Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 108995 dokumen yang sesuai dengan query
cover
Calandra Alencia Haryani
"Universitas XYZ merupakan salah satu PTS dalam bentuk universitas yang berlokasi di Tangerang, yang memiliki kewajiban untuk menjamin dan memberikan pendidikan bermutu kepada mahasiswa selaku salah satu pemangku kepentingan yang memiliki dampak secara langsung pada mutu sebuah universitas. LP2MP bertugas untuk menyelenggarakan pengukuran dan pelaksanaan survei setiap semester dalam bentuk survei umpan balik. Hasil survei tersebut dapat dijadikan sebagai pedoman untuk perbaikan yang berkesinambungan untuk penyelenggaraan penjaminan mutu Dikti dan pengelolaan Universitas XYZ. Namun, pengolahan dan pengukuran data survei secara konvensional tidak cukup untuk mengeksplorasi informasi tersembunyi dari survei. EDM digunakan pada penelitian ini untuk mengolah dan menganalisa data dari Universitas XYZ berupa survei bagian Open Ended Question (OEQ) yang terdiri dari Student Feedback Questionaire (SFQ), Facility Satisfaction Questionaire (FSQ), dan Graduate Feedback Questionaire (GFQ).
Tujuan dari penelitian ini adalah untuk mendukung pengambilan keputusan dalam mengambil tindakan proaktif terhadap perbaikan mutu Universitas XYZ. Penelitian ini melakukan klasifikasi label aspek, sentimen analisis, dan tren topik survei SFQ, FSQ, dan GFQ pada bagian OEQ. Klasifikasi label aspek Multi Class survei SFQ memilih model klasifikasi terbaik dengan membandingkan hasil evaluasi accuration, precision, recall, dan F1-Score terhadap setiap kombinasi fitur dan perbandingan empat algoritma klasifikasi yaitu Decision Tree (DT), Naïve Bayes (NB), K-Nearest Neighbor (KNN), dan Support Vector Machine (SVM). Klasfikasi label aspek multi label survei FSQ dan GFQ memilih model klasifikasi terbaik dengan membandingkan hasil evaluasi tiga jenis library multilabel dari SciKit-Learn, yaitu Binary Relevance (BL), Label Power Set (LPS), dan Classifier Chain (CC) terhadap setiap kombinasi fitur dan empat algoritma klasifikasi tersebut.
Hasil dari penelitian ini adalah teknik klasifikasi menggunakan kombinasi fitur TFIDF, Unigram, dan Bigram dengan algoritma SVM merupakan model klasifikasi terbaik untuk pelabelan aspek survei SFQ. Teknik klasifikasi menggunakan kombinasi fitur TFIDF, Unigram, dan Bigram dengan algoritma SVM dan library Multi Label CC merupakan model klasifikasi terbaik untuk pelabelan aspek survei FSQ. Teknik klasifikasi menggunakan kombinasi fitur Count Vectorizer, Unigram, dan Bigram dengan algoritma NB dan library Multi Label BR merupakan model klasifikasi terbaik untuk pelabelan aspek survei GFQ. Selain itu, algoritma SentiStrenghtID digunakan untuk mendapatkan sentimen dan algoritma LDA digunakan untuk mendapatkan tren topik tahunan pada setiap label aspek survei SFQ, FSQ, dan GFQ.

XYZ University is one of the universities in the form of universities located in Tangerang, which has an obligation to guarantee and provide quality education to students as one of the stakeholders that has a direct impact on the quality of a university. LP2MP is tasked to carrying out measurements and implementation of feedback every semester in the form of surveys as one part of quality control directly to stakeholders. The results of the surveys can be used as a guideline for continuous improvement in the implementation of Dikti quality assurance and management of XYZ University. However, conventional processing and measurement of feedback data are not enough to explore hidden information from surveys data. EDM was used in this research to process and analyze data from XYZ University in the form of Student Feedback Questionaire (SFQ), Facility Satisfaction Questionnaire (FSQ), and the Graduate Feedback Questionaire (GFQ) in the Open-Ended Question (OEQ) section.
The purpose of the research is to support decision making in taking proactive actions towards improvement for self-evaluation and quality of XYZ University. This research carried out label aspect classification, analytical sentiment, and trends in the survey topics SFQ, FSQ, and GFQ in the OEQ section. Multi- class aspect label classification SFQ will choose the best classification model by comparing the results of the evaluation of accuracy, precision, recall, and F1-score for each feature combination and comparison of four classification algorithms namely Decision Tree (DT), Naïve Bayes (NB), K- Nearest Neighbor (KNN), and Support Vector Machine (SVM). The classification of the multi-label aspects of the FSQ and GFQ survey labels will have the best classification model by comparing the evaluation results of three multilabel library types from SciKit-Learn, namely Binary Relevance (BR), Label Power Set (LPS), and Classifier Chain (CC) to each combination of features and four classification algorithms.
The results of this research are Classification Techniques using a combination of features of TFIDF, Unigram, and Bigram with the SVM algorithm which is the best Multi Class classification model for labeling aspects of the SFQ survey. Classification techniques use a combination of TFIDF, Unigram, and Bigram features with the SVM algorithm and the Multi-Label library CC is the best Multi-Label classification model for labeling aspects of the FSQ survey. Classification techniques using a combination of Count Vectorizer, Unigram, and Bigram features with the NB algorithm and the Multi-Label library BR are the best Multi-Label classification models for labeling aspects of the GFQ survey. In addition, the SentiStrenghtID algorithm can be used to get sentiments and the LDA algorithm can be used to get annual topic trends on each survey aspect label SFQ, FSQ, and GFQ.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Akhmad Syafaat
"Universitas XYZ sebagai institusi Perguruan Tinggi Terbuka Jarak Jauh (PTTJJ), senantiasa menjaga kualitas layanannya agar tetap berkualitas. Salah satu layanan yang senantiasa dijaga adalah layanan Bahan Ajar. Layanan Bahan Ajar didukung dengan manajemen stok bahan ajar dari mulai perencanaan dengan melakukan estimasi kebutuhan bahan ajar, gudang bahan ajar untuk menyimpan persediaan bahan ajar dan Student Record System (SRS). Bahan Ajar disiapkan dalam dua program yaitu melalui Sistem Paket Semester (Paket) dan non-paket. Mahasiswa yang mengikuti program nonpaket tidak diwajibkan membayar tagihan biaya bahan ajar. Untuk menjaga kualitas layanan bahan ajar, Universitas XYZ melakukan estimasi kebutuhan bahan ajar. Estimasi dilakukan secara manual dengan menggunakan formula yang berbeda pada setiap tahunnya. Estimasi dilakukan sebelum dan sesudah masa registrasi mata kuliah. Kenyataannya, kebutuhan bahan ajar masih mengalami kekurangan. Hal ini diketahui pada akhir tahun terdapat perbedaan antara hasil estimasi dan realisasi, sehingga tidak sedikit mahasiswa mendapatkan bahan ajar ketika memasuki akhir semester bahkan ketika memasuki awal semester baru. Penelitian ini bertujuan untuk menentukan berapa banyak bahan ajar yang harus disiapkan dengan cara mempelajari profil mahasiswa melalui data history mahasiswa menggunakan teknik classification. Metode yang digunakan Naïve Bayes, Decision Tree dan Support Vector Machine. Evaluasi menggunakan metode cross validation dengan nilai k 2, 3, 5 dan 10. Hasil percobaan menunjukkan bahwa metode Decision Tree memiliki accuracy tertinggi dibanding dengan yang lain.

XYZ University as an institution of Distance Learning Higher Education (PTTJJ), always maintains the quality of its services to remain qualified. One service that is always maintained is the Teaching Materials service. Teaching Material Services are supported by the management of teaching material stocks from the start of planning by estimating teaching material requirements, warehouse of teaching materials to store supplies of teaching materials and Student Record System (SRS). Teaching Materials are prepared in two programs, namely through the Semester Package System (Package) and nonpackage. Students who take non-package programs are not required to pay bills for teaching materials. To maintain the quality of teaching material services, XYZ University estimates the need for teaching materials. Estimates are done manually by using a different formula each year. Estimates are made before and after the registration period of the course. In fact, the need for teaching materials is still lacking. This is known at the end of the year there is a difference between the results of estimation and realization, so that not a few students get teaching materials when entering the end of the semester even when entering the beginning of the new semester. This study aims to determine how much teaching material must be prepared by studying student profiles through student history data using classification techniques. The method used is Naïve Bayes, Decision Tree and Support Vector Machine. The evaluation uses the cross validation method with values k 2, 3, 5 and 10. The experimental results show that the Decision Tree method has the highest accuracy compared to the others."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Endro Yuniaryo
"[ABSTRAK
Dana pihak ketiga (DPK), yaitu dana yang dihimpun bank yang berasal dari
masyarakat, perlu dikelola secara efektif dan efisien dengan mempersiapkan
strategi penempatan dana. Salah satu strategi dalam penempatan dana tersebut
adalah menyalurkan kembali kepada masyarakat dalam bentuk pinjaman untuk
DPK yang diprediksi akan mengendap dalam jangka waktu yang cukup lama dan
menyimpan DPK dalam bentuk kas, cadangan, atau investasi jangka pendek untuk
DPK yang diprediksi tidak akan mengendap dalam jangka waktu yang cukup
lama menurut definisi bank. Penelitian ini menggunakan data mining untuk
memprediksi porsi DPK yang mengendap dari masing-masing nasabah
berdasarkan profil demografi dan transaksinya. Penelitian dibatasi pada produk
tabungan, dan data yang digunakan untuk proses data mining adalah data profil
nasabah dan data transaksi produk tabungan.
Metodologi penelitian ini menggunakan pendekatan CRISP DM. Dan metode
data mining yang digunakan adalah teknik decision tree untuk prediksi, analisa
klaster untuk proses diskritisasi label kelas yang akan digunakan dalam klasifikasi
dan menggunakan analisa RFM (Recency, Frequency, Monetary) untuk
menyederhanakan nilai pada atribut-atribut yang terkait dengan transaksi
tabungan. Metode klasifikasi menggunakan algoritma C4.5 dan analisa klaster
menggunakan algoritma k-means dan menggunakan WEKA sebagai data mining
tools. Hasil dari penelitian ini adalah model untuk memprediksi porsi dana
mengendap dari nasabah. Dari hasil evaluasi menggunakan perhitungan sensitivity, spesitivity, dan accuracy menunjukan model yang berhasil dibangun memiliki keakuratan yang cukup baik dalam memprediksi porsi dana mengendap.

ABSTRACT
Third-party funds (TPF), which is funds raised from the public, need to be
managed effectively and efficiently by preparing a strategic placements. One of
the strategies is by distributing loan from TPF that are expected to settle for a long
period of time and store in the form of cash, reserves, or short-term investments
for TPF that are predicted will not settle within long period based on definition
from the bank. In this study data mining is used to predict portion of TPF that
will settle for certain period of each customer based on the demographic profile
and transaction history. The scope of this study is only for saving account product,
and this study uses the customer profile data and transaction data of savings
products for data mining process.
The research methodology in this study using the CRISP DM approach. Decision
tree classification technique is used for prediction, cluster analysis method is used
for discretization process of class labels to be used in the classification and use
RFM analysis (Recency, Frequency, Monetary) to simplify the value of the
attributes associated with the transaction of saving account. C4.5 algorithm is
used for classification and cluster analysis using k-means algorithm and WEKA is
used as data mining tools. The results of this study is the model that can predict
portion of TPF that will settle for a certain period. The model evaluation by
sensitivity, spesitivity, and accuracy calculation shows that the model has
successfully built a good accuracy in predicting of TPF that are expected to settle
for a long period of time. , Third-party funds (TPF), which is funds raised from the public, need to be
managed effectively and efficiently by preparing a strategic placements. One of
the strategies is by distributing loan from TPF that are expected to settle for a long
period of time and store in the form of cash, reserves, or short-term investments
for TPF that are predicted will not settle within long period based on definition
from the bank. In this study data mining is used to predict portion of TPF that
will settle for certain period of each customer based on the demographic profile
and transaction history. The scope of this study is only for saving account product,
and this study uses the customer profile data and transaction data of savings
products for data mining process.
The research methodology in this study using the CRISP DM approach. Decision
tree classification technique is used for prediction, cluster analysis method is used
for discretization process of class labels to be used in the classification and use
RFM analysis (Recency, Frequency, Monetary) to simplify the value of the
attributes associated with the transaction of saving account. C4.5 algorithm is
used for classification and cluster analysis using k-means algorithm and WEKA is
used as data mining tools. The results of this study is the model that can predict
portion of TPF that will settle for a certain period. The model evaluation by
sensitivity, spesitivity, and accuracy calculation shows that the model has
successfully built a good accuracy in predicting of TPF that are expected to settle
for a long period of time. ]"
2015
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nori Wilantika
"Setiap perguruan tinggi di Indonesia bertanggung jawab atas kelengkapan, kebenaran, ketepatan, dan kemutakhiran data pendidikan tinggi di perguruan tinggi masing-masing. Data pendidikan tinggi digunakan untuk pelaksanaan sistem penjaminan mutu pendidikan tinggi dan digunakan sebagai landasan dalam penyusunan kebijakan terkait program studi dan perguruan tinggi di Indonesia. Hasil pengukuran kualitas data menunjukkan bahwa terdapat permasalahan pada data pendidikan tinggi di Politeknik Statistika STIS yaitu belum memenuhi kriteria kelengkapan, kebenaran, ketepatan, dan kemutakhiran. Pengukuran tingkat kematangan manajemen kualitas data telah dilakukan dengan menggunakan Loshins Data Quality Maturity Model dimana hasilnya berada pada kisaran level 1 dan 2. Hanya komponen dimensi kualitas data yang telah mencapai target yang diharapkan.
Untuk itu, rekomendasi disusun berdasarkan kerangka kerja DAMA-DMBOK. Adapun aktivitas yang perlu dilakukan adalah mengembangkan dan mempromosikan kesadaran terhadap kualitas data; mendefinisikan kebutuhan kualitas data; melakukan profiling, analisis, dan penilaian kualitas data; mendefinisikan aturan bisnis (business rules) kualitas data; menetapkan dan mengevaluasi tingkat layanan kualitas data (data quality service levels); mengelola permasalahan terkait kualitas data; merancang dan mengimplementasikan operasional prosedur untuk manajemen kualitas data; dan memantau operasional dan performa prosedur manajemen kualitas data.

Every varsity in Indonesia is responsible for ensuring the completeness, the validity, the accuracy, and the currency of its educational data. The educational data is used for the implementation of the higher-education quality assurance system and is used as a basis to formulate policies related to universities and majors in Indonesia. Data quality assessment result indicates that educational data in Statistics Polytechnic STIS did not meet completeness, validity, accuracy, and currency criteria. Data quality management maturity has been measured using Loshins Data Quality Maturity Model which the result are in level 1 to level 2 of maturity. Only data quality dimensions component has achieved the expected target.
Thus, recommendations have been proposed based on the DAMA-DMBOK framework. The activities needed to be carried out are developing and promoting awareness of data quality; defining data quality requirements; profiling, analyzing, and evaluating data quality; define business rules for data quality, establish, and evaluate the data quality services levels, manage problems related to data quality, design and implement operational procedures for data quality management, and monitor operations and performance of data quality management procedures.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Deddy Utomo
"Jenis usaha perasuransian PT XYZ dibagi menjadi dua yaitu asuransi kesehatan dan asuransi jiwa. Salah satu risiko yang terjadi dan berdampak pada kerugian perasuransian adalah kecurangan atau fraud yang dilakukan pihak tertentu untuk memperoleh keuntungan sepihak. Penelitian ini dilakukan untuk membuat pemodelan data mining yang digunakan untuk mendeteksi fraud pada asuransi kesehatan. Tujuan dari penelitian ini adalah memperoleh algoritma model berbasis data mining yang dapat mendeteksi fraud pada transaksi klaim peserta di PT XYZ. Karakteristik data yang digunakan bersifat imbalanced, karena jumlah data fraud yang digunakan tidak sebesar jika dibandingkan dengan data yang bersifat normal. Pembentukan model pada penelitian ini dilakukan dengan 32 skenario, dengan hasil terbaik skenario dengan penerapan feature engineering, feature selection, oversampling dan uji validasi menggunakan 20­-fold cross validation. Adapun hasil dari skenario tersebut menghasilkan algoritma random forest yang memiliki nilai akurasi paling baik yaitu 99,3% dengan didukung oleh nilai presisi, recall, dan f1 scores masing-masing, 99,3%, 99,3%, dan 99,3%. Hasil akhir dari penelitian ini memperlihatkan bahwa teknik feature engineering dengan penambahan atribut is_dr_speciality, memiliki kontribusi terhadap nilai akurasi model.

The type of insurance business of PT XYZ is divided into two, namely health insurance and life insurance. One of the risks that occur and impact insurance losses is fraud committed by certain parties to obtain unilateral benefits. This research was conducted to create a data mining model used to detect fraud in health insurance. The purpose of this study is to obtain a data mining-based model algorithm that can detect fraud in participant claims transactions at PT XYZ. The characteristics of the data used are imbalanced because the amount of fraud data used is not as much as compared to normal data. The model formation in this study was carried out with 32 scenarios, with the best results being the scenario by applying feature engineering, feature selection, oversampling, and validation tests using 20-fold cross-validation. This scenario resulted in the random forest algorithm having the best accuracy value of 99.3%, supported by precision, recall, and f1 scores, 99.3%, 99.3%, and 99.3%. The final result of this study shows that the feature engineering technique with the addition of the is_dr_speciality attribute has contributed to the model's accuracy value."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Probo Herawani
"ABSTRAK
Menurut Undang-undang No. 12 tahun 2012 tentang Pendidikan Tinggi Pasal 56, Pangkalan Data Pendidikan Tinggi (PD Dikti) merupakan kumpulan data penyelenggaraan pendidikan tinggi seluruh perguruan tinggi yang terintegrasi secara nasional. PD Dikti berperan penting dalam sistem penjaminan mutu pendidikan tinggi, yaitu berfungsi sebagai sumber informasi bagi lembaga akreditasi untuk melakukan akreditasi program studi dan perguruan tinggi; bagi pemerintah untuk melakukan pengaturan, perencanaan, pengawasan, pemantauan dan evaluasi serta pembinaan dan koordinasi program studi dan perguruan tinggi; dan bagi masyarakat untuk mengetahui kinerja program studi dan perguruan tinggi.
Mengingat pentingnya PD Dikti tersebut, tersedianya data yang berkualitas pada PD Dikti menjadi salah satu target yang ingin dicapai Pusat Data dan Informasi Iptek Dikti, Kementerian Riset, Teknologi, dan Pendidikan Tinggi. Target pengelolaan PD Dikti tahun 2016 akan fokus pada kualitas data, yaitu bagaimana dapat menyediakan data yang berkualitas. Untuk itu, perlu adanya strategi untuk menjamin dan meningkatkan kualitas data pada PD Dikti.
Berdasarkan hal tersebut, penelitian ini menyusun strategi untuk meningkatkan kualitas data pada PD Dikti. Untuk menyusun strategi tersebut dilakukan penilaian manajemen kualitas data saat ini, yaitu melalui penilaian terhadap dimensi kualitas data dan penilaian terhadap maturitas manajemen kualitas data. Langkah- langkah penelitian yang dilakukan meliputi identifikasi masalah, penilaian manajemen kualitas data, analisis kesenjangan untuk hasil penilaian maturitas manajemen kualitas data, analisis akar masalah untuk hasil penilaian dimensi kualitas data, dan menyusun strategi peningkatan kualitas data.
Hasil penelitian ini adalah rekomendasi strategi peningkatan kualitas data pada PD Dikti. Strategi tersebut meliputi peningkatan proses pada 7 (tujuh) domain manajemen kualitas data, yaitu pendefinisian harapan/kebutuhan kualitas data, pengukuran dimensi kualitas data, penetapan kebijakan informasi, peningkatan tata kelola data, penetapan prosedur, perbaikan teknologi, dan pengelolaan kinerja. Rekomendasi tersebut diharapkan dapat digunakan sebagai acuan dalam melakukan program kualitas data pada PD Dikti.

ABSTRACT
According to Law No. 12 of 2012 about Higher Education clause 56, Higher Education Database is a collection of higher education management data from all Indonesian universities that is integrated nationally. Higher Education Database plays an important role in the Quality Assurance System of Higher Education, which serves as a source of information for accrediting agencies to carry out accreditation of study programs; for the government to make arrangements, planning, supervision, monitoring and evaluation; and for the public to know the performance of the study program and universities. Clause 52 of the same Law also noted that the Higher Education Quality Assurance System is based on Higher Education Database.
Because of the importance of the Higher Education Database, availability of high quality data became one of the targets to be achieved by the Data and Information Center. One of the targets for the implementation of the Higher Education Database in 2016 is to focus on the quality of the data.
Therefore, it need strategies to ensure and improve the quality of data on Higher Education Database. Based on the above, this study recommends strategies for improving the quality of the data on Higher Education Database. To develop the strategy, the author assessed the current data quality management. Assessment of the current data quality management was done through an assessment of the dimensions of data quality and assessment of the maturity of data quality management. Research steps undertaken included problem identification, assessment of data quality management, gap analysis for maturity assessment of data quality management, root cause analysis for assessment of data quality dimensions, and formulation of strategy for improving data quality.
Results of this research include recommendation of data quality improvement strategy in Higher Education Database. The strategy includes improvement management in seven (7) data quality management domain, comprising of defining the expectations of dataquality, measurement of data quality dimension, establishment of information policy, improving data governance, establishment of procedures, technological improvements, and performance management. The recommendations are expected to be used as a reference in the data quality program on Higher Education Database.
"
2016
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Fahru Abdhul Aziz
"Penelitian ini membahas tentang pengelolaan arsip aktif di Sub Direktorat Kesejahteraan Mahasiswa Universitas Indonesia sebagai suatu sistem yang terus berlanjut. Tujuan dari penelitian ini untuk menjelaskan proses pengelolaan arsip aktif yang dilakukan di Sub Direktorat Kesejahteraan Mahasiswa UI dimulai dari proses penciptaan hingga penyusutan dengan juga melihat pandangan pegawai terhadap arsip. Metode studi kasus dilakukan dengan wawancara terhadap enam orang petugas yang terkait dengan pengelolaan arsip aktif Sub Direktorat Kesejahteraan Mahasiswa UI serta satu orang asriparis kantor arsip UI, observasi dan analisis dokumen. Hasil penelitian menunjukan bahwa dalam pengelolaan arsip aktif, pengelola perlu mengacu pedoman arsip organisasi terhadap semua jenis arsip yang berada dalam pengelolaan demi terciptanya tertib arsip organisasi. Pengelolaan arsip aktif Sub Direktorat Kesejahteraan Mahasiswa UI berlangsung sejak penciptaan hingga penyimpanan sedangkan penyusutan dilakukan dengan pemindahan arsip namun hanya ke ruang lain bukan ke unit kearsipan atau pusat rekod. Penciptaan arsip sudah dilakukan menggunakan tata naskah dinas yang berlaku namun dalam tahap ini belum dilakukan pengindeksan. Pengelompokan arsip dalam hal penyimpanan masih hanya sebatas pengelompokan surat masuk dan surat keluar yang diurutkan per bulan. Subdit kesma belum membuat daftar arsip aktif. Kondisi ini kemudian berdampak pada tidak bisanya arsip yang sudah memasuki masa inaktif dan yang sudah habis masa retensi inaktifnya untuk dapat dipindahkan ke kantor arsip UI. Dalam melakukan pengelolaan arsip pegawai juga masih mengikuti kebiasaan yang diwariskan dari generasi sebelumnya.

This study discusses about active records management on the University of Indonesias Sub Directorate of Student Welfare as a system that continues. The purpose of this study is to explain the process of managing active records carried out on the University of Indonesias Sub Directorate of Student Welfare starting from the creation to disposition process by also looking at the views of employees on the records. The case study method was conducted by interviewing six officers related to the management of active records of the UIs Sub Directorate of Student Welfare and one archivist on UIs archive office, observation and study documents. The results of the study show that in active records management, managers need to refer to the organizations records guidelines for all types of records that are in management for the sake of the creation of orderly records of the organization. Active records management on UIs Sub-Directorate of Student Welfare lasts from creation to storage while disposition is done by transferring files but only to other spaces, not to the records center. The creation of records has been carried out using the official scripts that are in force but in this stage, indexing has not been done. Records grouping in terms of storage is still limited to grouping incoming mailings and outgoing mailings sorted monthly. UIs Sub Directorate of Student Welfare has not created an active records list yet. This condition then results in not being able to move the records that have entered its inactive period and those whose inactive retention period has expired to be transferred to the UIs records center. In managing records, employees also still follow habits inherited from previous generations.
"
Depok: Fakultas Ilmu Pengetahuan dan Budaya Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evelline Kristiani
"Bervariasinya kapasitas, potensi dan tingkat perkembangan daerah menyebabkan perbedaan mutu yang lebar antar program studi maupun institusi perguruan tinggi di penjuru Indonesia. Perbedaan mutu ini menjadi fokus para pemangku kepentingan perguruan tinggi, khususnya calon mahasiswa, pemerintah dan pasar tenaga kerja. Agar dapat menjaga mutunya, Universitas Kristen Krida Wacana (UKRIDA) sebagai salah satu dari institusi perguruan tinggi di Indonesia wajib memenuhi standar dari kriteria yang ditetapkan oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT). Kemudian, untuk dapat bersaing, UKRIDA juga perlu menetapkan keputusan-keputusan maupun rencana strategis yang dibuat memanfaatkan data yang sama dengan yang digunakan untuk pengukuran pemenuhan standar kriteria akreditasi agar selaras dengan tujuan utama peningkatan mutu. Namun, ternyata melalui analisis akar-akar masalah Loshin yang diantaranya manusia, proses, teknologi dan kebijakan ditemukan kualitas data dari salah satu kewajiban Tri Dharma yaitu pendidikan dan pengajaran secara khusus pada data mahasiswa dan akademik, masih buruk baik itu manajemen maupun kondisi dari data itu sendiri. Berdasarkan hal tersebut, penelitian ini bertujuan untuk menyusun strategi peningkatan kualitas data mahasiswa dan akademik UKRIDA. Menggunakan metode kualitatif, pengumpulan data dilakukan melalui wawancara, query langsung dan studi dokumen. Penilaian terhadap kualitas data saat ini menggunakan dimensi kualitas data dari Loshin dan PermenristekDikti RI Nomor 61 Tahun 2016 Pasal 12, penilaian terhadap tingkat kematangan manajemen kualitas data menggunakan Data Quality Maturity Model Loshin. Penilaian menghasilkan temuan penyebab permasalahan dan temuan kesenjangan manajemen. Analisis kemudian digunakan untuk menghasilkan rekomendasi strategi, yang pertama lewat pemetaan penyebab permasalahan umum DMBOK2 dibentuk strategi peningkatan kondisi kualitas data dan yang kedua, lewat pemetaan best practive aktivitas manajemen kualitas data DMBOK2 yang dipadu dengan poin-poin konsiderasi strategi kualitas data Loshin dibentuk strategi peningkatan manajemen kualitas data. Secara garis besar strategi yang diajukan menyarankan perbaikan struktur data dan antarmuka aplikasi, pendefinisian tata kelola data, penyelenggaraan dokumentasi aturan, SOP dan SLA yang lengkap hingga ke unit bisnis dan peningkatan pengukuran dan pelaporan.

Variations in capacity, potential, and level of regional development cause wide differences in quality between study programs and higher education institutions throughout Indonesia. These quality differences become the focus of higher education stakeholders, especially prospective students, the government, and the labor market. To maintain its quality, Krida Wacana Christian University (UKRIDA) as one of the higher education institutions in Indonesia must meet the standards of criterias set by the National Accreditation Body for Higher Education (BAN-PT). Then, to be able to compete, UKRIDA also needs to establish strategic decisions and plans that are made based on the same data used to measure accreditation criteria standards fulfillment so that they are aligned with the main objective of quality improvement. However, through analysis of Loshin’s domain of problem root causes include humans, processes, technology, and policies, turns out that the quality of data from one of the obligations of the Tri Dharma, namely education and teaching specifically on student and academic data is still poor both in terms of management and the condition of the data itself. Based on these founds, this study aims to develop strategies for improving the UKRIDA student and academic data quality. Using qualitative methods, data collection was carried out through interviews, direct queries and document study. Assessment of the current data quality uses data quality dimensions from Loshin and PermenristekDikti RI Number 61 of 2016 Article 12, assessment of the maturity level of data quality management using Loshin's Data Quality Maturity Model. The assessment results in: findings of problems causes and findings of management gaps. Further analysis was carried out to produce strategic recommendations, firstly through mapping DMBOK2 common problems causes; a strategy for improving data quality conditions was formed. Secondly, through mapping of DMBOK2 best practice data quality management activities combined with Loshin’s data quality strategy points of consideration, a data quality management improvement strategy was formed. Broadly speaking, the proposed strategy suggests corrections of data structures and application interfaces, defining data governance, organizing complete documentation of rules, SOPs, and SLAs up to business units also measurement and reporting improvement."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Evelline Kristiani
"Bervariasinya kapasitas, potensi dan tingkat perkembangan daerah menyebabkan perbedaan mutu yang lebar antar program studi maupun institusi perguruan tinggi di penjuru Indonesia. Perbedaan mutu ini menjadi fokus para pemangku kepentingan perguruan tinggi, khususnya calon mahasiswa, pemerintah dan pasar tenaga kerja. Agar dapat menjaga mutunya, Universitas Kristen Krida Wacana (UKRIDA) sebagai salah satu dari institusi perguruan tinggi di Indonesia wajib memenuhi standar dari kriteria yang ditetapkan oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT). Kemudian, untuk dapat bersaing, UKRIDA juga perlu menetapkan keputusan-keputusan maupun rencana strategis yang dibuat memanfaatkan data yang sama dengan yang digunakan untuk pengukuran pemenuhan standar kriteria akreditasi agar selaras dengan tujuan utama peningkatan mutu. Namun, ternyata  melalui analisis akar-akar masalah Loshin yang diantaranya manusia, proses, teknologi dan kebijakan ditemukan kualitas data dari salah satu kewajiban Tri Dharma yaitu pendidikan dan pengajaran secara khusus pada data mahasiswa dan akademik, masih buruk baik itu manajemen maupun kondisi dari data itu sendiri. Berdasarkan hal tersebut, penelitian ini bertujuan untuk menyusun strategi peningkatan kualitas data mahasiswa dan akademik UKRIDA. Menggunakan metode kualitatif, pengumpulan data dilakukan melalui wawancara, query langsung dan studi dokumen. Penilaian terhadap kualitas data saat ini menggunakan dimensi kualitas data dari Loshin dan PermenristekDikti RI Nomor 61 Tahun 2016 Pasal 12, penilaian terhadap tingkat kematangan manajemen kualitas data menggunakan Data Quality Maturity Model Loshin. Penilaian menghasilkan temuan penyebab permasalahan dan temuan kesenjangan manajemen. Analisis kemudian digunakan untuk menghasilkan rekomendasi strategi, yang pertama lewat pemetaan penyebab permasalahan umum DMBOK2 dibentuk strategi peningkatan kondisi kualitas data dan yang kedua, lewat pemetaan best practive aktivitas manajemen kualitas data DMBOK2 yang dipadu dengan poin-poin konsiderasi strategi kualitas data Loshin dibentuk strategi peningkatan manajemen kualitas data. Secara garis besar strategi yang diajukan menyarankan perbaikan struktur data dan antarmuka aplikasi, pendefinisian tata kelola data, penyelenggaraan dokumentasi aturan, SOP dan SLA yang lengkap hingga ke unit bisnis dan peningkatan pengukuran dan pelaporan.

Variations in capacity, potential, and level of regional development cause wide differences in quality between study programs and higher education institutions throughout Indonesia. These quality differences become the focus of higher education stakeholders, especially prospective students, the government, and the labor market. To maintain its quality, Krida Wacana Christian University (UKRIDA) as one of the higher education institutions in Indonesia must meet the standards of criterias set by the National Accreditation Body for Higher Education (BAN-PT). Then, to be able to compete, UKRIDA also needs to establish strategic decisions and plans that are made based on the same data used to measure accreditation criteria standards fulfillment so that they are aligned with the main objective of quality improvement. However, through analysis of Loshin’s domain of problem root causes include humans, processes, technology, and policies, turns out that the quality of data from one of the obligations of the Tri Dharma, namely education and teaching specifically on student and academic data is still poor both in terms of management and the condition of the data itself. Based on these founds, this study aims to develop strategies for improving the UKRIDA student and academic data quality.

Using qualitative methods, data collection was carried out through interviews, direct queries and document study. Assessment of the current data quality uses data quality dimensions from Loshin and PermenristekDikti RI Number 61 of 2016 Article 12, assessment of the maturity level of data quality management using Loshin's Data Quality Maturity Model. The assessment results in: findings of problems causes and findings of management gaps. Further analysis was carried out to produce strategic recommendations, firstly through mapping DMBOK2 common problems causes; a strategy for improving data quality conditions was formed. Secondly, through mapping of DMBOK2 best practice data quality management activities combined with Loshin’s data quality strategy points of consideration, a data quality management improvement strategy was formed. Broadly speaking, the proposed strategy suggests corrections of data structures and application interfaces, defining data governance, organizing complete documentation of rules, SOPs, and SLAs up to business units also measurement and reporting improvement."

Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Arif Rifai Dwiyanto
"Development of Data Warehouse and Data Mining for National Standards for Education
Abstrak Berbahasa Indonesia/Berbahasa Lain (Selain Bahasa Inggris):
Standar Nasional Pendidikan (SNP) adalah kriteria minimal tentang sistem pen-
didikan di seluruh wilayah hukum Negara Kesatuan Republik Indonesia. SNP
digunakan sebagai acuan pengembangan kurikulum, tenaga kependidikan, sarana
dan prasarana, pengelolaan, dan pembiayaan pendidikan.
Pengembangan dan pemantauan SNP dilakukan Badan Standar Nasional Pen-
didikan (BSNP) dibantu oleh tim ahli yang bersifat ad-hoc. Data pendidikan
yang ada pada kementerian atau hasil-hasil analisisnya diprioritaskan untuk digu-
nakan dalam pengembangan dan pemantauan SNP. Permasalahan yang diangkat
dalam penelitian ini adalah belum intensifnya penggunaan data pendidikan yang
ada pada kementerian untuk pengembangan dan pemantauan SNP.
Salah satu penyebab belum intensifnya penggunaan data pendidikan ini karena
data pendidikan tersebar di berbagai instansi dan belum ada standar yang meng-
atur data pendidikan dan bagaimana cara mengaksesnya. Salah satu cara yang
dapat digunakan untuk mengatasi hal ini adalah teknologi data warehouse dengan
melakukan integrasi data melalui proses ETL. Untuk memanfaatkan lebih jauh
lagi data yang ada dalam data warehouse dapat dilakukan data mining. Pada
penelitian ini akan dikaji sejauh mana data warehouse dan data mining dapat di-
gunakan untuk pengembangan dan pemantauan SNP.
Penelitian yang dilakukan mencakup analisis terhadap pengelolaan data pen-
didikan di Indonesia, analisis terhadap data yang akan diolah, dilanjutkan de-
ngan pengembangan serta evaluasi data warehouse dan data mining yang dikem-
bangkan. Data yang digunakan dalam penelitian ini dibatasi pada data hasil Ujian
Nasional (UN) dan akreditasi untuk jenjang SMP/MTs.
Dari penelitian ini didapati bahwa antarmuka OLAP dalam data warehouse dapat
digunakan untuk menganalisis data pendidikan terkait dengan SNP. Sedangkan
untuk data mining, teknik deskriptif dengan pencarian aturan asosiasi dan teknik
prediktif dengan klasifikasi dapat digunakan untuk memperoleh pengetahuan
yang tersimpan dalam data warehouse untuk data hasil UN dan akreditasi.

The National Standards for Education/Standar Nasional Pendidikan (SNP) is a
set of minimal criteria about the educational system in the Indonesia Republic.
The SNP is used as a reference for curriculum development, teacher and staff,
facilities and infrastructure, management, and financing of education.
The development and monitoring of the SNP are conducted by the National Stan-
dards for Education Agency/Badan Standar Nasional Pendidikan (BSNP), as-
sisted by several ad-hoc team of experts. The data that’s available on the Ministry
of National Education (MoNE) or the results of the analysis are prioritized to be
used in the development and monitoring of the SNP.
Issues raised in this research is the use of data available on the ministry of edu-
cation for the development and monitoring of the SNP has not been intense. One
cause has not been the intensive use of education data because educational data
spread across various agencies/ministries and there is no standard of educational
data and how to get access to them. One solution that can be used to overcome
this problem is data warehouse technology by integrating data through the ETL
process. To further use existing data in the data warehouse is to perform data min-
ing. This research examined to what extent the data warehouse and data mining
is useful for the development and monitoring of the SNP.
Research conducted, including the analysis of education data management in In-
donesia, the analysis of data to be processed, followed by the development and
evaluation of data warehouse and data mining developed. The data used in this
study are limited to data from the National Examination and the accreditation
process for junior high schools (SMP/MTs).
From this study, it was found that the OLAP user interface and data warehouse
can be used to analyze data associated with an SNP. As for data mining, associ-
ation rules and classification can be used to obtain hidden knowledge in the data
warehouse for the National Examination and accreditation data.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>