Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4989 dokumen yang sesuai dengan query
cover
Goodfellow, Ian
""Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and video games. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors"--Page 4 of cover."
Cambridge, Massachusetts: The MIT Press, 2016
006.31 GOO d
Buku Teks SO  Universitas Indonesia Library
cover
"This timely text/​reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined. Topics and features: Addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities Revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition Examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition Discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition Investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples Presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning. Dr. Bir Bhanu is Bourns Presidential Chair, Distinguished Professor of Electrical and Computer Engineering and the Director of the Center for Research in Intelligent Systems at the University of California at Riverside, USA. Some of his other Springer publications include the titles Video Bioinformatics, Distributed Video Sensor Networks, and Human Recognition at a Distance in Video. Dr. Ajay Kumar is an Associate Professor in the Department of Computing at the Hong Kong Polytechnic University."
Cham, Switzerland: Springer, 2017
006.4 DEE
Buku Teks SO  Universitas Indonesia Library
cover
Muhammad Fauzi Rahmad
"Arsitektur model deep learning kini sudah semakin kompleks setiap harinya. Namun semakin besar model maka dibutuhkan kekuatan komputasi yang cukup besar juga dalam menjalankan model. Sehingga tidak semua perangkat Internet of Things (IoT) dapat menjalankan model yang begitu besar secara efisien. Untuk itu teknik model optimization sangat diperlukan. Pada penelitian kali ini penulis menggunakan metode optimasi menggunakan layer weight regularization, serta penyederhanaan arsitektur model pada hybrid deep learning model. Dataset yang digunakan pada penelitian kali ini adalah N-BaIoT. Sementara evaluasi performa model yang digunakan adalah accuracy, confussion matrix, dan detection time. Dengan tingkat accuracy yang sama, model yang diusulkan berhasil meningkatkan waktu deteksi model lebih cepat 0,8 ms dibandingkan dengan model acuan.

The deep learning model architecture is getting more complex every day. However, the larger the model, the greater the computational power is needed to run the model. So not all Internet of Things (IoT) devices can run such a large model efficiently. For this reason, model optimization techniques are needed. In this study, the author uses an optimization method using layer weight regularization, as well as simplification of the model architecture on the hybrid deep learning model. The dataset used in this research is N-BaIoT. While the evaluation of the performance of the model used is accuracy, confusion matrix, and detection time. With the same level of accuracy, the proposed model succeeded in increasing the detection time of the model by 0.8 ms faster than the reference method."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raihan Kenji Rizqillah
"Fatik menjadi salah satu indikator utama yang menjadi perhatian pada penggunaan paduan alumunium sebagai aplikasi struktural pesawat terbang, dimana sebanyak lebih dari 50% kecelakaan dirgantara disebabkan oleh kegagalan fatik material. Metode eksperimental trial and error untuk mendesain material memerlukan waktu panjang, biaya tinggi, serta efisiensi penelitian yang dipengaruhi oleh intuisi dan keberuntungan dari peneliti menimbulkan urgensi pendekatan lain dalam penelitian mekanika material. Penelitian mekanika material berbasis Pembelajaran Mesin (PM) dapat memanfaatkan data-data eksperimen dan penelitian terdahulu, sehingga dapat memangkas biaya dan waktu penelitian. Pada penelitian ini telah berhasil dikembangkan dua model deep learning yang mampu memetakan dengan baik hubungan antara data paduan alumunium dengan sifat fatik yang dihasilkan. Model dibuat dengan arsitektur Deep Neural Network menggunakan TensorFlow. Model S2P (Structure to Performance) dapat memprediksi performa fatik suatu paduan alumunium dari data komposisi, perlakuan panas, sifat mekanis, dan pembebanan fatik yang diterima. Model P2S (Performance to Structure) dapat memprediksi komposisi paduan alumunium yang dapat memenuhi performa fatik yang diharapkan. Kedua model menghasilkan performa baik berdasarkan pada metrik penilaian R2, yaitu senilai 0,92 untuk model S2P dan 0,96 untuk model P2S. Formula matematika sifat mekanis dan sifat fatik paduan alumunium dibuat sebagai fungsi dari variabel unsur paduan dan perlakuan panas. Pengembangan model deep learning prediksi sifat paduan alumunium berbasis fitur atomik menunjukkan bahwa total elektronegatifitas berpengaruh besar terhadap sifat mekanis dan sifat fatik.

Fatigue is one of the main concern of the utilization of aluminum alloys as aircraft structural applications, since more than 50% of aerospace accidents are caused by material fatigue failure. The experimental trial and error method for designing materials requires long time and high costs. Research efficiency is also influenced by intuition and luck of the researcher. These condition raises the urgency of other approaches in material mechanics research. Machine Learning (ML) based material mechanics research can take advantage of experimental data and previous research, which ables reduce research costs and time. In this research, two deep learning models have been successfully developed. The models are able to map the relationship between aluminum alloy data and the resulting fatigue properties. The model is built on a fully connected Deep Neural Network architecture using TensorFlow. The S2P (Structure to Performance) model can predict the fatigue performance of an aluminum alloy from the data of composition, heat treatment, mechanical properties, and fatigue loading condition. The P2S (Performance to Structure) model can predict the composition of aluminum alloys that can meet the expected fatigue performance. Both models produce good performance based on the R2 scoring metric, which is 0.92 for the S2P model and 0.96 for the P2S model. Mathematical formulas for mechanical properties and fatigue properties of alloys are made as a function of alloying and heat treatment variables. The development of atomic feature based deep learning model shows that the total electronegativity has a large impact on the mechanical properties and fatigue properties."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ketkar, Nikhil
"Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process.Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms. This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included. Deep Learning with Python also introduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. You will: Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to production"
New York: Apress, 2017
005.13 KET d
Buku Teks SO  Universitas Indonesia Library
cover
Laode Mohammad Rasdi Rere
"ABSTRAK
Dalam beberapa tahun terakhir, Deep Learning DL telah menarik banyak perhatian dalam penelitian pemelajaran mesin. Metode ini telah berhasil dipakai untuk berbagai aplikasi pada pemrosesan suatu, robotika, pengenalan fonetik, pencarian informasi dan bahkan analisa molekul. Meskipun DL telah berhasil sukses untuk diterapkan dalam berbagai bidang aplikasi, training yang diperlukan pada metode ini tidaklah mudah. Sejumlah cara telah diusulkan untuk membuat proses training DL menjadi lebih optimal, beberapa diantanya dengan menambahkan proses pre-training, memutuskan beberapa jaringan dalam lapisan, ataupun mengganti fungsi aktivasi dan metode gradien standar yang dipergunakan. Disertasi ini menggunakan pendekatan lain dalam optimasi DL, yaitu memakai algoritme metaheuristik. Secara umum disertasi ini dibagi dalam dua bagian besar. Bagian pertama adalah studi awal penelitian yang difokuskan pada beberapa eksperimen yang berkaitan dengan algoritme metaheuristik dan aplikasi DL dalam klasifikasi citra. Bagian kedua dari disertasi berkaitan dengan penerapan algoritme metaheuristik dalam DL. Hasil pada bagian ini misalnya untuk optimasi metode Convolutional Neural Nework CNN menggunakan dataset CIFAR10, diperoleh untuk Top-1 error pada validasi adalah 99,05 . Hasil ini lebih baik dari nilai akurasi CNN asli sebesar 88,21 , fine-tuning CNN menggunakan Harmony Search yang diusulkan G. Rosa dkk sebesar 78,28 , dan bahkan State of the art saat ini sebesar 96,53 dengan Fractional Max-Pooling.

ABSTRACT
In recent years, deep Learning DL has drawn many attention in machine learning research. This method has been successfully used in various applications, such as sound process, robotics, phonetic identification, information retrieval, and even molecule analysis. Although DL has been successful to be applied in many fields, it is difficult to train in this method. Various attempts and methods has been proposed to make the DL training process become more optimum, some of them are by adding pre training process, drop out some networks in the layer, or by replacing activation function and standard gradient method being used. This dissertation takes another way to optimize a DL, i.e. using metaheuristic algorithms. Overall, this dissertation will be divided into two main parts. The first part is a preliminary study of research, focusing on several experiments which were related to the metaheuristic algorithm and DL application in image classification. The second part of this dissertation is related to application of metaheuristic algorithm in DL. The results in this part, for example, the optimization of CNN method using CIFAR10 dataset for Top 1 error in validation is 99.05 . This result is higher than the accuracy level from original CNN 88,21 , fine tuning CNN using Harmony Search suggested by G. Rossa et.al 78.28 , and even ldquo State of the art rdquo right now using Fractional Max Pooling 96.53 "
2017
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Bella Septina Ika Hartanti
"Bencana banjir merupakan salah satu peristiwa alam yang sering terjadi di dunia, termasuk Indonesia, dan terjadi ketika aliran air yang berlebihan menggenangi daratan dalam jangka waktu tertentu. Perubahan iklim, cuaca ekstrem, urbanisasi yang tidak terkendali, dan kondisi geografis yang kompleks telah berkontribusi terhadap peningkatan frekuensi dan intensitas banjir, terutama di daerah perkotaan. Analisis banjir otomatis dan deteksi citra dapat memberikan panduan dan informasi yang berguna dalam membuat keputusan untuk mengurangi dampak destruktif seperti korban jiwa dan ekonomi, salah satunya dengan melakukan segmentasi untuk membantu proses pembuatan peta kerawanan banjir. Namun, sejumlah kecil data beresolusi tinggi dan berlabel yang tersedia membuat proses segmentasi sulit untuk dilakukan. Oleh karena itu, penulis mengusulkan pendekatan semi-supervised yaitu mean teacher dengan memanfaatkan teknik deep learning. Adapun dataset yang digunakan adalah citra SAR Sentinel-1 C-band yang telah diolah sebelumnya. Hasil penelitian menunjukkan bahwa model usulan memberikan kenaikan performa yang cukup signifikan pada metrik IoU sebesar 5% terhadap baseline yang mengimplementasikan teknik pseudo-labeling.

Floods are one of the natural disaster events that occur in the world. Floods happen when excessive water flows and submerges land for a certain period of time. Climate change, extreme weather, uncontrolled urbanization, and complex geographical conditions have contributed to the increase in the frequency and intensity of floods, especially in urban areas. Automatic flood analysis and detection of imagery can provide useful guidance and information in making decisions to reduce destructive impacts such as loss of life and economy. However, the small amount of high-resolution and labeled data available makes the segmentation process difficult for flood detection. Therefore, the author proposes a semi-supervised approach, namely mean teacher by utilizing the deep learning architecture. The dataset used is the SAR image of Sentinel-1 C-band which has been processed. The results show that the proposed model provides a significant increase in performance on the IoU metric by 5% against the baseline that implements the pseudo-labeling technique."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Albon, Chris
"With Early Release ebooks, you get books in their earliest form--the author's raw and unedited content as he or she writes--so you can take advantage of these technologies long before the official release of these titles. You'll also receive updates when significant changes are made, new chapters are available, and the final ebook bundle is released. The Python programming language and its libraries, including pandas and scikit-learn, provide a production-grade environment to help you accomplish a broad range of machine-learning tasks. With this comprehensive cookbook, data scientists and software engineers familiar with Python will benefit from almost 200 practical recipes for building a comprehensive machine-learning pipeline--everything from data preprocessing and feature engineering to model evaluation and deep learning. Learn from author Chris Albon, a data scientist who has written more than 500 tutorials on Python, data science, and machine learning. Each recipe in this practical cookbook includes code solutions that you can put to work right away, along with a discussion of how and why they work--making it ideal as a learning tool and reference book"
Beijing: O'Reilly, 2018
006.31 ALB m
Buku Teks SO  Universitas Indonesia Library
cover
Riefky Arif Ibrahim
"Katarak merupakan salah satu jenis kelainan mata yang menyebabkan lensa mata menjadi berselaput dengan pandangan berawan, sehingga memungkinkan untuk mengalami kebutaan total. Penderita katarak dapat disembuhkan dengan operasi setelah sebelumnya dilakukan computed tomography (CT) scan dan magnetic resonance imaging (MRI) sebagai metode untuk mendapatkan citra digital mata. Namun, penggunaan metode ini tidak selalu memungkinkan, terutama untuk fasilitas kesehatan di negara berkembang, karena kurangnya rumah sakit atau klinik mata yang menyediakan fasilitas berteknologi lengkap. Penelitian ini bertujuan untuk membantu proses analisis citra mata agar lebih cepat dan akurat dengan menggunakan model deep learning untuk memprediksi mata katarak menggunakan arsitektur CNN dengan terlebih dahulu menganalisis performa model dan membandingkan akurasi/loss model dengan penelitian sebelumnya. Metode perancangan model deep learning ini dilakukan dimulai dari preprocessing, membangun arsitektur model, proses training, dan diakhiri dnegan evaluasi hasil model dengan mengguakan confusion matrix dan classification report. Dari perancangan ini, didapatkan hasil validasi akurasi model sebesar 92.97% dan hasil validasi loss 0.1539. Dari model yang penulis buat dihasilkan model deep learning dengan nilai evaluasi pendeteksian mata katarak dengan presisi 94.30%, recall 97.47%, dan f-1 score 95.85%. Hasil dari penelitian ini menunjukkan bahwa model yang penulis rancang telah dapat memprediksi gambar penyakit katarak dengan akurasi diatas 80 % dengan loss dibawah 30 % dengan hasil presisi, recall, dan f-1 score >90% dan menunjukkan tingkat overfitting yang minimal.

Cataract is an eye condition in which the lens of the eye becomes webbed and cloudy, resulting in total blindness. Cataract patients can be cured through surgery after undergoing computed tomography (CT) scans and magnetic resonance imaging (MRI) to obtain digital images of the eyes. However, due to a lack of hospitals or eye clinics that provide complete technology facilities, this method is not always feasible, particularly for health facilities in developing countries, particularly in Indonesia. By first examining the model's performance and comparing the model's accuracy/loss with prior research, this study intends to make the eye image analysis process faster and more accurate by employing a deep learning model to predict cataracts using the CNN architecture. Starting with preprocessing, designing the model architecture, training, and finally evaluating the model outcomes using a confusion matrix and classification report, this deep learning model design technique is followed. The model accuracy validation results from this design are 92.97 % and the loss validation results are 0.1539. A deep learning model with an evaluation value of cataract eye detection with a precision of 94.30 %, recall of 97.47 %, and an f-1 score of 95.85 % was produced from the author's model. According to the findings of this study, the author's model can predict cataract images with an accuracy of more than 80%, a loss of less than 30%, precision, recall, and f-1 score greater than 90%, and minimal overfitting.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moons, Bert
"This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application, algorithmic, computer architecture, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning.
Gives a wide overview of a series of effective solutions for energy efficient neural networks on battery constrained wearable devices;
Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy-applications, algorithms, hardware architectures, and circuits-supported by real silicon prototypes;
Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;
Supports the introduced theory and design concepts by four real silicon prototypes. The physical realizations implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts."
Switzerland: Springer Nature, 2019
e20508149
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>