Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 64653 dokumen yang sesuai dengan query
cover
Irvina Kamalitha Zunaidi
"ABSTRAK
Data bawah permukaan merupakan data yang sangat dibutuhkan dalam menentukan besar cadangan hidrokarbon di Indonesia. Selain itu, kualitas dari cadangan itu sendiri menentukan perkembangan industri migas kedepannya. Pemerintah telah secara agresif mendorong penggunaan gas alam dan saat ini pemerintah belum memiliki data mengenai cadangan gas secara efisien. Oleh karena itu, diperlukan penyusunan dalam manajemen data reservoir, khususnya reservoir gas. Penelitian ini menyajikan konsep sehingga pemerintah dapat dengan mudah melihat kualitas cadangan gas yang berasal dari data bawah permukaan. Dalam penelitian ini, manajemen data dilakukan dengan cara mengelompokkan data mentah sesuai parameter dari sistem evaluasi Sumber Daya Cadangan (eSDC). Salah satu sistem pengolahan data untuk analisa kualitas berproduksi suatu reservoir gas, menggunakan Bayesian Hierarchical Softmax Regression dengan perhitungan Markov Chain Monte Carlo untuk penyelesaian integral multi dimensi dari Bayesian. Penelitian ini menunjukkan bahwa dengan metode yang digunakan, dapat memprediksi keyakinan kualitas reservoir untuk berproduksi dan memberikan informasi ketidakpastian atas prediksi tersebut. Pada eSDC, terdapat lima klasifikasi status lapangan di Indonesia yaitu, on production, production on hold, production justified, production pending, dan recently discovered. Pada klasifikasi status On Production dengan 100 data lapangan gas, menghasilkan nilai precision 81%, recall 98%, dan f-measured sebesar 89%. Dengan demikian, dapat dikatakan bahwa lapangan gas dengan klasifikasi on production, keyakinan reservoir dalam berproduksi secara komersil tinggi.

ABSTRACT
Subsurface data is data that is needed to determine the amount of hydrocarbon reserves in Indonesia. In addition, the quality of the reserves itself determines the future development of the oil and gas industry. The government has aggressively encouraged the use of natural gas and currently the government does not have data on gas reserves efficiently. Therefore, it is necessary to arrange in the management of reservoir data, especially gas reservoirs. This research presents a concept so that the government can easily see the quality of gas reserves from subsurface data. In this study, data management is done by grouping raw data according to parameters of the Reserve Resources evaluation system (eSDC). One of the data processing systems for analyzing the quality of producing a gas reservoir, using Bayesian Hierarchical Softmax Regression with Markov Chain Monte Carlo calculations for solving multi-dimensional integrals from Bayesian. This study shows that with the method used, it can predict reservoir quality beliefs for production and provide uncertainty information on these predictions. In eSDC, there are five classifications of field status in Indonesia, namely, on production, production on hold, production justified, production pending, and recently discovered. In the On Production status classification with 100 gas field data, it produces a precision value of 81%, recall 98%, and f-measured of 89%. Thus, it can be said that the gas field with the classification of on production, reservoir confidence in commercial production is high."
2019
T54521
UI - Tesis Membership  Universitas Indonesia Library
cover
Lindley, D.V.
"A study of those statistical ideas that use a probability distribution over parameter space. The first part describes the axiomatic basis in the concept of coherence and the implications of this for sampling theory statistics. The second part discusses the use of Bayesian ideas in many branches of statistics."
Philadelphia: Society for Industrial and Applied Mathematics, 1995
e20451236
eBooks  Universitas Indonesia Library
cover
Siti Salma Hasanah
"ABSTRACT
Model hurdle adalah model alternatif untuk mengatasi penyebaran berlebihan (varians datanya adalah lebih tinggi dari nilai rata-rata) yang disebabkan oleh kelebihan nol. Model rintangan dapat memodelkan secara terpisah variabel respons yang memiliki nilai nol dan positif, melibatkan dua proses yang berbeda. Proses pertama adalah proses biner yang menentukan apakah variabel respon memiliki nilai nol atau nilai positif, dan dapat dimodelkan dengan biner model, menggunakan regresi logistik. Untuk variabel respons positif, kemudian lanjutkan ke proses kedua, yaitu proses yang hanya mengamati jumlah positif. Yang positif count dapat dimodelkan dengan model Zero-Truncated menggunakan regresi Poisson. Rintangan model juga dikenal sebagai model dua bagian. Estimasi parameter menggunakan Bayesian metode. Kombinasi informasi sebelumnya dengan informasi dari data yang diamati membentuk distribusi posterior yang digunakan untuk memperkirakan parameter. Distribusi posterior bentuk yang diperoleh tidak tertutup, sehingga diperlukan teknik komputasi, yaitu Markov Chain Monte Carlo (MCMC) dengan algoritma Gibbs Sampling. Metode ini diterapkan
ke data Parkinson untuk memodelkan frekuensi komplikasi motorik pada 300 Parkinsonpasien. Data tersebut digunakan dari Parkinson's Progressive Markers Initiative (PPMI, 2018). Hasil yang diperoleh adalah MDS-UPDRS (Movement Disorder Society-Unified Skala Peringkat Penyakit Parkinson) bagian 1, MDS-UPDRS bagian 2, dan MDS-UPDRS bagian 3 terkait secara signifikan MDS-UPDRS bagian 4 di kedua tahap.

ABSTRACT
The obstacle model is an alternative model for overcoming excessive spread (the data variant is higher than the average value) which is questioned by zero excess. The obstacle model can separately model response variables that have zero and positive values, involving two different processes. The first process is a binary process that determines whether the response variable has a zero value or a positive value, and can be modeled with a binary model, using logistic regression. For positive response variables, then proceed to the second process, which is a process that is only positive. The positive one calculated can be modeled with a Zero-Truncated model using Poisson regression. The Obstacle Model is also known as the two part model. Parameter estimation using the Bayesian method. The combination of previous information with information from data collected collects the distributions used for parameter estimation. The posterior distribution of the obtained form is not closed, computational techniques are needed, namely Markov Chain Monte Carlo (MCMC) with Gibbs Sampling algorithm. This method is applied to Parkinson's data to model the frequency of motor complications in 300 Parkinson's patients. The data is used from Parkinson's Progressive Markers Initiative (PPMI, 2018). The results obtained are MDS-UPDRS (Movement Disorder-Community Parkinson's Disease Assessment Scale) part 1, MDS-UPDRS part 2, and MDS-UPDRS part 3 which significantly related MDS-UPDRS part 4 in both glasses.
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Setia Gunawan Wijaya
"Scan statistic merupakan suatu analisis untuk mendeteksi daerah yang merupakan kejadian luar biasa atau KLB (outbreak). Salah satu metode yang mendasari analisis scan statistic adalah metode Bayesian Scan Statistic. Metode ini menerapkan prinsip teorema bayesian, yaitu memanfaatkan informasi prior untuk menghasilkan informasi posterior yang dapat memperbaiki informasi prior. Metode Bayesian Scan Statistic memilih keadaan atau kondisi yang memiliki posterior probability yang terbesar sebagai daerah KLB-nya. Fungsi marginal likelihood dan prior probability merupakan dua komponen penting yang digunakan dalam metode ini untuk menghitung posterior probability untuk tiap-tiap daerah. Fungsi marginal likelihood didapat dari data historis dan modelnya merupakan gabungan antara distribusi poisson dan distribusi gamma. Sedangan untuk prior probability juga didapat dari data historis atau berdasarkan pada pengalaman seseorang. Metode bayesian scan statistic ini dapat digunakan jika terdapat data masa lalu. Kata kunci : bayesian scan statistic, bayesian cluster detection, prior probability, posterior probability. x + 54 hlm. ; gamb. ; lamp. ; tab. Bibliografi : 9 (1986-2006)"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27733
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Amalia
"Indonesia merupakan negara di dunia yang memiliki aktivitas seisimik yang tinggi. Jawa barat merupakan salah satu provinsi di Indonesia yang rawan terjadi gempa, karena di daerah Jawa Barat terdapat zona subduksi dan sesar geser. Kemunculan gempa berkekuatan besar dapat menyebabkan kerusakan dan menelan banyak korban jiwa. Oleh karena itu, ingin diketahui berapa probabilitas terjadinya gempa bumi berkekuatan besar di daerah Jawa Barat. Hal ini bertujuan untuk memprediksi kapan dan dimana gempa yang berkekuatan besar itu akan berpotensi besar terjadi. Salah satu metode statistika yang dapat digunakan untuk memecahkan masalah ini adalah pemodelan Bayesian. Penelitian ini menggunakan data gempa bumi di Jawa Barat pada tahun 1960-2009. Data tersebut berupa variabel lintang, bujur, kedalaman pusat gempa, dan kekuatan gempa. Variabel lintang, bujur, dan kedalaman pusat gempa digunakan untuk mengelompokkan titik-titik gempa menjadi wilayah-wilayah rawan gempa dengan menggunakan metode two step cluster. Selanjutnya, pemodelan bayesian dilakukan di setiap wilayah rawan gempa tersebut untuk memprediksi probabilitas kemunculan gempa berkekuatan besar di daerah ini. Ternyata wilayah yang memiliki potensi kemunculan gempa berkekuatan besar yang cukup tinggi adalah kabupaten Garut, Bandung, dan laut Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafira
"Model regresiZero Inflated Poisson (ZIP) digunakan untuk memodelkan count data dengan overdispersi yang disebabkan oleh nilai nol yang berlebih pada pengamatannya(excess zero). Namun, ketika overdispersi berasal dariexcess zerodan datacount, makaZIP tidak lagi cocok. Model regresi Zero Inflated Negative Binomial (ZINB) bertujuan untuk mengetahui variabel apa saja yang berpengaruh secara signifikan terhadap variabelrespon. Data untuk regresi ZINB ini memiliki dua sumber overdispersi. Terdapat dua proses pada variabel respon, yang mendasari pengamatan masuk ke dalam structural zeros atau Negative Binomial (NB) counts. Jadi, regresi ZINB terdiri dari dua model. Pada kedua model tersebut dilakukan penaksiran parameter menggunakan metode Bayesian. Metode ini menganggap parameter-parameter yang digunakan merupakan variabel acakyang memiliki distribusi sebagai informasi prior, dan mengkombinasikannya dengan data yang dimiliki. Kombinasi tersebut selanjutnya disebut sebagai distribusi posterior. Sampling parameter dari distribusi posterior dilakukan dengan simulasi Markov Chain Monte Carlo (MCMC). Sebagai penerapan, digunakan data Parkinson dari Parkinsons Progression Markers Initiative (PPMI). Variabel responnya yaitu frekuensi seberapa sering pasien mengalami komplikasi setelah meminum obat atau tidak, dan variabel prediktornya berupa skor pemeriksaan aspek motorik, non-motorik, dan respon-respon tubuh. Diperoleh hasil bahwa model ZINB cocok untuk memodelkan data tersebut yangditandai dengan hasil simulasi yang konvergen.

Zero Inflated Poisson (ZIP) regression model is a standard framework for modeling discrete data with over-dispersion caused by excess zero. When over-dispersion has comefrom excess zero and count data, ZIP is no longer matches. A Zero Inflated Negative Binomial (ZINB) regression model aims to analyze the variables affecting data with two sources of over-dispersion. Hence there are two processes at the response variable, which make an observation classified as structural zeros or Negative Binomial (NB) counts. So, ZINB regression consists oftwo models. This paper will use Bayesian method forestimating parameter in both models. The Bayesian method considers parameters to bea random variable that has distribution known as prior distribution, and combine with information of the data. This combination referred as posterior distribution. Sampling parameter from posterior distribution is done using Markov Chain Monte Carlo (MCMC) simulation. As an application, the Parkinsons data is used from Parkinsons Progression Markers Initiative (PPMI). Frequency of how often the patient has complications aftertaking the drug or not is the response, and the predictive variables are motoric aspect, non-motoric aspect, and body responses test scores. The simulation result shows that it isconvergent, indicate that ZINB model is suitable for modeling Parkinsons data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldila Fitrilia
"ABSTRAK
Analisis survival merupakan analisis statistika yang digunakan untuk menyelidiki waktu tahan hidup suatu benda atau individu pada keadaan tertentu. Dalam melakukan analisis survival dibutuhkan data survival yang meliputi waktu survival dan status waktu survival dari objek yang diteliti. Data survival yang diperoleh dapat berupa data lengkap atau data tidak lengkap. Data tidak lengkap data tersensor dapat berupa data tersensor kanan, kiri, atau interval. Data tersensor kanan dapat berupa data tersensor kanan tipe I atau data tersensor kanan tipe II. Dalam penelitian ini akan digunakan data tersensor kanan tipe II. Fungsi survival yang akan digunakan adalah fungsi survival dari distribusi Lomax. Distribusi Lomax memiliki dua paremeter, yaitu parameter bentuk dan parameter skala. Dalam penelitian ini, parameter yang akan ditaksir adalah parameter bentuk dengan asumsi parameter skala telah diketahui. Metode yang digunakan dalam penelitian ini adalah metode Bayes. Penelitian ini akan menggunakan prior Gamma sebagai distribusi conjugate prior dan fungsi Loss yang akan digunakan dalam penelitian ini adalah balanced squared error loss function BSELF .

ABSTRACT
Survival analysis is a statistical analysis used to investigate the life time of an object or an individual in a special case. In survival analysis, survival data is needed which includes the survival time and status of the survival time of the object under study. The survival data obtained can be either complete data or incomplete data. Incomplete data censored data can be either right, left, or interval censored data. The right censored data can be either right censored data type I or type II. In this study will be used the right censored data type II. The survival function to be used is the survival function of the Lomax distribution. The Lomax distribution has two parameters, that is the shape parameter and the scale parameter. In this study, the parameter will be estimate is the shape parameter with the assumption of scale parameters has been known. The method used in this study is Bayes method. This study will use prior Gamma as conjugate prior distribution and Loss function will be used in this study is balanced squared error loss function BSELF."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sisca Agnessia
"Dalam Penelitian ini akan dicari taksiran mean stratum pada sampling acak stratifikasi. Pada sampling acak stratifikasi, seringkali hanya tersedia beberapa pengamatan pada masing-masing strata. Kecilnya ukuran sampel akan menyebabkan penaksir langsung dari mean stratum menjadi kurang tepat. Metode alternatif yang dapat digunakan untuk menaksir mean dari stratum adalah dengan menggunakan metode Empirical Bayes. Metode Empirical Bayes digunakan untuk mencari taksiran mean stratum pada sampling acak stratifikasi dengan cara menggabungkan informasi awal atau informasi yang telah tersedia sebelumnya tentang parameter yang akan ditaksir dengan informasi dari data sampel. Informasi awal disebut juga informasi prior. Penggabungan dari informasi prior dan informasi dari data akan menghasilkan informasi posterior. Dalam metode Empirical Bayes, informasi prior tidak tersedia sehingga informasi prior diestimasi dari data.

In this research will find the estimated stratum mean in stratified random sampling. In the stratified random sampling, often only available a few observations in each strata. The small sample size would cause a direct estimator of the mean stratum becomes less precise. Alternative methods that can be used to estimate the mean of the stratum is to use the Empirical Bayes method. Empirical Bayes methods used to find the estimated mean stratum in stratified random sampling by combining the initial information or information that has been available previously on the parameters to be estimated with information from the data sample. Preliminary information also known as prior information. The incorporation of prior information and information from the data will result in posterior information. In the Empirical Bayes method, prior information is not available so the information estimated from prior data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45105
UI - Skripsi Membership  Universitas Indonesia Library
cover
Berger, James O.
New York: Springer-Verlag, 1985
519.542 BER s
Buku Teks  Universitas Indonesia Library
cover
Sayidul Fikri
"Efektivitas Wayfinding adalah kesuksesan interaksi antara faktor manusia dan faktor lingkungan yang mampu membuat seseorang berhasil berpindah dari posisi sekarang ke posisi yang ingin dituju dengan waktu yang sesuai dengan kebutuhan. Saat ini proses tersebut belum dimodelkan untuk menggambarkan hubungan dari kesuksesan efektivitas wayfinding tersebut. Penelitian ini bertujuan untuk memodelkan komplek sistem dari aktivita wayfinding dengan menggunakan Bayesian Network, dan model tersebut menyesuaikan dengan faktor-faktor yang di aplikasikan di Terminal 2 Bandara Soekarno Hatta. Model menjelaskan bahwa faktor manusia memiliki dampak yang lebih besar dari faktor lingkungan dalam mempengaruhi efektivitas wayfinding. Untuk Faktor manusia sendiri faktor yang paling berpengaruh adalah previous familiarity diikuti dengan cognitive spatial skill. Model ini juga memprediksi bahwa navigation pathway memiliki pengaruh lebih besar dari terminal design dalam memberikan dampak pada faktor lingkungan.

Effective Wayfinding is the successful interplay of human and environmental factors resulting in a person successfully moving from their current position to a desired location in a timely manner. To date this process has not been modelled to reflect this interplay. This paper proposes a complex modelling system approach of wayfinding by using Bayesian Networks to model this process, and applies the model to airports. The model suggests that human factors have a greater impact on effective wayfinding in airports than environmental factors. The greatest influences on human factors are found to be the level of previous experienced by travellers and their cognitive and spatial skills. The model also predicted that the navigation pathway that a traveller must traverse has a larger impact on the effectiveness of an airport rsquo s environment in promoting effective wayfinding than the terminal design.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>