Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 189679 dokumen yang sesuai dengan query
cover
Syafiera Fibiana Razak
"PLTU Muara Karang dan PLTGU merupakan pembangkit listrik yang memasok listrik ke DKI Jakarta. Bahan bakar yang akan digunakan dalam kegiatan ini adalah minyak solar atau High Speed ​​Diesel (HSD), Marine Fuel Oil (MFO), dan gas alam yang merupakan bahan bakar fosil yang dapat menghasilkan beberapa zat limbah antara lain CO2, CH4, dan N2O. . Penelitian ini bertujuan untuk mengetahui seberapa besar jumlah gas rumah kaca yang dihasilkan oleh unit-unit di PLTU dan PLTGU Muara Karang. Perhitungan emisi gas rumah kaca menggunakan metode dari Kementerian Energi dan Sumber Daya Mineral dan menggunakan faktor emisi nasional. Untuk mengetahui konsentrasi gas rumah kaca di atmosfer, perlu dilakukan penelitian dengan menggunakan model dispersi Gaussian dan menggunakan data meteorologi 2018 yang diperoleh dari BMKG Kemayoran. Hasil perhitungan menunjukkan bahwa CO2 merupakan emisi terbesar yang dihasilkan dari bahan bakar tersebut. Dari tiga blok di lokasi tersebut, PLTGU blok 2 menghasilkan emisi gas rumah kaca terbesar, yaitu 1.952.852,78 CO2e. Selain itu, hasil penelitian juga menunjukkan bahwa konsentrasi gas rumah kaca di atmosfer sangat dipengaruhi oleh faktor meteorologi. Nilai konsentrasi CO2 maksimum terjadi pada hari di bulan Juni dengan jarak 1900 m dari cerobong asap dan nilai konsentrasinya adalah 14.035,39 g/m3. Sedangkan konsentrasi maksimum gas CH4 dan N2O masing-masing adalah 0,29 g/m3 dan 0,03 g/m3. Pada stabilitas atmosfer A pada hari di bulan Juni, gas emisi maksimum menyebar pada jarak 1900 m dari cerobong asap, sedangkan pada stabilitas atmosfer C pada hari di bulan Desember menyebar pada jarak 6100 m dari cerobong asap. Konsentrasi gas rumah kaca pada bulan Desember menyebar lebih jauh melawan arah angin, sedangkan untuk bulan Juni, konsentrasi lebih terkonsentrasi di sekitar sumbernya.

Steam power plants and combined power plants of Muara Karang are power plants that supply electricity to DKI Jakarta. The fuel that are used in these activities includes diesel oil or High Speed Diesel (HSD), Marine Fuel Oil (MFO), and natural gas which are fossil fuels that can produce gas emissions including CO2, CH4, and N2O. This study aims to determine how much the amount of greenhouse gases produced by the units in the Muara Karang PLTU and PLTGU. Calculation of greenhouse gases emissions is using the methods from the Ministry of Energy and Mineral Resources and using the national emission factors. To find out the concentration of greenhouse gases in the atmosphere the Gaussian dispersion model was used and along with the meteorological data obtained from BMKG Kemayoran. The calculation results show that CO2 is the largest emission produced from these fuels. Out of the three blocks in the location, block 2 of combined power plants produced the largest greenhouse gas emissions, amounting to 1,952,852.78 CO2e. In addition, the results of the study also showed that the concentration of greenhouse gases in the atmosphere was greatly influenced by meteorological factors. The maximum CO2 concentration value occurs on the month of June with a distance of 1900 m from the source with the concentration value of 14.035,39 μg/m3. As for the CH4 and N2O gases, the maximum concentrations were 0.29 μg/m3 and 0.03 μg/m3, respectively. In atmospheric stability of A on the month of June, the maximum concentration of emission spreads at a distance of 1900 m from the source, whereas at atmospheric stability of C on a month of December it spreads at a distance of 6100 m from the source. The concentration of greenhouse gases in December spreads further in the direction of the wind, while in June, concentrations are more concentrated around the source."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anita Dwi Puspitasari
"Tujuan yaitu untuk mengetahui pola spasial pencemaran udara yang diakibatkan oleh PLTU dan PLTGU Muara Karang. Analisis yang digunakan adalah analisis keruangan hasil perhitungan Model Dispersi Gaussian untuk mengetahui semburan emisi PLTGU dan PLTU masing-masing parameter yaitu debu, NO2 dan SO2 pada enam hari pada bulan Juni dan Desember, selanjutnya hasil perhitungan tersebut ditampilkan dalam bentuk peta untuk mengetahui pola spasial pencemaran udara. Hasil penelitian menunjukkan bahwa pola pencemaran udara dari sumber PLTU dan PLTGU Muara Karang menunjukkan jangkauan dan nilai konsentrasi tiap parameter, berbeda-beda sesuai arah anginnya. Dalam kondisi atmosfer stabil, jangkauan emisi dari kedua sumber pencemar tersebut lebih jauh dibandingkan dalam kondisi atmosfer tidak stabil. Hasil analisis yaitu konsentrasi pencemar menurun sesuai dengan jaraknya. Kecamatan Taman Sari, Sawah Besar, Kemayoran, dan Tambora memiliki resiko paling tinggi terkena dampak pencemaran udara dari sumber PLTU dan PLTGU Muara Karang.

The objective of the study are to determines the spatial patterns of air pollution caused by Muara Karang Power Plant and Combined Cycle Power Plant. The analysis which used is spatial analysis of the calculated Gaussian Dispersion Model to find out bursts emissions of Combined Cycle Power Plant and power plant of each parameter that is dust, NO2 and SO2 on six days in June and December, then the calculation results are displayed in the form of a map to determine the spatial pattern of air pollution. The results showed that the pattern of air pollution from Muara Karang Power Plant and Combined Cycle Power Plant shows the range and concentration values of each parameter, varies according to wind direction. In stable atmospheric conditions, the range of pollutant emissions from both sources are more distant than in the unstable atmospheric conditions. The results of the analysis that pollutant concentration will be change in the air. Taman Sari, Sawah Besar, Kemayoran, and Tambora has a highest risk area affected by air pollution from Muara Karang Power Plant and Combined Cycle Power Plant."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S78
UI - Skripsi Open  Universitas Indonesia Library
cover
Toni Sukmawan
"ABSTRAK
Pengoperasian pembangkit tidak hanya didasarkan pada kemampuan pembangkit untuk memenuhi kebutuhan daya sistem secara cepat dan handal, namun juga dibutuhkan pengoperasian yang efisien untuk meminimalisir biaya operasional dan menurunkan penggunaan bahan bakar fosil. Berbagai cara dilakukan untuk meningkatkan efisiensi pengoperasian pembangkit salah satunya dengan menggunakan metode merit order. Metode ini dilakukan dengan memperhitungkan karakteristik efisiensi pada beban tertentu, karkteristik biaya operasi pada beban tertentu, karakteristik operasi jenis pembangkit tertentu dan biaya start up pembangkit. Setelah dilakukan perhitungan pengambilan sampel biaya pengoperasian pembangkit pada beberapa titik pembebanan, dilakukan tabulasi merit order dari pembebanan rendah hingga pembebanan tinggi. Tabulasi ini berguna untuk melihat perbandingan pada titik pembebanan yang sama namun pembangkit yang beroperasi berbeda dengan memilih pembangkit yang beroperasi dengan biaya termurah. Hasil dari penelitian ini adalah mendapatkan nilai biaya pengoperasian termurah pada pembebanan tertentu dengan menentukan pembangkit mana yang harus beroperasi. Penelitian ini dapat menghasilkan suatu metode pemilihan pengoperasian pembangkit dan dapat ditawarkan kepada pengatur beban sebagai alternatif pengoperasian yang paling efisien. Hal ini berguna untuk mempermudah dan mempercepat pengambilan keputusan secara tepat unit pembangkit mana yang menjadi prioritas saat kebutuhan beban tertentu. Jika pemilihan pengoperasian pembangkit dilakukan secara tepat dan cepat, maka efisiensi pengoperasian sistem tenaga listrik akan menjadi lebih murah dan efisien.

ABSTRACT
Operational of powerplant is not only base on ability of the powerplant to supply power load to electricity system as soon as possible and reliability. But also need operational power plant more efficien to reduce cost of the fossil fuel. So many Alternative to improve efficiency thermal of the power plant and one of the way to solve the problem is use merit order methode. This methode is doing by calculation caracteristic of the power plant in partial load operation and cost of the Start Up unit. After have the calculation sample of incremental cost in partial load operation, and get the tabulation of merit order from low level load until peak load. This table is using for analysis in the same load of Muara karang but in different powerplant unit and different each unit load and choose which one of the operation give us better cost. Result of the thesis is to get better cost operation powerplant in partial load with choose which one of the unit must be run and must be stop. This thesis can give us the methode operation of the unit power plant and can be offering to dispatcher as an alternative operation more efficient. This methode is usefull to have a decision as soon as possible which one of the unit must be operated and have high priority when dispatcher need. If the best cost choosing powerplant unit to operated geting faster, so the more efficiency operational of the electricity system is cheapest"
2016
T48271
UI - Tesis Membership  Universitas Indonesia Library
cover
Simanjuntak, Junifer Saut Pangidoan
"Pertumbuhan konsumsi tenaga listrik di Indonesia mencapai 8,6 per tahun berimplikasi terhadap peningkatan produksi energi listrik. Pemerintah telah mengantisipasinya melalui Program Pembangunan 35.000 MW yang didominasi PLTU batubara yang dapat meningkatkan emisi Gas Rumah Kaca secara signifikan. Penelitian ini bertujuan untuk untuk menentukan jenis teknologi batubara bersih yang diimplementasikan dalam unit PLTU Program Pembangunan 35.000 MW. Metodologi yang digunakan dalam penelitian ini adalah pemodelan skenario penggunaan teknologi batubara bersih yang disesuaikan dengan kelas kapasitas PLTU dan penentuan skenario terbaik didasarkan potensi emisi GRK terendah di sektor pembangkitan tenaga listrik dan module cost balance tertinggi, melalui simulasi LEAP. Berdasarkan hasil simulasi, seluruh unit PLTU Program Pembangunan 35.000 MW di regional Jawa-Bali harus menggunakan teknologi ultra super-critical untuk kelas kapasitas diatas 1.000 MW, super-critical untuk kelas kapasitas diatas 500 MW dan PFBC untuk kelas kapasitas dibawah 500 MW. Pada regional Sumatera, teknologi yang digunakan adalah super-critical dan PFBC untuk masing-masing kelas kapasitas diatas 500 MW dan dibawah 500 MW. Pada regional Kalimantan dan Sulawesi, penggunaan teknologi PFBC merupakan skenario terbaik untuk kelas kapasitas dibawah 500 MW, sedangkan teknologi CFBC digunakan pada unit kelas kapasitas pembangkit yang sama di regional Nusa Tenggara Barat. Potensi penurunan emisi GRK sektor pembangkitan tenaga listrik akibat implementasi teknologi batubara bersih dalam seluruh unit PLTU Program Pembangunan 35.000 MW sampai dengan 2020 mencapai 41,91 juta ton CO2e yang melampaui target penurunan emisi nasional dalam Rencana Aksi Nasional Gas Rumah Kaca RAN-GRK dalam skema nasional atau berkontribusi 74,84 dalam skema unilateral. Pada 2025, penurunan emisi diperkirakan akan mencapai 57,87 juta ton CO2e atau berkontribusi 30,46 dari rencana target penurunan emisi nasional pasca 2020 dalam skema optimistik. Oleh karena itu, implementasi teknologi batubara bersih dalam unit PLTU batubara dapat direkomendasikan sebagai salah satu kegiatan utama penurunan emisi GRK sektor energi dalam draft kebijakan RAN-GRK pasca 2020 yang sedang disusun Pemerintah saat ini.

The growth of electricity consumption in Indonesia 8.6 per year has implications toward increasing of the electricity generation. The Government of Indonesia had anticipated through 35,000 MW Electricity Development Program predominantly coal fired power plants CFPP that increase Greenhouse Gas GHG emissions significantly. The study aims to determine the type of clean coal technology implemented in the CFPPs of 35,000 MW Electricity Development Program. The methodology on the study is modeling the scenario for the use of clean coal technology in the CFPPs in accordance to their capacity size, while the selection of best scenario based on the lowest GHG emission potential in power generation sector and the highest module cost balance by using LEAP. Based on the simulation results, all of them in Java Bali region should use ultra super critical for capacity size above 1,000 MW, super critical for above 500 MW and PFBC for below 500 MW. In the region of Sumatra, the technology should be used is super critical and PFBC for the capacity size above 500 MW and below 500 MW respectively. In the region of Kalimantan and Sulawesi, the use of PFBC is the best scenario for capacity size below 500 MW, while CFBC is used in the their same size located in the West Nusa Tenggara region. The potential for GHG emission reduction in the power generation sector due to the implementation of clean coal technology in the 2020 in all of them is expected to reach 41.91 million tonnes CO2e that exceed the national scheme emission reduction target in GHG National Action Plan RAN GRK or have contribution 74.84 in its unilateral scheme. By 2025, emissions reduction is expected to reach 57.87 million tonnes CO2e or have contribution 30.46 of post 2020 national emissions reduction target plan in the optimistic scheme. Therefore, the implementation of clean coal technology in the CFPPs is recommended as one of the main activities of GHG emission reduction in the energy sector of the post 2020 RAN GRK policy currently being drafted by the Government of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48052
UI - Tesis Open  Universitas Indonesia Library
cover
Fitria Nurina Listya Ningrum
"Konstruksi adalah salah satu pekerjaan paling berisiko yang dipengaruhi oleh gangguan dengan paparan stres panas. Stres akibat panas berasal dari kombinasi suhu lingkungan tempat kerja, metabolisme tubuh pekerja, pakaian kerja, dan karakteristik pekerja. Penelitian ini adalah penelitian kuantitatif dengan studi cross-sectional yang dilakukan pada bulan April-Mei 2019 dengan 181 responden. Hasilnya menunjukkan bahwa indeks WBGT luar ruangan berkisar antara 25,3°C hingga 36,8°C. Setelah dibandingkan dengan PERMENKES nomor 70 pada tahun 2016, ditemukan bahwa 100% pekerja mengalami stres akibat panas. Hasil kuesioner menunjukkan 174 responden (96%) mengalami setidaknya satu keluhan kesehatan, dengan keluhan tertinggi banyak berkeringat (92,3%). Hasil pengukuran efek fisiologis menunjukkan bahwa ada hubungan yang signifikan antara tekanan darah, denyut nadi, saturasi oksigen, dan suhu tubuh antara sebelum bekerja dengan setelah bekerja (nilai p <0,05). Berdasarkan hasil, manajemen proyek disarankan untuk melakukan berbagai upaya dalam mengendalikan stres panas, untuk meminimalkan dampak gangguan panas pada pekerja.

Construction is one of the most risky jobs that is affected by interference with heat stress exposure. Stress due to heat comes from a combination of workplace environmental temperature, worker's metabolism, work clothes, and worker characteristics. This research is a quantitative study with a cross-sectional study conducted in April-May 2019 with 181 respondents. The results show that the outdoor WBGT index ranges from 25.3°C to 36.8°C. After comparing with PERMENKES number 70 in 2016, it was found that 100% of workers experienced heat stress. The results of the questionnaire showed 174 respondents (96%) experienced at least one health complaint, with the highest number of complaints sweating (92.3%). The results of measurement of physiological effects showed that there was a significant relationship between blood pressure, pulse, oxygen saturation, and body temperature between before work and after work (p value <0.05). Based on the results, project management is advised to make various efforts in controlling heat stress, to minimize the impact of heat disruption on workers."
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sinaga, Apul Robyatno
"Masalah sampah merupakan masalah yang terjadi hampir di setiap belahan dunia. Pertumbuhan penduduk yang cenderung terus bertambah, pola konsumsi dan budaya masyarakat menjadi faktor penyebab produksi sampah terus meningkat. Masalah yang muncul dari masalah sampah adalah gas rumah kaca (GRK). Sampah menghasilkan GRK seperti karbon dioksida (CO2), metana (CH4), dan nitrous oxide (N2O) yang dapat memicu pemanasan global. Berdasarkan dokumen Indonesia Nationally Determined Contribution (NDC), emisi GRK Indonesia pada tahun 2010 sebesar 1.334 MTon CO2eq dengan sektor sampah atau waste berada pada posisi keempat dengan 88 MTon CO2eq (6,59%) dari total emisi GRK di Indonesia. Kota Bogor yang belum memiliki data emisi GRK dari sektor persampahan, membutuhkan data tersebut sebagai acuan dalam menentukan pengelolaan sampah yang baik di Kota Bogor. Penelitian ini akan fokus pada perhitungan emisi GRK dan pembuatan skenario yang mengacu pada rencana pembangunan wilayah dengan memperhatikan kondisi dan karakteristik kota Bogor. Skenario pertama menggunakan teknologi digester anaerobik di TPA sebagai unit pengolahan utama dan skenario kedua berfokus pada pengurangan sampah dari sumber dengan kegiatan pengomposan mandiri dan penggunaan teknologi pengomposan dan kegiatan 3R di TPA. Dari fokus penelitian ini, emisi GRK Kota Bogor tahun 2019 sebesar 0,1308 ton CO2/kapita/tahun untuk skenario eksisting, -0,0028 ton CO2/kapita/tahun untuk skenario pertama, dan -0,0060 ton CO2/kapita/tahun untuk skenario skenario kedua. Dengan demikian, skenario kedua direkomendasikan untuk menjadi sistem pengelolaan sampah terpadu di Kota Bogor dengan kegiatan penanganan sampah pada sumbernya yang dapat mengurangi jumlah sampah secara signifikan.

The waste problem is a problem that occurs in almost every part of the world. Population growth that tends to continue to grow, consumption patterns and community culture are factors that cause waste production to continue to increase. The problem that arises from the waste problem is greenhouse gases (GHG). Garbage produces GHGs such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) which can trigger global warming. Based on the Indonesia Nationally Determined Contribution (NDC), Indonesia's GHG emissions in 2010 were 1,334 MTon CO2eq with the waste sector being in fourth position with 88 MTon CO2eq (6.59%) of the total GHG emissions in Indonesia. Bogor City, which does not yet have data on GHG emissions from the waste sector, needs this data as a reference in determining good waste management in Bogor City. This research will focus on calculating GHG emissions and making scenarios that refer to regional development plans by taking into account the conditions and characteristics of the city of Bogor. The first scenario uses anaerobic digester technology in the landfill as the main treatment unit and the second scenario focuses on reducing waste from the source with independent composting activities and the use of composting technology and 3R activities at the landfill. From the focus of this study, Bogor City's GHG emissions in 2019 were 0.1308 tons CO2/capita/year for the existing scenario, -0.0028 tons CO2/capita/year for the first scenario, and -0.0060 tons CO2/capita/year. for the second scenario. Thus, the second scenario is recommended to become an integrated waste management system in Bogor City with waste management activities at the source that can significantly reduce the amount of waste."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ditta Fadhilah Rahmawati
"Pelabuhan Perikanan Nizam Zachman merupakan Kawasan Industri Perikanan yang didalamnya terdapat komponen pengelolaan limbah padat dan limbah cair yang berpotensi mengemisikan gas rumah kaca (GRK). Pada studi ini dilakukan perhitungan emisi GRK pada pengelolaan limbah padat dan limbah cair menggunakan metode IPCC Tier 1. Pengelolaan limbah padat yang terdapat di kawasan ini meliputi open dumping, recycling, dan pengangkutan sampah (transportasi).
Berdasarkan hasil perhitungan diperoleh emisi GRK dari open dumping sebesar 14.340,183 ton CO2eq/tahun dengan total timbulan 5411,39 ton/tahun, dari transportasi sebesar 22,272 ton CO2eq/tahun dengan kredit emisi dari kegiatan recycling yaitu 143,080 ton CO2eq/tahun. Kegiatan yang ditinjau pada pengelolaan limbah cair meliputi pengolahan air limbah industri di IPAL, pembuangan langsung ke badan air melalui drainase, dan tanki septik. Emisi GRK yang berasal dari IPAL sebesar 2.829,96 ton CO2eq/tahun, drainase 108,707 ton CO2eq/tahun dan tangki septik sebesar 3,228 ton CO2eq/tahun.
Berdasarkan hasil perhitungan tersebut diperkirakan kegitan pengelolaan limbah padat menyumbang emisi GRK sebesar 82,86 % sedangkan kontribusi kegiatan pengelolaan limbah cair terhadap total emisi GRK adalah sebesar 17,14 %. Strategi reduksi emisi GRK pada kawasan ini dapat dilakukan dengan penambahan kegiatan pengelolaan limbah padat berupa composting dan meningkatkan kegiatan recycling. Selain itu, penangkapan gas metana yang kemudian diubah menjadi CO2 dapat dilakukan pada pengelolaan limbah cair.

Nizam Zachman Fisheries Port is a Fisheries Industry Area which is part of the management of solid and liquid waste, which is needed to emit greenhouse gases (GHG). In this study the calculation of GHG emissions in the management of solid and liquid waste using the IPCC Tier 1. The scope of solid waste management are open dumping, recycling, and transportation of waste.
Results obtained by GHG calculation from open dumping amounted 14,340,183 tons CO2eq/year with a total generation of 5411.39 tons/year, from transportation amounting to 22,272 tons CO2eq/year and emissions from reduction recycling activities amounting to 143,080 tons CO2eq/year. The scope of wastewater management include industrial wastewater treatment in WWTP, direct handling of water bodies through drainage, and septic tanks. GHG emissions from WWTPs are 2,829.96 tons CO2eq/year, drainage 108,707 tons CO2eq/year and septic tanks of 3,228 tons CO2eq/year.
Based on the results, solid waste management emit 82.86% of the total GHG emissions and the rest 17.14% from wastewater management. The strategy for reducing GHG emissions in this region can be done by increasing solid waste management activities which consist of composting and increasing recycling activities. In addition, the capture of CH4 that converted into CO2 can be an option in the management of wastewater.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muthia Khairunnisa Noesjirwan
"Penelitian ini bertujuan untuk memperoleh bukti empiris pengaruh dari kinerja lingkungan yaitu sistem manajemen lingkungan bersertifikasi ISO 14001 dan keikutsertaan PROPER, kesesuaian informasi lingkungan berdasarkan GRI 3 atau 3.1 pada laporan keberlanjutan, ukuran perusahaan, leverage perusahaan dan profitabilitas perusahaan terhadap tingkat pengungkapan emisi gas rumah kaca pada perusahaan di Indonesia. Pengukuran tingkat pengungkapan emisi gas rumah kaca menggunakan indeks yang dikembangkan dari ISO 14064-1 tentang spesifikasi dengan panduan kuantifikasi dan pelaporan dari emisi dan penghapusan gas rumah kaca.
Sampel penelitian terdiri dari 10 perusahaan terdaftar di Bursa Efek yang mengungkapkan emisi gas rumah kaca pada tahun 2010, 2011 dan 2012. Analisis data dilakukan dengan uji asumsi klasik dan pengujian hipotesis dengan analisis regresi. Program statistik dalam penelitian menggunakan stata. Penelitian ini memberikan hasil bahwa sistem manajemen lingkungan ISO 14001 dan keikutsertaan PROPER berpengaruh signifikan terhadap tingkat pengungkapan emisi gas rumah kaca. Kesesuian informasi lingkungan berdasarkan GRI 3 atau 3.1, ukuran perusahaan, leverage perusahaan dan profitabilitas perusahaan tidak berpengaruh signifikan terhadap tingkat pengungkapan emisi gas rumah kaca.

The aim of this study is to obtain empirical evidence of the environmental performances influence that are ISO 14001 certified environmental management and PROPER participation, environmental information in accordance with GRI version 3 or 3.1, firm size, companies? leverage and profitability to the level of greenhouse gas emissions disclosure, on companies in Indonesia. Measuring the level of greenhouse gas emissions disclosure using an index that was developed from the ISO 14064-1, which contains specifications with guidance on organization level for quantification and reporting of greenhouse gas emissions and removals.
The total sample consists of 10 firms that disclosed greenhouse gas emissions in 2010, 2011 and 2012. Data analysis was performed using classical assumptions and hypothesis testing using regression analysis. Statistical program used in research is Stata. This study provides proofs ISO 14001 certified Environmental Management System and participation of PROPER had significant effect to the level of greenhouse gas emissions disclosure. Whereas environmental information based on the GRI 3 or 3.1, the size of the company, leverage and profitability of the company has no significant effect on the level of greenhouse gas emissions disclosure.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2014
S58590
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rudi Chandra Adinugraha
"Dalam beberapa dekade terakhir, perhatian utama telah diberikan pada masalah lingkungan global yang semakin meruncing, khususnya perubahan iklim. Permasalahan ini juga menjadi isu di Indonesia khususnya di Kota Semarang yang menghasilkan sekitar 1.276 ton sampah per hari pada tahun 2019. Emisi GRK dari sektor pengelolaan limbah di Kota Semarang menyumbang 16,67% dari total emisi GRK yang dihasilkan kota Semarang di tahun 2018. Emisi GRK dari pengelolaan sampah dapat berasal dari beberapa tahapan, seperti pengumpulan, transportasi, pengolahan, dan pemrosesan akhir sampah. Penelitian ini bertujuan untuk menganalisis emisi GRK dan tahapan pengelolaan sampah yang bersifat hotspot dari keseluruhan sistem pengelolaan sampah Kota Semarang di tahun 2023, sehingga dapat diberikan rekomendasi untuk mengurangi emisi GRK. Perhitungan emisi GRK dilakukan dengan menggunakan Metode IPCC 2006 Tier 1 dan software Emission Quantification Tool (EQT) versi 2018 yang dikembangkan Institute for Global Environmental Strategies (IGES). Berdasarkan penelitian yang telah dilakukan, emisi GRK masing-masing dari tahapan transportasi sampah, komposting, daur ulang sampah, black soldier fly (BSF), sampah tidak terkelola, kebakaran landfill, dan landfilling adalah 13.836,729 ton CO2-eq, 3.650,054 ton CO2-eq, -74.080,228 ton CO2-eq, 31,473 ton CO2-eq, 18,123 ton CO2-eq, 8.482,856 ton CO2-eq dan 357.939,942 ton CO2-eq. Keseluruhan emisi GRK dari sistem pengelolaan sampah Kota Semarang di tahun 2023 adalah 309.878,948 ton CO2-eq, dengan hotspot emisi adalah tahap landfilling. Rekomendasi yang diberikan adalah mengurangi timbulan sampah yang masuk ke TPA Jatibarang dan mengaktifkan kembali fasilitas komposting yang tengah berhenti beroperasi di TPA Jatibarang.

In the last few decades, major attention has been given to increasingly increasing global environmental problems, especially climate change. This problem is also a concern in Indonesia, especially in the city of Semarang, which produces around 1,276 tons of waste per day in 2019. GHG emissions from the waste management sector in Semarang City contributed 16.67% of the total GHG emissions produced by Semarang City in 2018. GHG emissions from waste management can come from several stages, such as collection, transportation, processing, and final disposal of waste. This research aims to analyse GHG emissions and hotspot waste management stages of the entire Semarang City waste management system in 2023, so that recommendations can be provided to reduce GHG emissions. GHG emissions calculations were carried out using the IPCC 2006 Tier 1 Method and the 2018 version of the Emission Quantification Tool (EQT) software developed by the Institute for Global Environmental Strategies (IGES). Based on research that has been carried out, the respective GHG emissions from waste transportation, composting, waste recycling, black Soldier fly (BSF), unmanaged waste, landfill fire, and landfilling are 13,836.729 tons CO2-eq, 3,650.054 tons CO2-eq, -74,080.228 tons CO2-eq, 31.473 tons CO2-eq, 18.123 tons CO2-eq, 8,482.856 tons CO2-eq and 309.878,948 tons CO2-eq. Overall GHG emissions from the Semarang City waste management system in 2023 are 309,878.948tons CO2-eq, with the emission hotspot being the landfill stage. The recommendation given is to reduce the amount of waste entering the Jatibarang landfill and reactivate the composting facility which is currently no longer operating at the Jatibarang landfill."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Isky Ainul Azmii
"Permasalahan lingkungan hidup semakin menjadi perhatian secara global, salah satunya emisi GRK. Berdasarkan Perjanjian Paris, Indonesia menjadi negara yang berkomitmen untuk menurunkan emisi gas rumah kacanya. Universitas Indonesia merupakan perguruan tinggi yang dapat menghasilkan emisi gas rumah kaca dalam aktivitasnya. Penelitian bertujuan untuk mengetahui bagaimana kondisi emisi gas rumah kaca Universitas Indonesia pada tahun 2023 serta potensi yang dimilikinya dalam penyerapan karbon dan perdagangan karbon. Penghitungan emisi dibagi ke dalam tiga kategori. Kategori 1 mencakup transportasi, penggunaan LPG, dan penggunaan AC. Kategori 2 mencakup penggunaan listrik. Kategori 3 mencakup pengelolaan sampah, penggunaan kertas, dan penggunaan semen. Hasil penelitian menunjukkan bahwa pada tahun 2023 Universitas Indonesia menghasilkan total emisi gas rumah kaca sebesar 34.363,29 tCO2eq dengan penggunaan listrik yang menjadi penghasil emisi terbesar, yakni 24.338,46 tCO2eq. Sementara, sumber penghasil emisi terendah berasal dari penggunaan kertas, yakni 62,15 tCO2eq. Penelitian merencanakan beberapa proyek mitigasi penurunan emisi GRK UI, seperti floating solar panel, bis kuning elektrik, penggunaan DME untuk menggantikan LPG, kegiatan car free day, dan penggunaan direct air capture. Proyek mitigasi penurunan emisi GRK UI diestimasikan mampu menurunkan emisi sebesar 8.864,27 tCO2eq. Melalui proyek tersebut, Universitas Indonesia dapat mencapai target penurunan emisi GRK sebesar 31,89% pada tahun 2030.

Environmental issues have become a matter of global concern, with GHG emissions being a prominent example. In accordance with Paris Agreement, Indonesia has a commitment to reduce its GHG emissions. UI is a prominent institution that conducts various activities that result in emission of GHG. The objective of this study is to determine the condition of the UI’s greenhouse gas emissions in 2023, its potential in carbon sequestration and carbon trading. Emissions are divided into three categories. Category 1 includes transportation, LPG use, and AC use. Category 2 covers electricity. Category 3 includes waste management, paper use, and cement use. The results showed that in 2023 the UI’s total greenhouse gas emissions amounted to 34,363.29 tCO2eq, with electricity being the largest emitter, at 24,338.46 tCO2eq. The lowest emission source comes from paper use, which is 62.15 tCO2eq. Mitigation projects designed to reduce UI GHG emissions, including the implementation of floating solar panels, electric yellow buses, the use of DME to replace LPG, car free day, and direct air capture. The UI GHG emission reduction mitigation project is estimated to reduce emissions by 8,864.27 tCO2eq, enabling UI to achieve its target of a 31.89% reduction in GHG emissions by 2030. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>