Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 165756 dokumen yang sesuai dengan query
cover
Terry Muhammad Octaryno
"ABSTRAK
Dalam penelitian ini pemodelan dan kontrol akan dilakukan pada bioreaktor untuk meningkatkan laju produksi bioreaktor maksimum. Model laju pertumbuhan menggunakan model Monod dan inhibitor produk-substrat. Sedangkan kontrol bioreaktor menggunakan pengontrol PI (proporsional-integral). Simulink dari Matlab digunakan untuk memodel biorektor sehingga model orde pertama ditambah waktu mati (FOPDT) diperoleh dari pengujian perubahan laju pengenceran (D). Berdasarkan FOPDT yang diperoleh, parameter pengontrol PI ditentukan menggunakan metode Ziegler-Nichols (ZN). Pengukuran kinerja kontrol digunakan integral kesalahan absolut (IAE) dan integral kesalahan kuadrat (ISE). Hasilnya dibandingkan dengan harga parameter kontrol PI dari penelitian sebelumnya. Hasil penelitiannya menunjukkan bahwa nilai D untuk mendapatkan produk maksimum adalah 0,43 jam-1 untuk Monod dan 0,36 jam-1 untuk inhibitor produk-substrat; Nilai parameter kontrol PI optimal adalah Kc = -8.801, Ti = 0,178 untuk Monod dan Kc = -4, Ti = 0,4 untuk inhibitor substrat produk dengan peningkatan rata-rata Waktu Penyelesaian = 154%, Overshoot = 221%, IAE = 503%, ISE = 13119% untuk Monod dan Waktu Penyelesaian = 302%, Overshoot = 2528%, IAE = 673%, ISE = 7558% untuk inhibitor produk-substrat.

ABSTRACT
In this research modeling and control will be carried out on the bioreactor to increase the maximum bioreactor production rate. The growth rate model uses the Monod model and substrate-product inhibitors. While the bioreactor control uses a PI controller (proportional-integral). Simulink from Matlab is used to model the biorector so that a first-order plus dead time (FOPDT) model is obtained from testing the dilution rate change (D). Based on the FOPDT obtained, the PI controller parameters are determined using the Ziegler-Nichols (ZN) method. Measurement of control performance is used integral of absolute error (IAE) and integral of square error (ISE). The results are compared with the prices of PI control parameters from previous studies. The results of his research show that the D value for obtaining the maximum product is 0.43 h-1 for Monod and 0.36 h-1 for substrate-product inhibitors; Optimal PI control parameter values ​​are Kc = -8,801, Ti = 0.178 for Monod and Kc = -4, Ti = 0.4 for product-substrate inhibitors with an average improvement of Settling Time = 154%, Overshoot = 221%, IAE = 503 %, ISE = 13119% for Monod and Settling Time = 302%, Overshoot = 2528%, IAE = 673%, ISE = 7558% for substrate-product inhibitors.
"
2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kharis Mukhifullah
"ABSTRACT
Biochemical reactors is an essential operation units in various biotechnological processes. Biochemical reactor used to produce a large number of both intermediate products and final products, including medical products, food, beverage, and industrial solvents. The key issue is the use of modeling and control to improve the quality of bioprocess technology because it is nonlinear. Usage based adaptive control of the PI controller proportional integral aims to be able to adapt to nonlinear of the bioreactor thus obtain optimum control. The results show that the adaptive control methods, we can get a control that can work well on a special set point up or down special with an average value of performance improvements for Monod models of 7122.2 and the average value of the performance improvement for the model substrate inhibition amounted to 37.3

ABSTRACT
Reaktor biokimia adalah unit operasi penting dalam berbagai proses bioteknologi. Reaktor biokimia digunakan untuk menghasilkan sejumlah besar baik produk antara maupun produk akhir, termasuk produk medis, makanan, minuman, dan pelarut industri. Isu kuncinya adalah penggunaan pemodelan dan pengendalian untuk meningkatkan kualitas teknologi bioproses karena sifatnya yang nonlinear. Penggunaan pengendalian adaptif berbasis pengendali PI proportional-integral bertujuan agar mampu beradaptasi terhadap kenonlinearan bioreaktor tersebut sehingga mendapatkan pengendalian yang optimum. Hasilnya menunjukkan bahwa dengan metode pengendalian adaptif, kita dapat mendapatkan pengendalian yang dapat bekerja dengan baik pada set point khusus naik maupun khusus turun dengan rata-rata nilai perbaikan kinerja untuk model Monod sebesar -7122.2 dan rata-rata nilai perbaikan kinerja untuk model penghambat substrat sebesar -37.3"
2017
S66463
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Christopher
"Model Predictive Control (MPC)-Single Input Single Output (SISO) digunakan untuk mengoptimalisasi parameter pengendalian pada penghilangan CO2 di lapangan Subang. MPC-SISO digunakan untuk mengendalikan laju aliran amina, laju aliran makeup water, dan tekanan gas umpan untuk mempertahankan konsentrasi CO2 pada keluaran sweet gas. Model empiris dibuat untuk diterapkan di MPC controller berdasarkan kurva reaksi proses (PRC) dengan menggunakan pendekatan first order plus dead time (FOPDT) berbasis SISO (Single Input-Single Output). Namun, bila terdapat disturbance pada feed gas, seperti perubahan laju air dan konsentrasi CO2, maka dibutuhkan penyesuaian kembali berupa re-tuning agar produk sweet gas yang dihasilkan tetap terjaga kualitasnya. Metode Ziegler-Nichols, Tyreus-Luyben dengan Bode Diagram, serta fine-tuning digunakan dalam mengamati respons pengendali PIC-1101, FIC-1102, dan FIC-1103 terhadap adannya disturbance. Dengan simulasi dinamik yang dilakukan, maka didapatkan nilai FOPDT berbasis SISO untuk tiap pengendali dengan metode fine-tuning yang terbaik untuk penyetelan SP (PIC-1101 ISE = 721300 dan IAE = 2764, FIC-1102 ISE = 113.1 dan IAE = 701, dan FIC-1103 ISE = 2262000 dan IAE = 19430). Untuk menangani gangguan berupa laju alir dan konsentrasi, metode Ziegler-Nichols merupakan metode yang terbaik untuk pengendali PIC-1101 (ISE = 2.409 dan IAE = 5.723 untuk laju alir dan ISE = 0 dan IAE = 0 untuk konsentrasi CO2) dan FIC-1102 (ISE = 0.00001392 dan IAE = 0.1663 untuk laju alir dan ISE = 0 dan IAE = 0 untuk konsentrasi CO2) serta fine-tuning untuk FIC-1103 (ISE = 2.382 dan IAE = 63.41 untuk laju alir dan ISE = 8.693e+04 dan IAE = 8.361e+03 untuk konsentrasi CO2).

Model Predictive Control (MPC) - Single Input Single Output (SISO) is used to optimize the control parameters for CO2 removal in the Subang field. MPC-SISO is used to control amine flow rate, makeup water flow rate, and feed gas pressure to maintain CO2 concentrations in sweet gas output. Empirical models are made to be applied in the MPC controller based on the process reaction curve (PRC) using the first order plus dead time (FOPDT) approach based on SISO (Single Input-Single Output). However, if there are any disturbances in the gas feed, such as flow rate and CO2 concentration, then re-tuning is necessary so that the sweet gas product is maintained in its best quality. The Ziegler-Nichols method, Tyreus-Luyben method with Bode Diagrams, and Fine-Tuning method are used in observing the response of the PIC-1101, FIC-1102, and FIC-1103 controllers to disturbance. With the dynamic simulation carried out, the SISO-based FOPDT values ​​for each controller are obtained with the best fine-tuning method for SP settings (PIC-1101 ISE = 721300 and IAE = 2764, FIC-1102 ISE = 113.1 and IAE = 701, and FIC-1103 ISE = 2262000 and IAE = 19430). To deal with disturbances of flow rate and CO2 concentration, the Ziegler-Nichols method is the best method for controlling PIC-1101 (ISE = 2.409 and IAE = 5.723 for flow rates and ISE = 0 and IAE = 0 for CO2 concentration) and FIC-1102 (ISE = 0.00001392 and IAE = 0.1663 for flow rate and ISE = 0 and IAE = 0 for CO2 concentration) and fine-tuning for FIC-1103 (ISE = 2.382 and IAE = 63.41 for flow rate and ISE = 8.693e + 04 and IAE = 8.361e + 03 for CO2 concentration)."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fauzi
"Produksi kelapa sawit yang semakin meningkat akan menghasilkan limbah yang banyak seperti Tandan Kosong Kelapa Sawit (TKKS). Furfural dapat dihasilkan dari bahan baku TKKS dengan metode hidrolisis asam. Reaktor hidrolisis asam digunakan untuk menghasilkan furfural. Suhu, tekanan, dan level dalam reaktor menjadi variabel yang perlu dikendalikan untuk menghasilkan kualitas produk yang baik. Sistem pengendalian yang optimum diperlukan untuk menjaga kestabilan pada saat proses produksi furfural. Proses produksi furfural yang diamati adalah pada pilot plant furfural di Departemen Teknik Kimia Universitas Indonesia dengan kapasitas produksi 100 L per hari. Sebelum memproduksi furfural, dilakukan terlebih dahulu simulasi menggunakan simulator Aspen Plus pada keadaan steady-state. Kemudian mengubah ke keadaan dinamik ketika sudah berjalan dengan lancar dengan simulator Aspen Plus Dynamics. Pada penelitian ini ditujukan untuk mendapatkan model proses produksi furfural pada pilot plant furfural dengan menggunakan simulator proses, mendapatkan model First Order Plus Dead Time (FOPDT) yang terbaik untuk pengendalian reaktor hidrolisis asam proses produksi furfural pada pilot plant furfural, dan mendapatkan parameter penyetelan pengendalian yang optimum untuk pengendalian reaktor hidrolisis asam proses produksi furfural pada pilot plant furfural. Pengendali Proporsional-Integral (PI) adalah jenis pengendali yang digunakan. Model FOPDT yang terbaik untuk seluruh variabel adalah Model Solver dengan nilai Kp sebesar 3,711,  sebesar 98,457, dan  sebesar 3,641 untuk variabel suhu; nilai Kp sebesar -0,023,  sebesar 11,681, dan  sebesar 0,494 untuk variabel tekanan; nilai Kp sebesar -0,121,  sebesar 1954,788, dan  sebesar 32,958 untuk variabel level. Metode penyetelan yang terbaik untuk seluruh variabel adalah closed loop Ziegler-Nichols dengan nilai Kc sebesar 18,14 dan Ti sebesar 0,1 untuk variabel suhu; nilai Kc sebesar 309,71 dan Ti sebesar 0,2 untuk variabel tekanan; nilai Kc sebesar 3219,33 dan Ti sebesar 0,2 untuk variabel level.

The increasing production of palm oil will produce a lot of waste, such as Oil Palm Empty Fruit Bunches (OPEFB). Furfural can be produced from OPEFB raw materials by acid hydrolysis method. An acid hydrolysis reactor is used to produce furfural. Temperature, pressure, and level in the reactor are variables that need to be controlled to produce good product quality. An optimum control system is needed to maintain stability during the furfural production process. The furfural production process observed was in a furfural pilot plant at the Department of Chemical Engineering, University of Indonesia with a production capacity of 100 L per day. Before producing furfural, a simulation was carried out using the Aspen Plus simulator at steady-state conditions. Then change to the dynamic state when it is running smoothly with the Aspen Plus Dynamics simulator. This research aims to obtain a model of the furfural production process in a furfural pilot plant using a process simulator, to obtain the best First Order Plus Dead Time (FOPDT) model for controlling acid hydrolysis reactors in the furfural production process in a furfural pilot plant, and to obtain the optimal control parameter settings. optimum for controlling acid hydrolysis reactor furfural production process in furfural pilot plant. Proportional-Integral (PI) controller is the type of controller used. The best FOPDT model for all variables is the Solver Model with Kp values of 3.711,  of 98.457, and  of 3.641 for the temperature variable; the Kp value is -0.023,  is 11.681, and  is 0.494 for the pressure variable; the Kp value is -0.121,  is 1954.788, and  is 32.958 for the level variable. The best tuning method for all variables is closed loop Ziegler-Nichols with a Kc value of 18.14 and a Ti value of 0.1 for the temperature variable; the value of Kc is 309.71 and Ti is 0.2 for the pressure variable; the Kc value is 3219.33 and Ti is 0.2 for the level variable."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fachry Arrifqi
"Ester base oil merupakan pelumas alami yang telah diterima secara luas dikarenakan kemampuan pelumasannya yang tinggi, serta keunggulan seperti kinerja suhu rendah, indeks viskositas yang tinggi, pengurangan gesekan yang sangat baik, dan sifat anti aus. Proses sintesis ester base oil melibatkan dua tahapan utama, yaitu oligomerisasi dan esterifikasi. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses pre- treatment oligomerisasi pabrik ester base oil dengan multivariable model predictive control (MMPC) 4x4. Metode yang digunakan untuk mendapatkan model first order plus dead time (FOPDT) 4x4 adalah dengan cara dilakukan identifikasi sistem menggunakan metode Smith, metode Wade, dan metode Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root- mean-square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine- tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time). Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap pengujian set point (SP) tracking dan pengujian disturbance rejection. Kinerja MMPC juga akan dibandingkan dengan kinerja pengendali propotional-integral (PI) dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik menggunakan metode Smith yaitu M1V3, M2V1 ; metode Wade yaitu M1V2, M2V3, M2V4, M4V2 ; metode Solver yaitu M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4. Metode fine-tuning pada penyetelan MMPC menghasilkan parameter P, M, T terbaik masing-masing sebesar 350, 300, dan 2. Pada pengujian SP ttacking, MMPC menunjukkan kinerja terbaik dalam pengendalian suhu sedangkan kinerja pengendali PI lebih baik dalam pengendalian laju alir. Pada pengujian disturbance rejection, kinerja MMPC lebih baik dibandingkan pengendali PI dengan perbaikan kinerja pengendalian sebesar 7,16% - 61,35% untuk nilai IAE dan 13,96% - 88,60% untuk nilai ISE.

Ester base oil is a natural lubricant widely accepted due to its high lubricating ability, as well as advantages such as low-temperature performance, high viscosity index, excellent friction reduction, and anti-wear properties. The synthesis process of ester base oil involves two main stages, namely oligomerization and esterification. This research aims to obtain a design and design process control in the pre-treatment process of oligomerization in the ester base oil plant with multivariable model predictive control (MMPC) 4x4. The method used to obtain the first-order plus dead time (FOPDT) 4x4 model is by identifying the system using Smith's method, Wade's method, and Solver's method. Furthermore, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) values from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine-tuning to obtain the parameter values P (prediction horizon), M (control horizon), and T (sampling time). These MMPC parameters will be tested based on controller performance responses to set point (SP) tracking testing and disturbance rejection testing. The performance of MMPC will also be compared with proportional-integral (PI) controllers using integral absolute error (IAE) and integral square error (ISE) calculations. The results of the system identification obtained the best FOPDT model using Smith's method, namely M1V3, M2V1; Wade's method, namely M1V2, M2V3, M2V4, M4V2; Solver's method, namely M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4 .The fine-tuning method in MMPC tuning resulted in the best P, M, T parameters of 350, 300, and 2 respectively. In SP tracking testing, MMPC showed the best performance in temperature control while PI controller performance was better in flow rate control. In disturbance rejection testing, MMPC performance was better than PI controllers with performance improvement ranging from 7.16% to 61.35% for IAE values and 13.96% to 88.60% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dyah Kunti Surya Andari
"Penyetelan ulang pengendali proporsional-integral dilakukan pada proses produksi formaldehida di PT X. Penyetelan ulang dilakukan untuk meningkatkan kinerja controller, karena penyetelan pengendali PI pada pabrik seringkali masih menggunakan metode ziegler-nichols close-loop yang kurang optimal. Model proses akan diestimasi dengan first order plus dead time model (FOPDT), dan kemudian parameter pengendali disetel ulang menggunakan Ziegler-Nichols (PRC), Wahid-Rudi-Victor (WRV), Cohen-Coon, autotuning, dan fine tuning. Kinerja pengendali diuji menggunakan set point (SP) tracking dan disturbance rejection. Integral of square error (ISE) akan digunakan sebagai indikator kinerja. Ada tiga pengendali yang diuji, yaitu, pengendali laju alir steam (FIC-102), pengendali temperatur udara (TIC-101), dan pengendali level tangki (LIC-102). Metode fine tuning memberikan kinerja pengendali yang paling baik untuk FIC-102 dan TIC-101, sedangkan metode autotuning memberikan kinerja pengendali yang lebih baik untuk LIC-102 dibandingkan dengan setelan di lapangan. Peningkatan kinerja untuk set point (SP) tracking adalah 81,59% (FIC-102), 94,11% (TIC-101), dan 85,61% (LIC-102). Sedangkan peningkatan kinerja untuk disturbance rejection adalah 95,5% (FIC-102), 94,53% (TIC-101), dan 93,16% (LIC-102). Pengujian penurunan kapasitas produksi sebesar 12,5% juga dilakukan, dan didapatkan bahwa controller masih mampu mencapai SP. Dengan demikian, penyetelan ulang pengendali PI berfungsi dengan baik.

A proportional-integral controller retuning is performed on formaldehyde production process at PT X. Retuning is carried out to improve the control performance, because PI controller in the factory often still uses ziegler-nichols close-loop tuning method which is not optimal. The process model is estimated by a first order plus dead time model (FOPDT), and then the controller parameters is tuned using the Ziegler-Nichols (PRC), Wahid-Rudi-Victor (WRV), Cohen-Coon, autotuning, and fine tuning. The control performance is tested using set point (SP) tracking and disturbance rejection with integral of square error (ISE) as performance indicator. There are three controllers that are tested, i.e., the steam flow controller (FIC-102), air temperature controller (TIC-101), and tank level controller (LIC-102). Fine tuning method give the better control performance for FIC - 102 and TIC-101, while autotuning method gives the better control performance for LIC-102 compared to the previous settings in the field. Performance improvement for set point (SP) tracking are 81.59% (FIC-102), 94.11% (TIC-101), and 85.61% ( LIC-102). While performance improvement for the disturbance rejection are 95.5% (FIC-102), 94.53% (TIC-101), 93.16% ( LIC-102). A test using reduction in production capacity of 12.5% was also carried out, and it was found that the controller was still able to reach SP. Thus, retuning PI controllers work well.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faridah Salma
"Kebutuhan energi dunia terus meningkat dari tahun ke tahun, dan pembakaran bahan bakar fosil juga mempunyai pengaruh negatif terhadap lingkungan karena adanya emisi gas CO2. Hidrogen mempunyai energi hasil pembakaran yang besar per satuan massa (141,86 kJ/g) sehingga penggunaannya sebagai bahan bakar cukup potensial. Indonesia adalah salah satu negara yang memiliki potensi yang sangat besar dalam pengembangan energi terbarukan sebagai sumber energi nasional dan biomassa adalah yang paling potensial untuk menjadi energi alternatif.
Sehubungan dengan hal tersebut, maka dibuatlah suatu perencanaan pabrik pembuatan hidrogen dari biomass. Pada penelitian kali ini akan dijelaskan pengendalian pada Gasifier dan Char Combustor. Untuk mendapatkan kinerja yang optimum, dilakukan penyetelan pengendali dengan metode Ziegler Nichols, Lopez, dan Default, kemudian membandingkan karakteristik pengendalian seperti nilai IAE (Integral Absolute Error) ISE (Integral Square Error), Offset, dan rise time dari ketiga jenis penyetelan tersebut.
Hasilnya pengendalian yang optimum pada unit Char Combustor adalah dengan metode penyetelan pengendali Ziegler Nichols dengan masing-masing nilai Kp dan Ti-nya adalah 0.77 dan 0.49.. Sedangkan metode yang paling optimum pada pengendalian suhu gasifier metode Lopez dengan nilai Kp dan Ti masing-masing 0.13 dan 1.46 dan untuk concentration control adalah metode Zieger Nichols dengan nilai Kp dan Ti masing-masing 180 dan 0.58.

World energy demand continues to increase from year to year, and the burning of fossil fuels also have a negative impact on the environment due to the emission of CO2. Hydrogen energy has great combustion per unit mass (141.86 kJ / g), so its use as a fuel is potential. Indonesia is one country that has a huge potential in the development of renewable energy as a source of national energy, and biomass are the most potential to become an alternative energy. In connection with this, the factory is planning to make hydrogen from biomass.
This paper will describe the process control in Gasifier and Char combustor. To get optimum performance, controllers tuned with with Ziegler Nichols method, Lopez, and Default, then compare the characteristics of such control value IAE (Integral Absolute Error) ISE (Integral Square Error), offset, and the rise time of the three types of settings.
The result is optimum control on Char combustor unit is a controller with Ziegler Nichols tuning method with its Kp and Ti each valued 0.77 and 0.49. While most optimum method of Gasifier temperature control is Lopez method with its Kp and Ti each valued 0.13 and 1.46, thus the most optimum method for concentration control is a Zieger Nichols method with its Kp and Ti each valued 180 and 0.58.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52618
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Reza Rahmansyah
"Kinerja pabrik pengolahan gas alam berperan penting untuk menjaga agar dapat mencukupi permintaan gas Indonesia yang meningkat dari tahun ke tahun. Gangguan dalam proses pada pabrik-pabrik tersebut tidak bisa dihindarkan, terutama pada pabrik yang sudah lama beroperasi, proses dalam unit pengolahan gas pun bersifat dinamik. Oleh karena itu, proses tersebut perlu dikendalikan agar berjalan pada kondisi operasi yang optimum. Salah satu solusinya adalah dengan melakukan penyetelan ulang atau re-tuning pengendali pabrik. Dalam studi ini, penyetelan ulang pengendali Proportional Integral (PI) sebuah unit CO2 removal dilakukan berbasis model linear dan sistem multi input multi output (MIMO) menggunakan metode penyetelan Open Loop Ziegler Nichols (ZN), Closed Loop Tyreus Luyben (TL) dan Fine Tuning. Pengecekan pemasangan variabel pada pengendali juga dilakukan dengan menggunakan analisis Relative Gain Array (RGA). Ditinjau dari nilai Integral Square Error (ISE), pengendali dengan setelan fine tuning memberikan pengendalian yang lebih baik dibandingkan pengendali dengan setelan Open Loop Ziegler Nichols dan Closed Loop Tyreus Luben, dengan ISE untuk pengendali PIC 1101, FIC 1102 dan FIC 1103 sebesar 0.3122, 0.2028 dan 0.01944 untuk uji coba set-point dan 0.03681, 0.1116 dan 0.3009 untuk uji coba disturbance. Berdasarkan analisis RGA, pemasangan Controlled Variable (CV) dan Manipulated Variable MV yang di lapangan sudah tepat, yakni CV1-MV1, CV2-MV2 dan CV3-MV3.

Indonesian domestic natural gas demand has been increasing since the last couple of years, thus maintaining natural gas production is vital to fulfill the country’s ever so demanding industrial and energy needs. Optimization is key in maintaining production in natural gas processing plants, especially the performance of its operating units. A solution for optimization is the retuning of process controllers of existing plants to better handle process disturbance. This research studies the retuning of a CO2 Removal plant using linear modelling with Ziegler Nichols (ZN), Tyreus Luben (TL) and Fine-Tuning method. Analysis of controller pairing is also done in this study using the Relative Gain Array (RGA) method. The performance of the controller will be evaluated using the Integral Square Error (ISE) value during set-point and disturbance testing. The study has shown that ZN and TL tuning method are not capable of stabilizing the process of a multiple input multiple output system. Fine Tuning method resulted in the best performance with an ISE value of 0.3122, 0.2028 dan 0.01944 on set-point testing, and 0.03681, 0.1116 dan 0.3009 on disturbance testing for controllers PIC 1101,FIC 1102, and FIC 1103.RGA Analysis have shown that the plant controller has been paired correctly based on the recommended pairing, which is CV1-MV1, CV2-MV2 and CV3-MV3"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Habibi
"Laju pertumbuhan penduduk Indonesia memaksa konsumsi akan bahan bakar terus meningkat, karena saat ini bahan bakar telah menjadi salah satu kebutuhan utama masyarakat modern di Indonesia. Sebagian besar bahan bakar tersebut berasal dari minyak bumi yang dalam satu dekade ini produksinya mengalami penurunan di dalam negeri. Oleh sebab itu peluang pengembangan energi alternatif harus terus di kembangkan di Indonesia, salah satunya dengan membuat Pabrik dimetil eter dengan bahan baku utama gas sintesis. Gas sintesis ini diperoleh dari gas alam melalui proses autotermal reforming. Indonesia sendiri memiliki cadangan gas alam yang lebih besar ketimbang minyak bumi. Dimetil Eter dipilih karena merupakan bahan bakar alternatif yang ramah lingkungan. Proses pembuatan Dimetil Eter secara indirect melibatkan sintesis methanol, dehidrasi methanol, purifikasi dimetil eter hingga purifikasi methanol untuk di recylce.
Dalam penelitian ini akan dijelaskan sistem pengendalian pada proses sintesis metanol hingga sintesis DME. Unit-unit yang terdapat pada proses sintesis metanol dan DME ialah unit heater, unit compressor, unit cooler, unit flash vaporation dan unit fix bed reactor. Sistem pengendalian yang dipilih untuk proses ini ialah jenis pengendali Proportional Integral karena dapat menangani hampir setiap situasi kontrol proses di dalam skala industri. Penelitian ini menggunakan pemodelan penyetelan pengendali Ziegler Nichols dan Lopez, lalu dibandingkan dengan nilai parameter kinerja pengendaliannya, yaitu Offset, Rise Time, Time of First Peak, Settling Time, Periode Osilasi, Decay Ratio, Overshoot, Deviasi maksimum, Integral of Absolute Error (IAE) dan Integral Square Error (ISE) dari kedua jenis penyetelan tersebut.
Hasil penelitian ini dapat digunakan untuk penentuan variabel input dan output yang optimum pada proses sintesis Metanol dan DME yang dapat diterapkan pada pabrik DME. Berdasarkan hasil penelitian diperoleh bahwa unit heater 1 menggunakan metode Ziegler Nichlos (Kc 0,9978 ; Ti 0,1831), unit heater 2 menggunakan metode Ziegler Nichlos (Kc 0,2166 ; Ti 0,1249), unit compressor menggunakan metode Fine Tunning (Kc 5 ; Ti 0,1), unit cooler 1 menggunakan metode Ziegler Nichlos (Kc 0,1969 ; Ti 0,1199), unit cooler 2 menggunakan metode Ziegler Nichlos (Kc 0,5495 ; Ti 0,1815), dan unit sintesis DME menggunakan metode Ziegler Nichlos (Kc 0,16071 ; Ti 0,0699).

Increases of Indonesia’s population makes consumption of fuel was high, because nowadays fuel become primary needs for modern people in Indonesia. Fuel in Indonesia is mostly from petroleum, which is has slowly production in one decade behind. Therefore, chance in alternative energy must be develop in Indonesia, one of them is making Industry of Dimethyl Ether (DME) from synthetic gas feed. Synthetic gas was get from natural gas in autothermal reforming process. Indonesia has more reserve natural gas than petroleum. The another benefit from DME is friendly for our environment as alternative fuel. Indirect process in production of DME consists of synthesis methanol, dehidration methanol, purification DME and purification methanol for recycle.
The research will explain about control system in Synthesis Methanol and DME. These process consist of heater, compressor, cooler, flash vaporation and fix bad reactor units. This research used tuning model Ziegler Nichols and Lopez, then compares the performance parameter of Offset, Rise Time, Time of First Peak, Settling Time, Osilation Period, Decay Ratio, Overshoot, Maximum Deviation, Integral Absolute Error (IAE) and Integral Square Error (ISE) by both tuning model. The result of this research can be use to define optimum input and output variable in Purification process of DME and Methanol that can applied in Industry of DME.
Based on this study’s result, achieved that heater 1 used Ziegler Nichlos method (Kc 0,9978 ; Ti 0,1831), heater 2 used Ziegler Nichlos method (Kc 0,2166 ; Ti 0,1249), compressor used Fine Tunning method (Kc 5 ; Ti 0,1), cooler 1 used Ziegler Nichlos method (Kc 0,1969 ; Ti 0,1199), cooler 2 used Ziegler Nichlos method (Kc 0,5495 ; Ti 0,1815), and synthesis DME used Ziegler Nichlos method (Kc 0,16071 ; Ti 0,0699).
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53956
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raufzha Ananda
"Kemajuan teknologi dibidang otomotif telah berkembang sangat pesat. Salah satu perkembangannya yaitu sistem kendali pada kendaraan dengan menggunakan mikroprosesor. Sistem kendali ini digunakan untuk pengamanan kendaraan yang dapat mengurangi angka kecelakaan yang terjadi. Sistem keamanan yang dikembangkan untuk mencegah terjadinya kecelakaan berkendara yang berpusat pada stabilitas yaw dan slip samping pada kendaraan. Dalam rangka mengembangkan sistem tersebut dibutuhkan pengujian berulang-ulang untuk mendapatkan hasil yang sesuai dengan keinginan. Perancangan yang dibantu dengan simulasi Hardware in The Loop (HIL) merupakan metode yang tepat untuk melakukan pengujian dari sistem. Pengujian ini dapat mengurangi waktu dan jumlah uji kendaraan yang sebenarnya di jalan, menurunkan biaya pengembangan dan meningkatkan kualitas pengembangan produk baru. Pada penelitian ini akan dilakukan simulasi HIL menggunakan Model Predictive Control (MPC) yang diawali dengan simulasi Software In The Loop untuk mempelajari dan menguji sistem kendali untuk stabilitas laju yaw pada otomotif. Dimana hasil pengujian simulasi HIL berjalan cukup baik dan bekerja secara real time.

Advances in automotive technology has developed very rapidly. One development is the vehicle control system using a microprocessor. This control system is used for security vehicles that can reduce the number of accidents that occur. Security system developed to prevent accidents driving centered yaw stability and side slip of the vehicle. In order to develop such a system required repeated testing to get the results as you wish. The design with Hardware in The Loop (HIL) is an appropriate method for the testing of the system. This test can reduce the time and the amount of the actual vehicle test on the road, lowering development costs and improve the quality of new product development. This research will be conducted HIL simulation that use Model Predictive Control (MPC) with doing Software In The Loop Simulation previuosly to learn and test the stability control system for yaw rate at automotive. The result of the simulation are doing very well and give the real time output.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59847
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>