Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 166377 dokumen yang sesuai dengan query
cover
Patrecia Alandia Lukman
"Model regresi logistik umum digunakan untuk memodelkan variabel respon berupa variabel kategorik dengan sejumlah variabel prediktor. Kontribusi dari variabel prediktor terhadap variabel respon dinyatakan melalui koefisien regresi (beta), sehingga beta memiliki peran yang penting dalam penggunaan model. Oleh karena itu, perlu dilakukan estimasi nilai beta. Pada skripsi ini dibahas mengenai estimasi beta menggunakan metode Bayesian. Metode Bayesian adalah metode penaksiran parameter yang memanfaatkan gabungan informasi dari data sampel dan informasi terdahulu/prior mengenai karakteristik parameter yang akan ditaksir sehingga metode Bayesian dapat mengatasi masalah jika kualitas data sampel kurang mendukung pengamatan. Prosedur penaksiran parameter tersebut meliputi spesifikasi distribusi prior, digunakan prior non-konjugat, pembentukan fungsi likelihood, dan pembentukan distribusi posterior. Lalu, metode Bayesian Logistic Regression tersebut akan digunakan dalam menganalisa data pasien kanker nasofaring (KNF) pasca radiasi, untuk menilai signifikansi dari komponen skor Zulewski dalam memprediksi ada tidaknya hipotiroid yang merupakan efek samping jangka panjang dari radiasi yang diberikan untuk KNF. Berdasarkan Markov Chain Monte Carlo dengan Gibbs Sampling, diperoleh hasil estimasi yang konvergen. Hasil yang diperoleh adalah tidak ada komponen skor Zulewski yang lebih signifikan antara satu dengan yang lainnya. Diperlukan tambahan informasi dari pengukuran selain komponen skor Zulewski untuk dapat menentukan apakah seorang pasien KNF akan mengalami hipotiroid atau tidak.

Logistic regression models are commonly used to model response variables in the form of categorical variables with a number of predictor variables. The contribution of the predictor variable to the response variable is expressed through a regression coefficient (beta) so that beta has an important role in the use of the model. Therefore, it is necessary to estimate the value of beta. This thesis will discuss the estimated beta using the Bayesian method. Bayesian Method is a parameter estimation method that utilizes a combination of information from sample data and prior information about the characteristics of the parameters to be estimated so that the Bayesian method can overcome the problem if the quality of the sample data does not support observation. The parameter estimation procedure includes the prior distribution specification, which is to use non-conjugate prior, the formation of the likelihood function, and the formation of the posterior distribution. Then, the Bayesian Logistic Regression method will be used in analyzing post-radiation nasopharyngeal cancer (NPC) patient data, to determine the significance of the Zulewski’s score component in predicting the presence or absence of hypothyroidism which is a long-term side effect of radiation given to NPC. Based on Markov Chain Monte Carlo with Gibbs Sampling, a convergent estimate is obtained. The result is that there is no component of Zulewski’s score that is more significant between one another. Additional information is needed from measurements other than the Zulewski’s score component to be able to determine whether a NPC patient will have hypothyroidism or not."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nalendra Dwimantara
"

Kambuhnya kanker payudara bergantung pada stadium tumor awal, terapi yang dilakukan sebelumnya, dan tumor biologi. Pengukuran darah lengkap merupakan salah satu pemeriksaan laboratorium yang relatif murah, mudah dan efektif dalam mendiagnosis kanker. Analisis regresi kesulitan dalam membuat kesimpulan dari data yang mengandung sejumlah besar variabel penjelas yang saling berkorelasi. Profile regression mengadopsi sudut pandang yang lebih global, dimana kesimpulan didasarkan pada kelompok yang mewakili pola variabel penjelasnya. Pengelompokan dilakukan untuk menganalisis suatu data dengan melihat karakteristik tiap pengamatan pada data. Suatu data jika dibagi menjadi beberapa kelompok mengartikan data tersebut memiliki karakteristik pengamatan yang berbeda-beda. Analisis pada data yang heterogen bertujuan untuk mengidentifikasi subpopulasi yang homogen dan menentukan hubungan antar variabel dalam setiap subpopulasi. Finite Mixture Model (FMM) dengan pendekatan Bayesian digunakan untuk mengidentifikasi subpopulasi dari pasien kanker payudara berdasarkan pengukuran darah. Berdasarkan nilai Deviance Information Criterion (DIC) didapatkan bahwa subpopulasi yang terbentuk untuk data rasio pengukuran darah pasien kanker payudara adalah dua subpopulasi. Peluang pasien mengalami kekambuhan pada subpopulasi 1 sebesar 35% dan 72% pada subpopulasi 2. Sedangkan subpopulasi yang terbentuk untuk data inter-rasio pengukuran darah pasien kanker payudara yang terbentuk adalah dua subpopulasi. Peluang pasien mengalami kekambuhan pada subpopulasi 1 sebesar 9% dan 3% pada subpopulasi 2.


Recurrence of breast cancer depends on the initial tumor stage, previous therapies, and biological tumors. A complete blood test is one of the relatively inexpensive, easy and effective laboratory tests in diagnosing cancer. Simple regression analysis has difficulties in drawing conclusions from data that contain large numbers of explanatory variables that are correlated.  Profile regression adopts a more global perspective, where conclusions are based on groups representing covariate patterns. Clustering method aims to analyze data by looking at the characteristics of each observation in the data. If the data is divided into groups, that means that the data has different observational characteristics. Analysis of heterogeneous data purposes to identify homogeneous subpopulations and determine the relationships between variables in each subpopulation. Finite Mixture Model (FMM) with Bayesian approach is used to identify subpopulations of breast cancer patients based on blood measurements. Based on the value of the Deviance Information Criterion (DIC), it was found that the number of subpopulations formed for the data of the ratio of blood measurements for breast cancer patients are two subpopulations.  The probability of patients experiencing recurrence in subpopulation 1 was 35% and 72% in subpopulation 2. Whereas the number of subpopulations formed for the data of the inter-ratio data of breast cancer patients formed are also two subpopulations.  The probability of patients experiencing recurrence in subpopulation 1 is 9% and 3% in subpopulation 2.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Risfania Nurdinda Sari
"COVID-19 adalah penyakit yang disebabkan oleh virus SARS-CoV-2 dan menyerang sistem pernapasan manusia. Selain menganggu kesehatan fisik, pandemi COVID-19 juga memberikan dampak psikologis, salah satunya adalah tingkat stres yang meningkat pada masyarakat. Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang berasosiasi dengan tingkat stres pada pandemi COVID-19. Dalam mencapai tujuan tersebut, penelitian ini menggunakan metode classification tree dan regresi logistik multinomial. Sebelum melakukan proses identifikasi faktor menggunakan classification tree, dilakukan penanganan masalah imbalance data menggunakan metode SMOTE. Selanjutnya, dilakukan kuantifikasi risiko faktor-faktor yang teridentifikasi pada classification tree menggunakan analisis regresi logistik multinomial. Kinerja model diukur menggunakan nilai precision, recall, F1-Score, dan AUC. Hasil yang diperoleh adalah model classification tree dengan penanganan imbalance data menggunakan SMOTE dapat meningkatkan kinerja model dengan nilai precision 0,5980, nilai recall 0,8653, nilai F1-Score 0,7072, dan AUC 0,702. Dengan model tersebut, didapatkan faktor-faktor yang teridentifikasi berasosiasi dengan tingkat stres pada pandemi COVID-19 adalah Total_OECDInsititutions, Total_CoronaConcerns, dan Age. Peningkatan nilai Corona Concerns cenderung memberikan risiko peningkatan tingkat stres, sedangkan peningkatan nilai OECDInsititutions dan Age cenderung memberikan risiko penurunan tingkat stres.

COVID-19 is a disease caused by the SARS-CoV-2 virus that attacks the human respiratory system. In addition to disrupting physical health, the COVID-19 pandemic also has psychological impacts, one of which is an increased level of stress. This study aims to identify factors associated with the level of stress during the COVID-19 pandemic. The study employs the classification tree method and multinomial logistic regression. Prior to the factor identification process using the classification tree, the issue of imbalanced data is addressed using the SMOTE method. Subsequently, the quantification of risk factors identified in the classification tree is conducted using multinomial logistic regression analysis. The model's performance is measured using precision, recall, F1-score, and AUC values. The results obtained indicate that the classification tree model with the handling of imbalanced data using SMOTE can improve model performance, with a precision value of 0,5980, recall value of 0,8653, F1-score value of 0,7072, and AUC value of 0,702. With this model, the identified factors associated with the level of stress during the COVID-19 pandemic are Total_OECDInstitutions, Total_CoronaConcerns, and Age. An increase in Corona Concerns tends to pose a risk of increased stress levels, while an increase in OECD Institutions and Age tends to pose a risk of decreased stress levels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nada Firdaus
"ABSTRAK
Kanker adalah penyebab kematian nomor dua di dunia dan diperkirakan mencapai 9,6 juta kematian pada tahun 2018, dengan kanker payudara menjadi kanker kedua yang sering terjadi setelahnya kanker paru-paru. Kanker payudara terjadi karena pertumbuhan sel abnormal yang tidak terkendali, yang dimulai di saluran yang membawa susu ke puting susu atau kelenjar pembuat susu. Pengobatan kanker payudara tergantung pada subtipe tumor, stadium, penanda genetik, usia pasien, kesehatan pasien umum, status menopause, dan mutasi pada gen kanker payudara yang diwariskan. Di akhir pengobatan pasien diberikan terapi tambahan yang bertujuan meminimalkan risiko kekambuhan. Meskipun terapi ini telah dilakukan, risiko kekambuhan tetap ada. Penanda pengganti adalah penanda yang digunakan untuk menggantikan titik akhir dari uji klinis yang biasanya digunakan mempercepat penanganan pasien. Tujuan dari penelitian ini adalah untuk mengetahui rasio hematologi pengukuran yang dapat digunakan sebagai penanda pengganti dalam kekambuhan kanker payudara sepanjang dengan titik cut-off. Pohon keputusan digunakan untuk menemukan titik batas rasio hematologi pengukuran yang mempengaruhi kekambuhan kanker payudara, dan kemudian hutan acak itu digunakan untuk mengetahui urutan variabel penting dalam klasifikasi. Hasil keduanya
metode dikuantifikasi menggunakan regresi logistik. Berdasarkan analisis, ditemukan bahwa rasio jumlah trombosit ke darah putih (titik potong 47.560) dan neutrofil terhadap rasio limfosit (titik potong 1,953) mempengaruhi kekambuhan kanker payudara.

ABSTRACT
Cancer is the number two cause of death in the world and is estimated to reach 9.6 million deaths in 2018, with breast cancer becoming the second most common cancer that follows lung cancer. Breast cancer occurs because of uncontrolled abnormal cell growth, which starts in the ducts that carry milk to the nipples or milk glands. Treatment of breast cancer depends on the tumor subtype, stage, genetic markers, patient age, general patient health, menopausal status, and mutations in inherited breast cancer genes. At the end of treatment the patient is given additional therapy aimed at minimizing the risk of recurrence. Despite this therapy, the risk of recurrence remains. A surrogate marker is a marker used to replace the endpoints of clinical trials that are usually used to speed up patient management. The aim of this study is to determine the hematological ratio measurements that can be used as surrogate markers in breast cancer recurrence along with the cut-off point. The decision tree is used to find the hematological ratio boundary point measurements that affect breast cancer recurrence, and then the random forest is used to determine the order of important variables in the classification. Both results the method is quantified using logistic regression. Based on the analysis, it was found that the ratio of platelet count to white blood (cut point 47,560) and neutrophils against lymphocyte ratio (cut point 1.953) influences breast cancer recurrence.
"
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Atika Hendryani
"Masalah kesehatan mental semakin menjadi perhatian utama dalam masyarakat saat ini, sehingga manajemen stres menjadi sangat penting untuk menjaga kesejahteraan. Berbagai teknologi untuk mendeteksi stres telah dikembangkan, salah satu metode yang menjanjikan adalah penggunaan imaging photoplethysmography (iPPG) yang diperoleh dari video wajah yang direkam menggunakan kamera konvensional. Penelitian ini bertujuan untuk meningkatkan akurasi klasifikasi stres dengan memanfaatkan sinyal iPPG berbasis kamera web. Dalam penelitian ini, diusulkan dua pendekatan baru pada tahap pra-pemrosesan untuk meningkatkan kualitas deteksi stres. Pendekatan pertama adalah pemilihan Region of Interest (ROI), yang berfokus pada empat area wajah: dahi, pipi kiri, pipi kanan, dan seluruh wajah. Pendekatan kedua adalah penerapan metode frame alignment untuk mengatasi artefak gerakan yang sering kali mempengaruhi kualitas sinyal. Untuk mendeteksi stres, digunakan teknik pembelajaran mesin sebagai metode klasifikasi, dengan parameter utama penanda stres berupa heart rate (HR) dan variabilitas detak jantung heart rate variability (HRV). Data yang digunakan dalam penelitian ini merupakan data primer yang diperoleh dari video wajah 80 peserta, dengan rentang usia 18 hingga 25 tahun. Tugas aritmatika digunakan sebagai pemicu stres, di mana peserta diminta menyelesaikan soal matematika. Proses pengambilan data dilakukan di laboratorium dengan kondisi pencahayaan sebesar 220 lux. Kamera web yang digunakan adalah kamera laptop dengan kecepatan 30 frame per detik (fps). Sebanyak 265 fitur yang berkaitan dengan stres berhasil diekstraksi dari video tersebut, dan data kemudian disegmentasi menggunakan validasi silang 5-fold. Untuk mengurangi noise akibat artefak gerakan, diterapkan metode frame alignment yang menunjukkan perbaikan signifikan dalam mengoreksi noise. Hasil penelitian menunjukkan adanya perbedaan signifikan dalam rata-rata HR antara kondisi stres dan non-stres. Pada parameter HRV, perubahan signifikan ditemukan pada frekuensi rendah Low-Frequency (LF), yang sering dikaitkan dengan respon stres. Beberapa algoritma pembelajaran mesin diuji untuk klasifikasi, dan memberikan hasil akurasi yang tinggi. Decision Tree memperoleh akurasi 0,955 dengan waktu proses 3,13 ms. K-Nearest Neighbors (KNN) akurasi 0,981 dengan waktu proses 2,54 ms, dan Logistic Regression mencapai akurasi 0,985 dengan waktu proses 4,181 ms. Algoritma lain seperti Naïve Bayes akurasi 0,97, waktu 2,659 ms, Support Vector Machine (SVM) akurasi 0,985, waktu 6,71 ms, Random Forest akurasi 0,958, waktu 27,07 ms, dan RBF SVM akurasi 0,985, waktu 9,637 ms juga dievaluasi. Di antara algoritma tersebut, Logistic Regression menunjukkan akurasi klasifikasi tertinggi sebesar 0,985 dengan waktu inferensi 4,181 ms, menjadikannya model yang paling efisien untuk deteksi stres. Metode deteksi stres yang dikembangkan berhasil mendeteksi stres menggunakan kamera RGB dengan mengatasi masalah artefak gerakan melalui frame alignment. Selain itu, pemilihan empat ROI wajah yang spesifik memberikan informasi stres yang lebih andal dibandingkan dengan penggunaan ROI seluruh wajah. Sistem ini merupakan langkah maju yang signifikan dalam deteksi stres non-invasif berbasis kamera web, dengan potensi aplikasi dalam manajemen kesehatan mental dan penilaian stres. Pengembangan di masa mendatang dapat mengeksplorasi peningkatan resolusi video untuk menghasilkan sinyal yang lebih presisi, serta penggabungan model pembelajaran mendalam untuk deteksi stres yang lebih akurat. Penerapan sistem ini pada kamera mobile juga dapat menjadi solusi yang lebih praktis untuk pemantauan stres secara real-time dalam kehidupan sehari-hari.

Mental health issues have increasingly become a major concern in today's society, making stress management crucial for maintaining well-being. Various technologies for stress detection have been developed, and one promising method is the use of imaging photoplethysmography (iPPG) obtained from facial videos recorded using conventional cameras. This study aims to improve the accuracy of stress classification by utilizing iPPG signals derived from webcam-based recordings. In this research, two novel approaches are proposed at the preprocessing stage to enhance stress detection quality. The first approach is the selection of Regions of Interest (ROI), focusing on four facial areas: the forehead, left cheek, right cheek, and the entire face. The second approach involves the application of frame alignment methods to address motion artifacts, which often affect signal quality. Machine learning techniques were employed as the classification method for stress detection, with key stress indicators including heart rate (HR) and heart rate variability (HRV). The data used in this study comprises primary data obtained from facial videos of 80 participants aged 18 to 25 years. Arithmetic tasks were employed as stressors, requiring participants to solve mathematical problems. Data collection was conducted in a laboratory under lighting conditions of 220 lux. The webcam used was a laptop camera operating at a speed of 30 frames per second (fps). A total of 265 stress-related features were successfully extracted from the videos, and the data was segmented using 5-fold cross-validation. To reduce noise caused by motion artifacts, a frame alignment method was applied, demonstrating significant improvement in noise correction. The results revealed significant differences in average HR between stressed and non-stressed conditions. For HRV parameters, significant changes were observed in Low-Frequency (LF) components, often associated with stress responses. Several machine learning algorithms were tested for classification, yielding high accuracy results. Decision Tree achieved an accuracy of 0.955 with a processing time of 3.13 ms, K-Nearest Neighbors (KNN) achieved 0.981 with 2.54 ms, and Logistic Regression reached 0.985 with 4.181 ms. Other algorithms such as Naïve Bayes (accuracy 0.97, time 2.659 ms), Support Vector Machine (SVM) (accuracy 0.985, time 6.71 ms), Random Forest (accuracy 0.958, time 27.07 ms), and RBF SVM (accuracy 0.985, time 9.637 ms) were also evaluated. Among these, Logistic Regression demonstrated the highest classification accuracy of 0.985 with an inference time of 4.181 ms, making it the most efficient model for stress detection. The developed stress detection method successfully detected stress using RGB cameras by addressing motion artifact issues through frame alignment. Additionally, selecting specific facial ROIs provided more reliable stress information compared to using the entire face as an ROI. This system represents a significant advancement in non-invasive webcam-based stress detection, with potential applications in mental health management and stress assessment. Future developments could explore higher video resolution to yield more precise signals and integrate deep learning models for more accurate stress detection. Implementing this system on mobile cameras could also offer a more practical solution for real-time stress monitoring in daily life."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Kleinbaum, David G.
"This very popular textbook is now in its third edition. Whether students or working professionals, readers apprciate its unique "lecture book" format. They often say the book reads like they are listening to an outstanding lecture. This edition includes three new chapters, an updated computer appendix, and an expanded section about modeling guidelines that consider causal diagrams. --
Like previous editions, this textbook provides a highly readable description of fundamental and more advanced concepts and methods of logistic regression. It is suitable for researchers and statisticians in medical and other life sciences as well as academicians teaching second-level regression methods courses. --
The Computer Appendix provides step-by-step instructions for using STATA (version 10.0), SAS (version 9.2), and SPSS (version 16) for procedures described in the main text. --Book Jacket."
New York: Springer, 2010
610.7 KLE l
Buku Teks  Universitas Indonesia Library
cover
Bulan Firdanisa
"Penelitian bioinformatika sering diterapkan untuk mempelajari penyakit dalam tubuh manusia. Penelitian yang sampai saat ini masih aktif dilakukan ialah penelitian terhadap pasien penderita kanker. Tujuan dari berbagai penelitian ini yaitu untuk menemukan pengobatan terbaik bagi pasien penderita kanker. Salah satu pengobatan yang baru ini muncul dikenal sebagai imunoterapi. Imunoterapi memungkinkan sel-sel imun tubuh kita sendiri digunakan untuk melawan sel-sel kanker. Instrumen utama dalam penelitian terhadap efektifitas imunoterapi juga kasus bioinformatika lainnya ialah data ekspresi gen. Namun, pada data ekspresi gen seringkali ditemukan nilai yang hilang atau missing values yang biasanya disebabkan oleh kerusakan gambar atau kesalahan dalam proses hibridisasi. Keberadaan missing values pada data ekspresi gen dapat menyebabkan kesulitan pada analisis lebih lanjut, di mana banyak analisis ekspresi gen memerlukan data yang lengkap seperti klasifikasi dan pengelompokan. Oleh karena itu, perlu dilakukan imputasi terhadap missing values agar analisis yang dilakukan dapat lebih akurat. Pada penelitian ini dilakukan imputasi menggunakan metode Bi-BPCA. Bi-BPCA merupakan metode imputasi dengan mengombinasikan analisis biclustering dan imputasi BPCA. Metode Bi-BPCA diterapkan pada data ekspresi gen di sekitar kanker setelah dilakukan imunoterapi. Setelah itu, performa dari metode Bi-BPCA dilihat dengan membandingkan hasil imputasi metode Bi-BPCA dengan metode imputasi lainnya diantaranya imputasi menggunakan rata-rata baris, rata-rata kolom, dan metode imputasi BPCA melalui nilai NRMSE. Selain itu, koefisien korelasi Pearson digunakan untuk menghitung korelasi antara nilai hasil imputasi metode Bi-BPCA dengan nilai aslinya. Berdasarkan penelitian ini metode Bi-BPCA menghasilkan NRMSE kurang dari 0.6 untuk missing rate 1-30%, lebih rendah dibandingkan NRMSE dari metode imputasi lainnya. Kemudian, metode Bi-BPCA menghasilkan nilai koefisien korelasi Pearson mayoritas di atas 0.9 mendekati 1. Hasil ini menunjukkan bahwa metode Bi-BPCA menghasilkan nilai imputasi yang lebih baik untuk menggantikan missing values dibandingkan dengan metode imputasi BPCA, rata-rata kolom, dan rata-rata baris.

Bioinformatics research is often applied to study diseases in the human body. Research that is still actively being carried out is research on cancer patients. The aim of those studies is to find the best treatment for cancer patients. One treatment that has recently emerged is known as immunotherapy. Immunotherapy allows our body's own immune cells to be used to fight cancer cells. The main instrument in research on the effectiveness of immunotherapy as well as other cases of bioinformatics is gene expression data.. However, in gene expression data, it is often found missing values which are usually caused by image defects and errors in the hybridization process. The existence of missing values in gene expression data can cause difficulties in further analysis, where many analysis of gene expression requires complete data such as classification and clustering. Therefore, it is necessary to impute the missing values so that the analysis can be carried out more accurately. In this study, imputation was carried out using the Bi-BPCA method. Bi-BPCA is an imputation method by combining biclustering analysis and BPCA imputation. The Bi-BPCA method was applied to gene expression data around cancer after immunotherapy. After that, the performance of the Bi-BPCA method was seen by comparing the imputation results of the Bi-BPCA method with other imputation methods including imputation using row averages, column averages, and the BPCA imputation method through the NRMSE value. In addition, the Pearson correlation coefficient was used to calculate the correlation between the imputed value of the Bi-BPCA method and the original value. Based on this study, the Bi-BPCA method produces NRMSE values less than 0.6 for missing rates 1 to 30 percent, which is lower than NRMSE from other imputation methods. In addition, the Bi-BPCA method produces in a majority Pearson correlation coefficient above 0.9. These results indicate that the Bi-BPCA method produces better imputation values to replace the missing values."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasha Latifatu Soliha
"AIDS merupakan fase infeksi dari virus HIV yang paling kronis yang dapat melemahkan kekebalan tubuh. AIDS disebabkan oleh virus HIV yang menyerang dan menghancurkan sel CD4 atau yang biasa disebutk dengan sel T. Pada tahun 2020, Provinsi Jawa Timur merupakan provinsi dengan jumlah infeksi HIV terbanyak dan urutan ketiga terbanyak untuk total kasus AIDS di Indonesia. Tujuan penelitian ini untuk memodelkan data tingkat proporsi kasus AIDS Provinsi Jawa Timur menggunakan Geographically Weighted Logistic Regression (GWLR) dan melihat hasil pengelompokan kabupaten/kota menggunakan analisis klaster. Variabel yang digunakan untuk penelitian ini adalah Gini Rasio, Indeks L Pengeluaran Per Kapita, Rasio Jenis Kelamin, Rasio Ketergantungan, Indeks Pembangunan Gender (IPG), dan Jumlah Pos Pelayanan KB Desa. Tingkat proporsi kasus AIDS dikategorikan menjadi 2 kategori berdasarkan cut point yang telah ditentukan, dengan kategori 0 sebagai tingkat rendah dengan proporsi kasus AIDS kurang dari 0,0006 dan kategori 1 sebagai tingkat tinggi dengan proporsi kasus AIDS lebih dari atau sama dengan 0,0006. Penaksiran parameter untuk model Geographically Weighted Logistic Regression (GWLR) menggunakan metode Maximum Likelihood Estimation (MLE) dengan fungsi pembobot kernel Fixed Gaussian dan bandwidth optimum ditentukan menggunakan Akaike’s Information Criterion corrected (AICc). Nilai Z hitung dari parameter model yang paling sesuai akan dikelompokan menggunakan analisis klaster k-means, dengan Z hitung adalah nilai estimasi parameter dibagi dengan standar error. Hasil pengelompokan menunjukkan bahwa anggota klaster 1 memiliki kecenderungan merupakan kabupaten/kota yang memiliki variabel signifikan yaitu rasio jenis kelamin dan rasio ketergantungan yang merupakan perbandingan jumlah penduduk bukan angkatan kerja dengan jumlah penduduk angkatan kerja, sementara anggota klaster 2 memiliki kecenderungan merupakan kabupaten/kota yang memiliki variabel signifikan rasio ketergantungan.

AIDS is the most chronic phase of HIV infection which can weaken the immune system. AIDS is caused by HIV which attacks and destroys CD4 cells or also known as T cells. In 2020, East Java Province is a province which has the most HIV infections and in the third place for the highest total number of AIDS cases in Indonesia. The purpose of this research is to build a model using Geographically Weighted Logistic Regression (GWLR), and to work out the grouping results of regencies/cities using K-means Clustering Analysis. The variables used in this research are Gini Ratio, L Index of Per Capita Expenditure, Gender Ratio, Dependency Ratio, Gender Development Index, and The Number of Post Pelayanan KB Desa. The proportion levels of AIDS cases are categorized into 2 categories based on cut-point which has been specified, which 0 as the category of low level with the proportion of AIDS cases is less than 0.0006 and 1 as the category of high level with the proportion of AIDS cases is more than or equal to 0.0006. Parameter estimation for Geographically Weighted Logistic Regression (GWLR) is using Maximum Likelihood Estimation (MLE) method with Fixed Gaussian as weighted kernel function and optimum bandwidth is determined using Akaike’s Information Criterion Corrected (AICc). Z-Score of the most suitable model will be grouped using K-means Clustering Analysis, with Z-score is parameter estimator divided by standard error. Grouping results indicates cluster 1 members tend to be regencies/cities that have gender ratio and dependency ratio as significant variables, meanwhile cluster 2 members tend to be regencies/cities that have only dependency ratio as significant variable. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasha Latifatu Soliha
"AIDS merupakan fase infeksi dari virus HIV yang paling kronis yang dapat melemahkan kekebalan tubuh. AIDS disebabkan oleh virus HIV yang menyerang dan menghancurkan sel CD4 atau yang biasa disebutk dengan sel T. Pada tahun 2020, Provinsi Jawa Timur merupakan provinsi dengan jumlah infeksi HIV terbanyak dan urutan ketiga terbanyak untuk total kasus AIDS di Indonesia. Tujuan penelitian ini untuk memodelkan data tingkat proporsi kasus AIDS Provinsi Jawa Timur menggunakan Geographically Weighted Logistic Regression (GWLR) dan melihat hasil pengelompokan kabupaten/kota menggunakan analisis klaster k-means. Variabel yang digunakan untuk penelitian ini adalah Gini Rasio, Indeks L Pengeluaran Per Kapita, Rasio Jenis Kelamin, Rasio Ketergantungan, Indeks Pembangunan Gender (IPG), dan Jumlah Pos Pelayanan KB Desa. Tingkat proporsi kasus AIDS dikategorikan menjadi 2 kategori berdasarkan cut point yang telah ditentukan, dengan kategori 0 sebagai tingkat rendah dengan proporsi kasus AIDS kurang dari 0,0006 dan kategori 1 sebagai tingkat tinggi dengan proporsi kasus AIDS lebih dari atau sama dengan 0,0006. Penaksiran parameter untuk model Geographically Weighted Logistic Regression (GWLR) menggunakan metode Maximum Likelihood Estimation (MLE) dengan fungsi pembobot kernel Fixed Gaussian dan bandwidth optimum ditentukan menggunakan Akaike’s Information Criterion corrected (AICc). Nilai Z hitung dari parameter model yang paling sesuai akan dikelompokan menggunakan analisis klaster k-means, dengan Z hitung adalah nilai estimasi parameter dibagi dengan standar error. Hasil pengelompokan menunjukkan bahwa anggota klaster 1 memiliki kecenderungan merupakan kabupaten/kota yang memiliki variabel signifikan yaitu rasio jenis kelamin dan rasio ketergantungan yang merupakan perbandingan jumlah penduduk bukan angkatan kerja dengan jumlah penduduk angkatan kerja, sementara anggota klaster 2 memiliki kecenderungan merupakan kabupaten/kota yang memiliki variabel signifikan rasio ketergantungan.

AIDS is the most chronic phase of HIV infection which can weaken the immune system. AIDS is caused by HIV which attacks and destroys CD4 cells or also known as T cells. In 2020, East Java Province is a province which has the most HIV infections and in the third place for the highest total number of AIDS cases in Indonesia. The purpose of this research is to build a model using Geographically Weighted Logistic Regression (GWLR), and to work out the grouping results of regencies/cities using K- means Clustering Analysis. The variables used in this research are Gini Ratio, L Index of Per Capita Expenditure, Gender Ratio, Dependency Ratio, Gender Development Index, and The Number of Post Pelayanan KB Desa. The proportion levels of AIDS cases are categorized into 2 categories based on cut-point which has been specified, which 0 as the category of low level with the proportion of AIDS cases is less than 0.0006 and 1 as the category of high level with the proportion of AIDS cases is more than or equal to 0.0006. Parameter estimation for Geographically Weighted Logistic Regression (GWLR) is using Maximum Likelihood Estimation (MLE) method with Fixed Gaussian as weighted kernel function and optimum bandwidth is determined using Akaike’s Information Criterion Corrected (AICc). Z-Score of the most suitable model will be grouped using K-means Clustering Analysis, with Z-score is parameter estimator divided by standard error. Grouping results indicates cluster 1 members tend to be regencies/cities that have gender ratio and dependency ratio as significant variables, meanwhile cluster 2 members tend to be regencies/cities that have only dependency ratio as significant variable."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Antonio Yoshua
"Gerakan tanah merupakan sebuah kejadian bahaya geologi yang memiliki dampak buruk bahkan memakan korban jiwa. Indonesia sendiri memiliki frekuensi kejadian yang tinggi dalam bencana gerakan tanah di mana pada tahun 2021 sebanyak 1506 peristiwa terjadi di wilayah Indonesia. Banyak faktor yang memengaruhi kejadian gerakan tanah di mana umumnya faktor geologi seperti litologi, kemiringan lereng, dan vegetasi sebagai faktor pengontrol terhadap kerentanan gerakan tanah. Selain itu, faktor iklim merupakan faktor yang cukup memengaruhi kejadian gerakan tanah. Terjadinya perubahan iklim menjadi perhatian tentang bagaimana dampak yang dihasilkan terhadap kerentanan gerakan tanah. Penelitian ini melakukan analisis faktor-faktor pengontrol kerentanan gerakan tanah termasuk pengaruh perubahan iklim terhadap kejadian gerakan tanah menggunakan metode logistic regression dengan menghubungkan variabel bebas berupa faktor-faktor pemicu gerakan tanah dan variabel terikat berupa kejadian gerakan tanah. Faktor iklim juga dianalisis menggunakan proyeksi data iklim masa depan dengan skenario shared socioeconomic pathways (SSPs) untuk memperlihatkan seberapa pengaruh perubahan iklim yang terjadi terhadap kejadian gerakan tanah. Penelitian ini menjelaskan adanya pengaruh dari faktor elevasi, kemiringan lereng, aspek, plan curvature, profile curvature, litologi, vegetasi, jarak terhadap struktur, jarak terhadap jalan, jarak terhadap sungai, curah hujan, dan temperatur terhadap kerentanan gerakan tanah. Penelitian ini juga menghasilkan 5 peta kerentanan gerakan tanah berdasarkan perbedaan kondisi masa sekarang, kondisi tahun 2021-2040, dan kondisi tahun 2040-2060. Berdasarkan hasil tersebut, adanya kenaikan luas wilayah zona kerentanan tinggi pada skenario peningkatan iklim.

Landslides are geological hazards that have severe consequences, including fatalities. Indonesia has experienced frequent landslide events, with 1,506 incidents occurring in the country in 2021 alone. Various factors influence landslide occurrences, predominantly geological factors such as lithology, slope angle, and vegetation, which act as controlling factors for landslide susceptibility. Additionally, climate factors significantly affect landslide events. Climate change raises concerns about the resulting impacts on landslide susceptibility. This study analyzes the controlling factors of landslide susceptibility, including the influence of climate change on landslide occurrences, using logistic regression to establish a connection between independent variables representing landslide triggers and the dependent variable representing landslide occurrences. Climate factors are also examined using future climate data projections based on Shared Socio-economic Pathways (SSPs) scenarios to illustrate the extent of climate change impact on landslide events. This study explained the influence of elevation, slope, aspect, plan curvature, profile curvature, lithology, vegetation, distance to structures, distance to roads, distance to rivers, rainfall, and temperature on the susceptibility of soil movement. The study also generated five landslide vulnerability maps based on the current conditions, the conditions between 2021 and 2040 and the conditions between 2040 and 2060. The results showed that there is an increase in the area of high susceptibility zones under the climate change scenario."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>