Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4402 dokumen yang sesuai dengan query
cover
Holloway, Immy
Victoria: Blackwell Science, 1997
001.42 HOL b
Buku Teks SO  Universitas Indonesia Library
cover
Milewski, Emil G.
Piscataway: Research and Education Association, 1989
512.2 MIL e
Buku Teks SO  Universitas Indonesia Library
cover
New Jersey: Research and Education Association, 1987
515 ESS
Buku Teks SO  Universitas Indonesia Library
cover
Piscataway, New Jersey : Research abd Education Association, 1997
519.4 ESS II
Buku Teks SO  Universitas Indonesia Library
cover
Hausladen, Gerhard
""The facade is the skin of the building. It is the interface between indoors and outdoors and has a key role to play in building design. The facade determines the appearance of the building and has considerable influence on room climate and energy demand." "Climate Skin is a practice-oriented design manual centred on attaining preliminary and detailed designs optimised in terms of energy and building climatology. The book takes the reader through all phases in the development of the facade and gives a comprehensive overview of the latest technologies and design tools."--BOOK JACKET."
Basel: Birkhäuser , 2007
729.1 HAU c
Buku Teks SO  Universitas Indonesia Library
cover
Hausladen, Gerhard
Basel: Birkhauser, 2008
R 720.47 HAU c
Buku Referensi  Universitas Indonesia Library
cover
Nisrina Dinda Dhamayanti
"Kanker kulit berasal dari lesi kulit yang memiliki penampilan atau pertumbuhan jaringan kulit yang tidak biasa. Melanoma adalah kanker kulit paling berbahaya dan menyebabkan banyak kematian jika tidak terdeteksi sedini mungkin. Pendeteksian sedini mungkin mendesak untuk dilakukan mengingat dapat meningkatkan angka survival rate sebesar 95%. Cara pendeteksiaan saat ini yang menggunakan metode manual masih kurang handal dan memakan banyak waktu. Teknologi deep learning dapat menjadi solusi yang dapat dimanfaatkan untuk melakukan segmentasi lesi kulit. Untuk penelitian ini, penulis mengusulkan penggunaan teknik Residual U-Net berbasis deep-convolutional neural network untuk segmentasi lesi kulit. Teknik Residual U-Net yang diusulkan menggunakan Residual Block, Group Normalization, dan Tversky Loss ke dalam arsitektur berbasis U-Net. Penggunaan Residual Block dapat mengatasi permasalahan error jaringan yang tinggi akibat adanya vanishing gradient serta meningkatkan ekstraksi representasi fitur gambar. Model dilatih dan dievaluasi menggunakan dataset yang berasal dari International Skin Imaging Collaboration (ISIC) 2018. Penelitian ini berhasil meningkatkan kinerja model dalam melakukan segmentasi lesi kulit dengan nilai dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, dan precision masing-masing, sebesar 0.86, 0.76, 0.93, 0.88, 0.96, dan 0.85.

Skin cancer originates from skin lesions that have an unusual appearance or growth of skin tissue. Melanoma is the most dangerous skin cancer and causes many deaths if not detected early. Early detection is urgent to do considering it can increase the survival rate by 95%. The current detection method using the manual method is still less reliable and takes a lot of time. Deep learning technology can be a solution that can be used to segment skin lesions. For this study, the authors propose the use of a Residual U-Net technique based on a deep-convolutional neural network for segmenting skin lesions. The proposed Residual U-Net technique uses Residual Block, Group Normalization, and Tversky Loss into a U-Net-based architecture. The use of Residual Block can overcome the problem of high network error due to the vanishing gradient and improve the extraction of image feature representation. The model was trained and evaluated using a dataset from the International Skin Imaging Collaboration (ISIC) 2018. This study succeeded in improving the model's performance in segmenting skin lesions with values ​​of dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, and precision of 0.86, 0.76 , 0.93, 0.88, 0.96, and 0.85.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hughes, Christina
London: Sage, 2002
305.42 HUG k
Buku Teks SO  Universitas Indonesia Library
cover
Leininger, Madeleine M.
New York: McGraw-Hill , 2002
610.73 LEI t
Buku Teks SO  Universitas Indonesia Library
cover
New York: Human Science Press, 1979
301 COM
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>