specifications. The results of the study show that the 9 (nine) HESS combinations that have been tested, all of them have been able to fulfill the three conditions of electric vehicle mobility based on real conditions on the road. However, based on the 9 HESS combinations tested, there is one best combination circuit that is recommended, namely a battery with a capacity of 2.700 Wh and a supercapacitor with a capacity of 500 F."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rangga Aji Pamungkas
"[Peningkatan temperatur baterai litium-ion pada kendaraan listrik dapat mengakibatkan berkurangnya kapasitas dan jumlah siklus kerja sebuah baterai litium-ion. Bahkan, sel baterai dapat mengalami thermal runaway yang berakibat baterai litium-ion dapat terbakar dan meledak. Salah satu jenis alat penukar kalor yang bisa digunakan sebagai sistem manajemen termal pada baterai litium-ion adalah pipa kalor melingkar pelat datar. Penelitian ini dilakukan untuk menguji kinerja pipa kalor melingkar pelat datar dan mencari nilai hambatan termal yang dihasilkan dengan variasi fluida kerja akuades, alkohol, dan aseton dengan filling ratio sebesar 60%. Dari hasil penelitian ini, aseton merupakan fluida kerja terbaik yang menghasilkan hambatan termal sebesar 0,22 Watt/°C dan temperatur evaporator sebesar 49,89°C pada beban fluks kalor sebesar 1,61 Watt/cm2.;The increasing temperature of lithium-ion battery used in electric vehicle can cause major thermal runaway that can result in battery fire and explosion. One of the heat exchanger that can be used as thermal management system for lithium-ion battery of electric vehicle is Flat Plate Loop Heat Pipe. This research was conducted to test the performance of flat plate loop heat pipe and to determine the thermal resistance of flat plate loop heat pipe that used aquades, alcohol, and acetone as working fluid with 60% of filling ratio. The result showed that acetone is the best working fluid from among of the two other working fluids and had a heat pipe thermal resistance 0.22 Watt/°C with evaporator temperature was 49.89°C under maximum heat flux load of 1.61 Watt/cm2., The increasing temperature of lithium-ion battery used in electric vehicle can cause major thermal runaway that can result in battery fire and explosion. One of the heat exchanger that can be used as thermal management system for lithium-ion battery of electric vehicle is Flat Plate Loop Heat Pipe. This research was conducted to test the performance of flat plate loop heat pipe and to determine the thermal resistance of flat plate loop heat pipe that used aquades, alcohol, and acetone as working fluid with 60% of filling ratio. The result showed that acetone is the best working fluid from among of the two other working fluids and had a heat pipe thermal resistance 0.22 Watt/°C with evaporator temperature was 49.89°C under maximum heat flux load of 1.61 Watt/cm2.]"
Fakultas Teknik Universitas Indonesia, 2015
S58609
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jason Anfernee Kaloh
"Mengikuti studi literatur, ekstraksi mangan dan litium dari larutan asam dapat dicapai dengan menggunakan natrium karbonat, menghasilkan presipitat karbonat mangan dan litium. Setelah reaksi, padatan disaring menggunakan filter pelat dari larutan asam. Subsistem filter reaktor kedua kemudian dipasang sebagai sejumlah besar litium yang tidak bereaksi dan litium karbonat terlarut yang tersisa. Dengan cara ini, produk padat mangan dan litium karbonat diperoleh pada 99,5% berat. Aliran daur ulang awalnya direncanakan. Namun, setelah pertimbangan dan penyelidikan lebih dalam dalam neraca massa dan spesifikasi peralatan, hal itu dipertimbangkan. Dengan demikian, aliran daur ulang dapat dianggap dilewati. Area pabrik ini mahal, memiliki total biaya tetap berdasarkan lokasi US$164.864.820 di Jakarta, Indonesia. Artinya, rencana proses ini masih memerlukan optimasi dan pertimbangan ulang. Pabrik ini juga mengeluarkan emisi karbon sebesar 80.910,20 kg CO2 per tahun. Dengan optimasi peralatan lebih lanjut, hal ini dapat dikurangi. Analisis bahaya awal menunjukkan bahwa bahaya yang ditimbulkan dalam proses ini agak minimal dan terkait dengan aliran dan bahan peralatan. Tumpahan, korosi, dan erosi adalah bahaya utama yang dapat dicegah dan dikurangi dengan perawatan dan pemeriksaan rutin.

Following a literature study, the extraction of manganese and lithium from an acidic solution can be achieved using sodium carbonate, producing carbonate precipitates of manganese and lithium. Following reaction, solids are filtered out using a plate filter from the acidic solution. A second reactor-filter subsystem is then set in place as a sizeable amount of unreacted lithium and dissolved lithium carbonate remain. In this way, a solid product of manganese and lithium carbonates are obtained at 99.5% by weight. A recycle stream was initially planned. However, after deeper consideration and investigation in mass balances and equipment specifications, it was considered. Thus, the recycle stream can be considered by-passed. This plant area is costly, having a locationfactored total fixed cost US$164,864,820 in Jakarta, Indonesia. This means that this process plan still requires optimisation and reconsiderations. This plant also gives off a carbon emission of 80,910.20 kg CO2 annually. With further equipment optimisation, this can be reduced. Preliminary hazard analysis shows that the hazards posed in this process are rather minimal and are related with flowrates and equipment materials. Spillage, corrosion, and erosion are the major hazards which can be prevented and mitigated by routine maintenance and check-up."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alyamitha Nadiyah Syafitri Baud
"Milling and LFP synthesis section (node 400) is a mechanochemical process used to grind mainly feed from node 300 (from stream 303) and node 200 (from stream 203) into a fine powder. Subsequently, solid glucose is also added to the ball mill to carbon coated the surface of regenerated LFP crystals. The LFP crystals are made by mixing FePO4 and LiFePO4 solid mixture and LiOH and Li2CO3 solution mixture under argon atmosphere. Using electrical and thermal energy solids, the feed is being mixed for 4 h using ball milling to achieve a more uniform distribution of components within the materials. At 200o C decomposed glucose promotes the reduction conversion of Fe3+ to Fe2+. After heating, LiFePO4/C is synthesised under 200 ºC. Due to the involvement of organic matter glucose in the reaction, CO2 is inevitably generated in this process. In addition to carbon dioxide, the exhaust gas also contains water vapor and argon gas. They are all transferred to be treated in the next step instead of emitting. The output from this process is the crystals solids of the regenerated LFP that has been coated with carbon, this is where the final product of the whole process produced. The objective of the final process is to create a regenerated carbon coated LFP at a rate of 1001.59 tonnes/yr.

Bagian penggilingan dan sintesis LFP (node 400) adalah proses mekanokimia yang digunakan untuk menggiling terutama umpan dari node 300 (dari aliran 303) dan node 200 (dari aliran 203) menjadi bubuk halus. Selanjutnya, glukosa padat juga ditambahkan ke ball mill untuk melapisi permukaan kristal LFP yang diregenerasi dengan karbon. Kristal LFP dibuat dengan mencampurkan campuran padat FePO4 dan LiFePO4 serta campuran larutan LiOH dan Li2CO3 di bawah atmosfer argon. Menggunakan energi listrik dan termal, umpan dicampur selama 4 jam menggunakan ball milling untuk mencapai distribusi komponen yang lebih seragam di dalam bahan. Pada suhu 200°C, glukosa yang terdekomposisi mendorong konversi reduksi Fe3+ menjadi Fe2+. Setelah pemanasan, LiFePO4/C disintesis di bawah suhu 200°C. Karena keterlibatan bahan organik glukosa dalam reaksi, CO2 tidak dapat dihindari dihasilkan dalam proses ini. Selain karbon dioksida, gas buang juga mengandung uap air dan gas argon. Semuanya dipindahkan untuk diproses pada langkah berikutnya daripada dilepaskan. Hasil dari proses ini adalah kristal padat dari LFP yang diregenerasi yang telah dilapisi dengan karbon, di sinilah produk akhir dari seluruh proses dihasilkan. Tujuan dari proses akhir ini adalah untuk menghasilkan LFP yang dilapisi karbon dengan laju 1001.59 ton/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>